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Introduction

A graph signal is a function f : V → C, where V is the vertex set of a
graph. With increasing amounts of data being recorded which naturally
embed in a graph structure, there is growing interest in generalizing tools
of classical signal processing to this setting. See [1] for a discussion of
generalizing the DFT to this setting. For an introduction more focused on
generalizing traditional signal processing applications, see [2].

Today I discuss recent work on the problem of characterizing graph signals
with well-localized translations which arose in generalizing the short-term
Fourier transform. In particular, I explain the use of representation theory
to describe these functions for many families of Cayley graphs.

Graph Signal Fourier Transform

The graph Laplacian is L = D − A, with D the diagonal degree matrix
and A the standard adjacency matrix. If we fix a basis of eigenvectors Φ
of L, then the Fourier transform of a graph signal f is the expansion of f
in terms of Φ. That is, for a graph of order N ,

f̂ (λi) = 〈f, φi〉`2(G) =

N∑
n=1

f (vn)φi(vn).

In this setting, the inverse Fourier transform is given by

f (vn) =

N−1∑
i=0

f̂ (λi)φi(vn).

If we think of f and f̂ as column vectors and Φ as the matrix of basis
vectors, then these definitions naturally lend themselves to the notation

f̂ = Φ∗f, and f = Φf̂ .

Graph Signal Translation

The graph translation operator is defined by convolution with the
Kronecker delta function δ` and then by taking the inverse Fourier
transform:

(T`f )(vk) =
√
N(f ∗ δ`)(vk) =

√
N

N−1∑
i=0

f̂ (λi)φi(v`)φi(vk).

Remark: One of the chief difficulties in the graph setting is the lack of
regularity in both the vertex and spectral domains. For example, in
general, the graph translation operator is not an isometry.

Cayley Graphs

Let G be a group. Let S ⊆ G. Then the Cayley graph Cay(G, S) is a
graph (V,E) whose vertices are indexed by the elements of G, with
adjecency defined as

E(x, y) =

{
1, if x−1y ∈ S
0, if x−1y 6∈ S.

Window Functions and PreviousWork

Let G be a graph of order N . A window function is f : V → C such that Tif (vk) = 0 when d(vi, vk) > r for some
integer 0 < r < N . Here we use the geodesic distance as our metric.

Previous Work: The authors prove in
[3] that if f̂ is a polynomial of degree r,
then f will be a window function. This
shows that the dimension of the space of
window functions is at least r + 1.

Our Contribution: Using representation theory, we fully classify win-
dow functions on Cayley graphs generated by the union of conjugacy
classes. To do this, we exploit the fact that these graphs have an eigen-
basis formed by the coordinate functionals of the group’s irreducible
representations. These details are provided in the next column.

New Theorem

Let G = {gi}|G|i=1 be a finite group. Let G = Cay (G, S) be the Cayley graph gener-
ated by S ⊆ G where S =

⋃
i∈I Ci and each Ci is a conjugacy class. Let e denote

the identity element, and let {hi}ri=1 be a complete set of representatives for the
conjugacy classes of G. Let χ be the standard character table of G with columns φi
corresponding to the conjugacy class containing hi. Also denote the characters by
{χj}rj=1. Then f is a window function with Tif (vt) sharply localized in the ball of
distance k centered at vertex vt if and only if d(e, gi) > k implies that 〈f, φi〉 = 0.

Further, given the subset Sk = {i ∈ I | d(e, hi) > k}, we can construct an orthog-
onal basis for the space of window functions on G localized in the k-ball by lifting

the vectors {φi}i∈Sk from C|Ĝ| to C|G| and then taking their Fourier inverse. That is,

Tmf (vt) = 0 for all d(vm, vt) > k if and only if f̂ satisfies the span condition given
to the right. Note that χt(e) is the degree of the representation χt, and each block is
size χt(e)

2 by 1.

f̂ ∈ spanC





χ1(hi)
χ1(e)

χ2(hi)
χ2(e)

χr(hi)
χr(e)




i∈Sk

Main Idea of Proof: Given the basis of coordinate functionals, we can rewrite the translation operator as

(T`f )(vk) =
1√
|G|

∑
π∈Ĝ

π(e)f̂ (λπ)χπ(`−1k),

which reduces the problem to finding orthogonality relationships in the character table of the underlying group.

An Example: The Cayley Graph of S4 Generated by Transpositions

(e)(12)

(13)

(14)

(23)

(24)

(34)

(12)(34)

(13)(24)

(14)(23)

(123)

(124)
(132)

(134)

(142)

(143)

(234)

(243)

(1234)

(1243)

(1324)

(1342)

(1423)

(1432)
The graph G = Cay(S4, {(12), (13), (14), (23), (24), (34)})
is pictured to the left. The character table of S4 is given
in the next column. Let’s say that we want to find a ba-
sis for all functions f : V → C on this graph such that
Tif (vk) = 0 if d(vi, vk) > 2. Then f̂ must be orthogonal
to the last column of the character table in C5, but we
can lift this to C24 using the formula above to determine
that

f̂ ∈ spanC




1(1)

1(1)

1(4)

1(9)

1(9)

 ,


3(1)

−3(1)

0(4)

1(9)

−1(9)

 ,


3(1)

3(1)

3(4)

−1(9)

−1(9)

 ,


2(1)

2(1)

−1(4)

0(9)

0(9)




.

Here we use the superscript notation (n) to denote that
the size of the blocks are n by 1.

Distance from e 0 1 2 3
Conjugacy Class e (12) (12)(34), (123) (1234)

Eigenvectors of the Graph Laplacian

Let G = Cay(G, S) with adjacency matrix A. Then for ρ ∈ Ĝ
Aρi,j = λρρi,j,

where ρi,j is the coordinate functional for the representation ρ
and λρ = 1

ρ(e)

∑
g∈S χρ(g). We are able to apply this result to the

graph Laplacian as it is a polynomial of the adjacency matrix.

Character Table of S4

e (12) (12)(34) (123) (1234)

χι 1 1 1 1 1
χsgn 1 -1 1 1 -1
χπ 2 0 2 -1 0
χstd 3 1 -1 0 -1

χsgn·std 3 -1 -1 0 1

Remark: Using the character
table instead of the coordinate
functionals when computing the
space of window functions yields a
substantial decrease in complexity.

Comparison of Results

The theorem in [3] shows that for S4 generated by conjugacy
classes, f is sharply localized if f̂ is a polynomial, or equivalently,

f̂ ∈ spanC




1(1)

1(1)

1(4)

1(9)

1(9)

 ,


6(1)

−6(1)

0(4)

2(9)

−2(9)

 ,


36(1)

36(1)

0(4)

4(9)

4(9)




.

It is easy to verify that this forms a 3-dimensional subspace of the
4-dimensional space of window functions for this graph found
using representation theory. It is also worth noting that the proof
technique used in [3] provides no means of generalization to
finding other sharply localized functions.

FutureWork

Continuing work on this project will include

I classifying window functions for Cayley graphs with arbitrary generating
sets.

I studying the relationship between the Discrete Fourier Transform and the
Graph Fourier Transform. (In the case of finite abelian groups, they are
identical!)

I generalizing the results from finite groups to locally compact groups.
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