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Y Introduction Z

Osteoporosis is characterized by a decrease in strength
of the bone matrix. This is a serious disease affecting an
increasing number of the aged and it is also a threat for
potential astronauts.

Since the loss of bone density and the destruction of the
bone microstructure is most evident in osteoporotic can-
cellous bone, which consists of trabeculae and marrow, it
is natural to consider the possibility of developing accu-
rate ultrasound models for the sonification of cancellous
bone. It would be of enormous clinical advantage if

accurate methods could be developed using ultrasonic interrogation to diagnose
osteoporosis and bone fractures.
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Figure 1: Sketch of the ex-
perimental setup.

Y Green’s Function for a Finite Tank Z

A bone specimen is placed in an open rectangular water tank (Figure 1). In the
water region Ωw, the fluid pressure P and fluid displacement Uw satisfy

−∇2P − κ2
0P = f , (1)

∇P − ρwω2Uw = 0 , x 6= x0 , (2)

where f (x,x0) = −q δ(x,x0;κ0) represents a point source of strength q located
at x = x0, and κ0 is the wavenumber of the signal.

To reduce the Helmoltz’s equation to a boundary integral equation defined along
the interface bwteen bone and water, we construct an infinite series representation
of the Green’s function for the open tank by the method of images
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where H
(1)
0 (z) denotes the Hankel’s function of the first kind.

Y Modified Biot’s Model Z
The Biot’s model treats a poro-elastic medium as an elastic frame with interspinal
pore fluid. To formulate a well-posed boundary value problem, we modify the
Biot equations in terms of u and s,
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where u = (u1, u2) is the motion of the frame of the bone and s = Qe + Rε is a
combination of the solid and fluid dilatations.

Y Transmission Conditions Z

Via the Green’s representation of P in Ωw, the solution of (1) can be written in
the form of a single-layer potential for the unknown density function ϕ,

P (x,x0) = −q G(x,x0;κ0)−
∫
∂Ωb

G(x, ζ ;κ0)ϕ(x0, ζ) dSζ , x ∈ Ωw , (5)

Then along the interface between bone and water, we have

•Continuity of the aggregate pressure:

λ∇·u+2µ
∂u1

∂x1
+Qε+s = q G(X,x0;κ0)+

∫
∂Ωb

G(X, ζ ;κ0)ϕ(x0, ζ) dSζ (6)

and
∂u1

∂x1
− ∂u2

∂x2
= 0 . (7)

•Continuity of the flux:
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∂G

∂n
(X, ζ ;κ0) dSζ . (8)

•Continuity of the pore pressure:

β

∫
∂Ωb

G(X, ζ ;κ0)ϕ(x0, ζ) dSζ − s + βq G(X,x0;κ0) = 0 , (9)

In deriving the equations (6) and (7), we tacitly employed the condition that the
tangential frame stress vanishes at the interface.

Y Numerical Approximation Z

Because of this reduction, now we only need to discretize the small bone sample
domain Ωb. A second order finite-difference scheme is used to solve the coupled
system of equations (3)–(4) and (6)–(9) for the unknowns ϕ, s, u1, and u2.
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Figure 2: Profiles of ϕ, s, u1 and u2 for β = 0.83, ω = 250 kHz and N = 90.

Y Recovery of Parameters Z

The objective function that we use for the sensitivity and recovery tests is the
relative root-mean-square error between a reference pressure at each receiving
point and the corresponding trial value of P computed by the model.
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Figure 3: Sensitivity tests on β at ω = 250 kHz with N = 65 and 90 for the low and high
resolutions respectively.

β N β fmin error
target low/high converged %
0.72 25/90 0.7014 0.3247 2.5879

45/90 0.7128 0.1849 1.0059
65/90 0.7174 0.0887 0.3613

0.75 25/90 0.7357 0.3627 1.9043
45/90 0.7452 0.2036 0.6348
65/90 0.7484 0.0960 0.2148

0.81 25/90 0.7980 0.9406 1.4844
45/90 0.8109 0.3507 0.1074
65/90 0.8106 0.1242 0.0781

0.83 25/90 0.8888 0.9747 7.0898
45/90 0.8322 0.4804 0.2637
65/90 0.8306 0.1787 0.0684

0.90 25/90 0.9086 0.3982 0.9570
45/90 0.8949 0.2092 0.5664
65/90 0.8981 0.0828 0.2148

0.95 25/90 0.9725 0.7834 2.3730
45/90 0.9482 0.0749 0.1880
65/90 0.9472 0.3623 0.2917

Table 1: Errors on the recovery of β at ω = 250 kHz for varying resolutions of the trial solution.

Similar results are also obtained for the higher frequency ω = 500 kHz.

Y Conclusion Z

•The sensitivity test validates the robustness of the proposed model;

•Based on the univariate minimization, the bone porosity β can be determined
to within 2% in most cases and within 0.07% in the best case;

•These results may be viewed as successful and support potential use of this
model as a theoretical basis in the development of acoustic techniques for as-
sessing bone strength.


