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The Hajnal-Szemerédi theorem

Theorem (Hajnal-Szemerédi, 1970)

(Complementary form) If G is a simple graph on n vertices with minimum
degree

δ(G ) ≥
(

1− 1

k

)
n

then G contains a subgraph which consists of bn/kc vertex-disjoint copies
of Kk .

This is a Kk -tiling

or a Kk -factor or even a Kk -packing

.

We will use
“tiling” most often.

Notes

k = 2 follows from Dirac

k = 3 proven by Corrádi & Hajnal 1963
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The Alon-Yuster theorem

Theorem (Alon-Yuster, 1992)

For any α > 0 and graph H, there exists an n0 = n0(α,H) such that in
any graph G on n ≥ n0 vertices with

δ(G ) ≥
(

1− 1

χ(H)

)
n + αn

there is an H-tiling of G if |V (H)| divides n.

Komlós, Sárközy and Szemerédi, 2001, showed that αn can be replaced by
C = C (H), but not eliminated entirely.

Theorem (Kühn-Osthus, 2009)

For any graph H, there exists an n0 = n0(H) and a constant C = C (H)
such that in any graph G on n ≥ n0 vertices with

δ(G ) ≥
(

1− 1

χ∗(H)

)
n + C

there is an H-tiling of G if |V (H)| divides n.

This result is best possible, up to the constant C .

But what is χ∗(H)?
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Critical chromatic number

Definition

Let H be a graph with

order: h = |V (H)|
chromatic number: χ = χ(H)

σ = σ(H) is the order of the smallest color class of H among all
proper χ-colorings of V (H).

The critical chromatic number of H, is
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Critical chromatic number

Definition

Let H be a graph with

order: h = |V (H)|
chromatic number: χ = χ(H)

σ = σ(H) is the order of the smallest color class of H among all
proper χ-colorings of V (H).

The critical chromatic number of H, is χcr = χcr(H) = (χ−1)h
h−σ

Fact

For any graph H:
χ(H)− 1 < χcr(H) ≤ χ(H)

Also, χcr(H) = χ(H) iff every proper χ-coloring of H is a equipartition.
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σ = σ(H) is the order of the smallest color class of H among all
proper χ-colorings of V (H).

The critical chromatic number of H, is χcr = χcr(H) = (χ−1)h
h−σ

Fact

For any graph H:
χ(H)− 1 < χcr(H) ≤ χ(H)

Also, χcr(H) = χ(H) iff every proper χ-coloring of H is a equipartition.

χcr(H) was defined by Komlós, 2000.
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Critical chromatic number

Definition

Let H be a graph with

order: h = |V (H)|
chromatic number: χ = χ(H)

σ = σ(H) is the order of the smallest color class of H among all
proper χ-colorings of V (H).

The critical chromatic number of H, is χcr = χcr(H) = (χ−1)h
h−σ

χ∗(H) =

{
χcr(H), if gcd(H) = 1;
χ(H), else.

where gcd(H) is basically the gcd of the differences of the color classes in
proper colorings of H.
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Definitions

Definition

The family of k-partite graphs with n vertices in each part is denoted
Gk(n).

Definition

The natural bipartite subgraphs of G are the ones induced by the pairs of
classes of the k-partition.

Definition

If G ∈ Gk(n), let δ̂k(G ) denote the minimum degree among all of the
natural bipartite subgraphs of G .
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Multipartite Hajnal-Szemerédi

The asymptotic Hajnal-Szemerédi theorem was solved with two different
methods:

Theorem (Keevash-Mycroft, 2013; Lo-Markström, 2013)

Let k ≥ 2 and ε > 0. There exists an n0 = n0(k , ε) such that if n ≥ n0,
G ∈ Gk(n) and if

δ̂k(G ) ≥
(

1− 1

k

)
n + εn,

then G has a Kk -tiling.

Hypergraph blow-up; Absorbing method

In a longer manuscript, Keevash and Mycroft settle the multipartite
Hajnal-Szemerédi case for large n:

Theorem (Keevash-Mycroft, 2013, Mem. Amer. Math. Soc.)

Let k ≥ 2 and ε > 0. There exists an n0 = n0(k , ε) such that if n ≥ n0,
G ∈ Gk(n) and if

δ̂k(G ) ≥
(

1− 1

k

)
n,

then G has a Kk -tiling or both k and n/k are odd integers and
G ≈ Γk(n/k).

The case of k = 3 was solved by Magyar-M. (2002). The case of k = 4
was solved by M.-Szemerédi (2008).

The graph Γk(n/k) is one of Catlin’s “Type 2” graphs.
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Hajnal-Szemerédi case for large n:

Theorem (Keevash-Mycroft, 2013, Mem. Amer. Math. Soc.)

Let k ≥ 2 and ε > 0. There exists an n0 = n0(k , ε) such that if n ≥ n0,
G ∈ Gk(n) and if

δ̂k(G ) ≥
(

1− 1

k

)
n,

then G has a Kk -tiling or both k and n/k are odd integers and
G ≈ Γk(n/k).

The case of k = 3 was solved by Magyar-M. (2002). The case of k = 4
was solved by M.-Szemerédi (2008).
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The graph Γk(n/k) is one of Catlin’s “Type 2” graphs.

Martin (Iowa State University University of Birmingham London School of Economics)An asymptotic multipartite Kühn-Osthus theorem 08 August 2017 7 / 13



Catlin’s Type 2 Graphs

Catlin’s Type 2 graph.

The red indicates non-edges between graph classes.
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Toward Kühn-Osthus

Theorem (Zhao, 2009)

Let h be a positive integer. There exists an n0 = n0(h) such that if
n ≥ n0, h | n, and G ∈ G2(n) with

δ(G ) = δ̂2(G ) ≥
{

1
2n + h − 1, if n/h is odd;
1
2n + 3h

2 − 2, if n/h is even,

then G has a perfect Kh,h-tiling.

Moreover, there are examples that prove that this δ̂2 condition cannot be
improved.
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Toward Kühn-Osthus

Theorem (Bush-Zhao, 2012)

Let H be a bipartite graph. There exists an n0 = n0(H) and c = c(H)
such that if n ≥ n0, |V (H)| | n, and G ∈ G2(n) with

δ(G ) ≥


(

1− 1
χ∗(H)

)
n +c , if gcd(H) = 1 or gcdcc(H) > 1;(

1− 1
χ(H)

)
n +c , if gcd(H) > 1 and gcdcc(H) = 1,

then G has a perfect H-tiling.

The quantity gcdcc(H) counts the gcd of the sizes of the connected
components of H.
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Our results

Theorem (M.-Skokan, 2013+)

Let k ≥ 2, H be a graph with χ(H) = k and ε > 0. There exists an
n0 = n0(H, ε) such that if n ≥ n0, G ∈ Gk(n) and if

δ̂k(G ) ≥
(

1− 1

χ(H)

)
n + εn,

then G has an H-tiling.

This, of course, contains the asymptotic Hajnal-Szemerédi case.
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Martin (Iowa State University University of Birmingham London School of Economics)An asymptotic multipartite Kühn-Osthus theorem 08 August 2017 10 / 13



Our results

Theorem (M.-Mycroft-Skokan, 2015+)

Let k ≥ 2, H be a graph with χ(H) = k, χ∗ = χ∗(H) and ε > 0. There
exists an n0 = n0(H, ε) such that if n ≥ n0, G ∈ Gk(n) and if

δ̂k(G ) ≥
(

1− 1

χ∗(H)

)
n + εn,

then G has an H-tiling.

The main tool is linear programming.
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Linear programming

Definition

For any graph G, let Tk(G ) denote the set of k-cliques of G. The
fractional Kk-tiling number, τ∗k (G ) is:

τ∗k (G ) =



max
∑

T∈Tk (G)

w(T )

s.t.
∑

T∈Tk (G),T3v
w(T ) ≤ 1, ∀v ∈ V (G ),

w(T ) ≥ 0, ∀T ∈ Tk(G ).

Theorem

Let k ≥ 2. If G ∈ Gk(n) and δ̂k(G ) ≥ (k − 1)n/k, then τ∗k (G ) = n.

The proof is by induction on k and uses both the Duality Theorem and
Complementary Slackness Theorem of LPs.

Duality Theorem:

τ∗k (G ) =


max

∑
w(T )

s.t.
∑
T3v

w(T ) ≤ 1, ∀v ,

w(T ) ≥ 0, ∀T .
=


min

∑
x(v)

s.t.
∑
v∈T

x(v) ≥ 1, ∀T ,

x(v) ≥ 0, ∀v .

UB: τ∗k (G ) ≤ n.
Setting x(v) ≡ 1/k gives a feasible solution to the minLP, so
τ∗k (G ) ≤ (kn) · (1/k) = n.

LB: τ∗k (G ) ≥ n. Base Case: k = 2.
Let G = (V1,V2;E ). If either V1 or V2 fails to have a “slack vertex” in
the maxLP, then

τ∗k (G ) ≥
∑
T

w(T ) =
∑
v∈Vi

∑
T3v

w(T ) =
∑
v∈Vi

1 = n.

If v1 ∈ V1 and v2 ∈ V2 are slack, then we may assume x(v1) = x(v2) = 0
(Complementary Slackness).

Each vertex in N(v1),N(v2) has weight 1. Since |N(v1)|, |N(v2)| ≥ n/2,
τ∗k (G ) ≥ n.

Let G = (V1, . . . ,Vk ;E ). If any Vi has no slack vertices in the maxLP,
then

τ∗k (G ) ≥
∑
T

w(T ) =
∑
v∈Vi

∑
T3v

w(T ) =
∑
v∈Vi

1 = n.

If vi ∈ Vi , ∀i , are slack, then we may assume x(vi ) = 0, ∀i .

Let Gi ≤ G [N(vi )], ∀i , so that Gi has exactly k−1
k n vertices in each Vj .

Each Gi satisfies the degree requirement for Gk−1
(
k−1
k n
)
.

By induction,

(k − 1)τ∗k (G ) ≥
k∑

i=1

∑
v∈V (Gi )

x(v) ≥
k∑

i=1

k − 1

k
n = (k − 1)n.

�
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Future work

Can we replace δ̂k(G ) ≥
(

1− 1
χ∗(G)

)
n + εn with

δ̂k(G ) ≥
(

1− 1
χ∗(G)

)
n + C (H)?

Is δ̂k(G ) ≥ (k − 1)n/k + εn sufficient to force the kth power of a
Hamilton cycle?
(Related to Bollobás-Komlós conjecture on bandwidth)

What probability p guarantees that, for any G with
δ̂k(G ) ≥ (k − 1)n/k + εn, the random subgraph Gp has a Kk -tiling?
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Future work

Can we replace δ̂k(G ) ≥
(

1− 1
χ∗(G)

)
n + εn with

δ̂k(G ) ≥
(

1− 1
χ∗(G)

)
n + C (H)?

Is δ̂k(G ) ≥ (k − 1)n/k + εn sufficient to force the kth power of a
Hamilton cycle?
(Related to Bollobás-Komlós conjecture on bandwidth)

What probability p guarantees that, for any G with
δ̂k(G ) ≥ (k − 1)n/k + εn, the random subgraph Gp has a Kk -tiling?

Martin (Iowa State University University of Birmingham London School of Economics)An asymptotic multipartite Kühn-Osthus theorem 08 August 2017 12 / 13
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What probability p guarantees that, for any G with
δ̂k(G ) ≥ (k − 1)n/k + εn, the random subgraph Gp has a Kk -tiling?
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Thanks!

My home page:

http://orion.math.iastate.edu/rymartin

My CV (with links to this and previous talks):

http://orion.math.iastate.edu/rymartin/cv/RMcv.pdf

Contact me:

rymartin@iastate.edu
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