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Abstract

Membrane filters are used in various industrial engineering processes and one of the most significant applications is
water purification, where target particles, colloids and macromolecules, are removed from the water flow by applying
microfiltration. Hence mathematical models to predict their efficacy are potentially very useful, as such models can
suggest design modifications to improve filter performance and lifetime. Many models have been proposed to describe
particle capture by membrane filters and the associated fluid dynamics, but most of such models are based on a very
simple structure in which the pores of the membrane are assumed to be simple circularly cylindrical tubes spanning the
depth of the membrane. Real membranes used in applications can have much more complex internal structure, with
interconnected pores that may branch and bifurcate, and pore-size variation across the membrane. However, during
the filtration process, membrane fouling due to the block of large particles and deposition of small particles occur
and decreases the membrane performance. Thus, the membrane’s permeability decreases as the filtration progresses.
Two driving mechanisms can be considered an here: (i) constant pressure drop across the membrane specified; and (ii)
constant flux through the membrane specified. In the former case the flux will decrease in time as the membrane becomes
fouled; in the latter, the pressure drop required to sustain the constant flux will rise as fouling occurs. Considering
elasticity to sub-branches in constant flux scenario, in some stage of filtration process, the radius of pores may tend to
expand due to the effect of high pressure on the elastic sub-branches, which is not negligible.

1 Introduction

Membrane filters are crucial in many industrial engineering processes. Most importantly, they are used for water pu-
rification, but other applications include air and other gas purification, treatment of radioactive sludge, and even beer
purification [1]. They also show up in the biotech field, where they are used in artificial kidneys to remove toxic sub-
stances [2]. Filtration was also used to help brew your cup of coffee this morning.

Depending on the application, membrane filters could be made of various materials and geometries [1]. A few different
structures are shown in figure 1. These arise from finding a balance between the control of the particle removal and
minimization of the energy requirements. For consideration, a membrane with small pores such that all of the particles
are filtered will require a large amount of energy to as there will be a high resistance for the flow. Hence, it is commonly
used in the industry that absorption is to be responsible for a significant portion of filtration, that is, the deposition of
small particles on the pore walls within membrane. That way, membranes with larger pores operating with lower pressures
can be used.

The flow through membrane filters is often modeled by studying the flow through rigid pores, one of which is shown
in figure 2, using Darcy’s Law. This is assuming a low Reynolds number and gives the dependence of the flux through
the pores from pressure. It is also usually assumed that the pores are axisymmetric, i,e, the symmetric about the axis.
If the cases where the pores are treated as an elastic system, it can be assumed that the filter is the same material, and
hence, has the same elastic properties as the membrane. This is a property to consider since some industrial membranes
have layers of different material filters.

The goal of this work is to analyze the effects of pressure on the pore size of the filters and the concentration throughput
using the preceding assumptions. In particular, we assume a superficial Darcy velocity of the fluid. The model is applied
to two different cases: thick-walled cylinders and thin-walled cylinders, both of which are considered elastically. Therefore,
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to derive the pore radius deformation, we use the Donnell shell theory [4] for thin-walled cylinders whereas we use the
cylindrical coordinate methods for thick-walled deformation [6].P. Apel / Radiation Measurements 34 (2001) 559–566 563

Fig. 2. A few examples of porous structures produced in thin polymeric !lms using various methods of irradiation and chemical treatment: (A)
cross section of a polycarbonate TM with cylindrical non-parallel pore channels; (B) polypropylene TM with slightly conical (tapered towards
the center) parallel pores; (C) polyethylene terephthalate TM with cigar-like pores; (D) polyethylene terephthalate TM with “bow-tie” pores.

pores can be modi!ed by covalent binding of charged groups
or by adsorption of ionic polyelectrolytes (Froehlich and
Woermann, 1986). The immobilization of aminoacids to the
PET track membranes based on the reactions of end carboxyl
and hydroxyl groups was reported (Marchand-Brynaert
et al., 1995; Mougenot et al., 1996). However, the surface
density of the immobilized in this way species is rather
low.
The radiation-induced graft polymerization onto track

membranes is a process which has been studied in more
detail (Zhitariuk et al., 1989; Zhitariuk, 1993; Tischenko
et al., 1991; Shtanko and Zhitariuk, 1995). Styrene (St),
methacrylic acid (MAA), N -vinyl pyrrolidone (VP),
2-methyl 5-vinyl pyridine (2M5VP), N -isopropyl acryl-
amide (NIPAAM) and some other monomers have been
grafted onto PET track membranes. Grafting of St in-
creases the chemical resistance and makes the membrane
hydrophobic. MAA and VP were grafted onto TMs to in-
crease wettability which is especially important when aque-
ous solutions are !ltered through small-pore membranes.
2M5VP was grafted with the aim to make the membrane
hydrophilic and change its surface charge from negative to
positive. During the past decade the grafting of NIPAAM
and other intelligent polymers were extensively studied in
the research work carried out at TRCRE (Takasaki) and
GSI (Darmstadt) (Yoshida et al., 1993, 1997; Reber et al.,
1995).

7. Applications

Applications of commercially produced track membranes
can be categorized into three groups: (i) process !ltration;
(ii) cell culture; (iii) laboratory !ltration. The process !l-
tration implies the use of membranes mostly in the form
of cartridges with a membrane area of at least 1 m2. Pu-
ri!cation of deionized water in microelectronics, !ltration
of beverages, separation and concentration of various sus-
pensions are typical examples. There is a strong competi-
tion with other types of membranes available on the mar-
ket. Casting membranes often provide a higher dirt load-
ing capacity and a higher throughput. For this reason the
use of track membranes in this !eld is still limited (Brock,
1984).
In the recent years a series of products were de-

veloped for the use in the domain called cell and tis-
sue culture (Stevenson et al., 1988; Sergent-Engelen
et al., 1990; Peterson and Gruenhaupt, 1990; Roth-
man and Orci, 1990). Adapted over the years to a va-
riety of cell types, porous membrane !lters are now
recognized as providing signi!cant advantages for cul-
tivating cells and studying the cellular activities such
as transport, absorption and secretion (van Hinsbergh
et al., 1990). The use of permeable support systems based
on TMs has proven to be a valuable tool in the cell biology
(Costar=Nuclepore Catalog, 1992).

Figure 1: Membrane filters

2 Thick-Walled Cylinders

2.1

The thick-walled cylinder can be seen as shown in figure 2. Here, X is the axial direction, C(X;T ) denotes the concentration
of small particles, A(X;T ) is the radius of the pore at X and time T , D is the length of the pore, and 2W denotes width
and depth of an element of the membrane containing a single pore. We describe the deformation of the elastic membrane
using Navier-Cauchy equation

�1r2
 + (�2 + �1)r(r � 
 ) + H = �
@2


@T 2
; (1)

where 
 = (ΩR ;Ω� ;ΩX ) is the displacement vector in cylindrical coordinates, � denotes the density, �1 and �2 are Lamé’s
first and second parameters, respectively. Lamé’s parameters are given by

�1 =
E

2(1 + �)
;

�2 =
E�

(1 + �)(1� 2�)
;

(2)

where E is Young’s modules, and � is Poisson’s ratio.
Let body force H = 0, as we will consider the force due to pressure at the boundary conditions. Assuming an

elastostatic condition (the condition of equilibrium, in which all forces on the body sum to zero), we have

@2


@T 2
= 0: (3)

Putting equation (1), (2) and (3) together, it follows that

r2
 + 2�r(r � 
 ) = 0: (4)

Write the governing equation (4) componentwisely in cylindrical coordinates,
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� 2
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@
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 ) = 0; (6)

r2ΩX +
1

1� 2�

@

@X
(r � 
 ) = 0; (7)

since divergence operator and Laplacian operator in cylindrical coordinates has the form
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1

R

@
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1
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Figure 2: Schematic showing the single unit of membrane, assumed repeated in a square lattice. Small particles, at
concentration C(X;T ), which enter pores and deposit within, are indicated, as are large particles, which block the pore
inlet.

Note that Ω� = 0 due to the axisymmetric geometry. Denote n the normal vector to the pore wall, and note that it is

parallel to r(R�A) =
�

@(R � A )
@R ; 0; @(R � A )
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�
= (1; 0;�@A

@X). Furthermore,
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We would like to scale all of the variables to render the equations dimensionless. We introduce the following change of
variables

X = Dx; A = Wa = "Da; R = Wr = "Dr; (ΩR ;Ω� ;ΩX ) = W (!r ; !� ; !x ); (Σ; P ) =
8�DQpore

�W 4
(�; p); (13)

where " := W
D � 1.

The axisymmetric assumption gives Ω� = 0 and therefore there is no �-dependency. We rewrite equations (5), (6), and
(7) using (8), (9) and (13) and get
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Extracting the leading order terms of equation (14) and (16), we get
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The boundary conditions are
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= 0; (19)
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which become

� r

�
�
�
r = a

= p;
@�r
@r

�
�
�
r =1

= 0 : (20)

The clamped boundary conditions take on the form

! x

�
�
�
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= 0 ; ! x

�
�
�
x =1

= 0 ; (21)

8�DQ pore

�W 4 � r =
E

(1 + � )(1 � 2� )

�
(1 � � )

@!r
@r

+ �
! r

r
+ ��

@!x
@x

�
; (22)

leading to
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�
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By letting � = �EW 4=[8�DQ pore (1 + � )(1 � 2� )], the �rst-order terms give

� r 0 = �
�
(1 � � )

@!0r

@r
+ �

! 0r

r

�
: (24)

De�ning y := ! 0r and y0 := @!0r
@r allows us to obtain the ordinary di�erential equation

1
r
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y
r 2 +

1
1 � 2�
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r

(ry )0
� 0

= 0 ; (25)

which has the solution

! 0r = c1(x)r +
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r
: (26)

Hence,
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Since� r 0jr = a = p0 and @�r 0
@r jr =1 = 0 we have

p0 = �
h
(1 � � )
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c2
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�
+ �

�
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from which
0 = � [(1 � � )2c2 � � (2c2)] : (29)

This allows us to conclude that
c2 = 0 ; c1 =

p0

�
; ! 0r =

p0r
�

: (30)

3 Thin-Walled Cylinders

To analyze the 
ow through the membrane pore, we consider cylindrical geometry having a much smaller cross-sectional
area than the \stream-wise" dimension and a negligible thickness compared to the cross-sectional dimension. In other
words, apart from the assumption of steady and axisymmetric 
ow, we assume that the length,D , and the pore radius,
A, satisfy A=D � 1. This is shown in �gure 3.

When analyzing the membrane pore, we make use of Donnell's Shell Theory which takes into account the bending of
the membrane pore as well [4]. Though we skip the intricate details associated with the equation expressing the momentum
balance, the reader is encouraged to consult DYM [5]. Also, the thickness of the pore, �, is assumed to be small compared
to the pore radius, i.e., � =A � 1.

3.1 Donnell Shell Equation

Following Anand and Christov [4], we introduce elasticity in our system with the following equation

E � 3

12(1� � 2)

�
@4
 r

@X4 +
12
 r

� 2A2

�
= P(X ); (31)

in which we substitute the dimensionless variables

X = Dx; A = Wa; 
 r =
8�DQ pore

�EW 3 ! r ; P =
8�DQ pore

�W 4 p (32)
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Figure 3: Schematic showing the single unit of membrane with a thin shell. Small particles, at concentrationC(X; T ),
which enter pores and deposit within, are indicated, as are large particles, which block the pore inlet.

in order to obtain �
�
a

� 2 � a
D

� 4 @4! r

@x4
+

12! r

W 2 =
12(1� � 2)a2

� W
p: (33)

For our thin-walled and slender shell, the relationships � � A and A � D indicate that the partial derivative term can
be neglected to the leading order in �=A and A=D. It follows that the pore radius deformation from the terms left over
is given by

! r =
(1 � � 2)W

�
pa2: (34)

This relationship will dictate how the pore expands as its radius and the 
uid pressure change.

4 Computations

Our goal is to use the current pore radius and pressure values to update the radius. We begin by computing the particle
concentration by resolving the ordinary di�erential equation

@c
@x

= � ~�ca; c (x = 0 ; t) = 1 (35)

and the concentration is employed in �nding the radius by solving

@a
@c

= � ~�c; a (x; t = 0) = a0(x): (36)

We use the obtained quantities to determine the number of unblocked pores using

dn
dt

=

"

� n
�

n +
1 � n

1 + � ba4

� � 1

(1 � g(a))

#

x =0

(37)

and, in turn, we solve the following integral for the pressure

p =
Z 1

x

dx0

a4[n + (1 � n)=(1 + � ba4)]
: (38)

Now we seek the radial de
ection value,! r , which we then use in obtaining the new pore radius. There are two cases:

1. If the thick-wall model is assumed, we use the right-most of equations equation (30). The updated radius is obtained
with the previous radius and pressure values:

a  a + ! 0r
�
�
r = a = a +

pa
�

: (39)

2. If the thin-wall model is assumed, we use instead equation (34). The updated radius is obtained with the previous
radius and pressure values:

a  a + ! r
�
�
r = a = a +

Wpa2

�
: (40)

Equipped with the next-step radius, we repeat the entire process above to uncover the subsequent radii.
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