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Introduction
I am working on the inverse scattering problem for anisotropic inhomogeneous media with voids. My main
goal is to study the inverse problem of determining the material properties of the anisotropic medium
and/or the size and location of the void. This is an important Applied Mathematics problem since it arises
in nondestructive testing of exotic materials.

Direct Problem

Let D ⊂ R2 be a bounded simply connected open
set with a Lipshitz boundary and let D1 ⊂ D with a
boundary that is also Lipshitz.

• Let A(x) be a symmetric matrix with entries
aij(x) ∈ L∞(D \D1)

• ξ · <(A)ξ ≥ α|ξ|2 for all ξ ∈ C2 and x ∈ D \D1

• ξ · =(A)ξ ≤ 0 for all ξ ∈ C2 and x ∈ D \D1

• Assume n ∈ L∞(D \D1) such that =(n) ≥ 0.

The Formulation of the Direct Problem is:

Find (us, w) ∈ H1
loc(R2 \D)×H1(D) such that:

∆w + k2w = 0 in D1 (1)

∇ ·A(x)∇w + k2n(x)w = 0 in D2 (2)

∆us + k2us = 0 in R2 \D (3)

w− = w+ and
∂w−

∂ν
=
∂w+

∂νA
on ∂D1 (4)

w − us = eikx·d on ∂D (5)

∂w

∂νA
− ∂us

∂ν
=
∂eikx·d

∂ν
on ∂D (6)

lim
r 7→∞

√
r
(∂us
∂r
− ikus

)
= 0 (7)

Theorem 1: There exists a unique solution to the
BVP (1)-(7) depending continuously on the data.

Transmission Eigenvalues (TEVs)

The interior TEVs are k ∈ C s.t. ∃ nontrivial (w, v):

∆w + k2w = 0 in D1

∇ ·A∇w + k2nw = 0 in D2

∆v + k2v = 0 in D

w− = w+ and
∂w−

∂ν
=
∂w+

∂νA
on ∂D1

w = v and
∂w

∂νA
=
∂v

∂ν
on ∂D

We are interested in the TEVs since the eigenvalues
hold information about A, n and the void D1.

Theorem 3: Assume that A − I and n − 1 have
different signs then the set of TEVs is non-empty,
provided |D1| is sufficiently small.

Theorem 4: Assume that D1 ⊆ D′1 with D, A and
n fixed. Also let A− I and n− 1 have different signs.
Then we have that the first TEV is an increasing
function of void size:

k1(D1) ≤ k1(D′1)

TEVs in the Data
The radiating fundamental solution to Helmholtz

equation in R2 is given by Φ(x, y) = i
4H

(1)
0

(
k|x−y|

)
,

and let Φ∞(·, ·) be the far field pattern of Φ(x, y).

We assume that in some neighborhood Nδ(∂D) of
the boundary ∂D that either:

• A(x) ≤ A?I < I and n(x) ≤ n? < 1

• A(x) ≥ A?I > I and n(x) ≥ n? > 1

Then we have the following result.

Theorem 5: Let k be a Real Transmission Eigen-
value and assume that:

lim
δ→0
||Fgz,δ − Φ∞(·, z)||L2(0,2π) = 0.

Then for almost every z ∈ D, lim
δ→0
||gz,δ|| =∞.

This result suggests that if we solve the far field
equation and plot ||g||L2(0,2π) verses [kmin, kmax]
then we should see spikes at the TEVs.

Numerical Experiments
Let 0 < ε < 1 with D = B(0 ; 1) and D1 = B(0 ; ε).

We see the monotonicity of the 1st TEV w.r.t. the
size of the void in the chart below for n = 1:

ε = 0.2 ε = 0.1 ε = 0.05 ε = 0.01
A = 1

5I 2.534 2.4887 2.4852 2.4849

A = 1
2I 8.7883 8.0852 7.9924 7.9844

Using separation of variables one can see that k =
2.4887, 5.2669 are TEVs for A = 1

5I and ε = 0.1.
Below is a plot of ||g||L2(0,2π) over the interval [2, 6].

Special Thanks to: P. Monk and J. Sun

References
[1] A Cossonniere, H. Haddar (2011) “The Electromagnetic Interior Transmission Problem for Regions with Cavities” SIAM J. MATH. ANAL.

[2] AS. Bonnet-Ben Dhia, L. Chesnel, H. Haddar (2011) “On the use of T -coercivity to study the interior transmission eigenvalue problem” C. R. Acad. Sci.
Paris, Ser. I.

[3] F. Cakoni, D. Colton, and H. Haddar (2009) “On the Determination of Dirichlet or Transmission Eigenvalues from Far Field Data” Academie des sciences

[4] F. Cakoni and H. Haddar (2012) “Transmission Eigenvalues in Inverse Scattering Theory” Inside Out, MSRI Publications

[5] F. Cakoni and A. Kirsch (2010) “On the interior transmission eigenvalue problem” Int. Jour. Comp. Sci. Math.

Far-Field Operator

The scattering field us has the asymptotic expansion:

us(r, θ) =
eikr√
r
u∞(θ, φ) +O(r−3/2) as r →∞

u∞ is called the far field pattern of the scattering
problem. With φ incident direction and θ observa-
tion direction. We now define the far-field operator:

(Fg)(θ) :=

2π∫
0

u∞(θ, φ)g(φ) dφ

The associated Herglotz function is of the form:

vg(x) :=

2π∫
0

eikx·dg(φ) dφ. were d = (cosφ, sinφ)

The Inverse Problem is to infer information about
the domain and/or coefficients of the BVP (1)-(7)
given the far field operator.

Theorem 2: The far field operator corresponding to
the scattering problem (1)-(7) is injective with dense
range iff @ nontrivial (w, vg) solving:

∆w + k2w = 0 in D1

∇ ·A∇w + k2nw = 0 in D2

∆vg + k2vg = 0 in D

w− = w+ and
∂w−

∂ν
=
∂w+

∂νA
on ∂D1

w = vg and
∂w

∂νA
=
∂vg
∂ν

on ∂D
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