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Motivation
Delamination is a defect that occurs when two materials that should be in contact patially separate. It

is important in many engineering systems, and here we present a new model for electromagnetic wave

scattering in delaminated configurations, whose advantage is to avoid the numerically expensive process

of meshing thin domains. The results will later be used to develop a non-destructive testing for the

identification of delamination.

The problem
We are interested in the scattering of an electromagnetic wave by a layered isotropic penetrable obstacle,

Ω := interior(Ω0 ∪ Ω+ ∪ Ω−) ⊂ R
3, shown in Figure 1, Panel (a).

In one part of their interface, the two layers Ω− and Ω+ are separated the thin third domain Ω0, called

the delamination. Let Γ be the interface between Ω− and Ω+ and Γ0 ⊂ Ω0 is such that Γ ∪ Γ0 is a C2−
regular surface. The four different domains Ω0, Ω−, Ω+, and Ωext := R

3 \ Ω have different continuous

physical properties: the relative magnetic permeability μ and the relative electric permitivity ε, which

are scalar fields. We will assume that in the thin domain Ω0, the material properties μ = μδ and ε = εδ
are constant and will denote by ν the unit normal vector pointing outwards.
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Figure 1: Panel (a) Cross section of the obstacle. The thin layer Ω0 represents the delamination. Panel (b) Zoom on the

delamination.

The well-known equations that model the scattering of the total electromagnetic fields in the frequency

domain give rise to:

The standard model

∇×
(
1

μ
∇× E

)
− k2εE = 0 in Ω0 ∪ Ω+ ∪ Ω− ∪ Ωext

ν ×
(
1

μ
∇× E

)
and ν × E are continuous in R

3,

and where, in Ωext, the electromagnetic field is written as E = Es+Ei, where Ei denotes the incident

field, and Es is the radiating field that satisfies the Silver-Müller radiation condition:

lim
r→∞ ((∇× Es)× x̂− ikrEs) = 0, (1)

where x̂ = x
|x| and r = |x|.

Preliminaries for a new model
1. Given a parametrization xΓ of Γ0, then there is 0 < η∗ such that the map:

(xΓ, η) �→ xΓ + ην(xΓ), for all − η∗ ≤ η ≤ η∗,
is an isomorphism in a neighborhood N of Γ0.
2. The boundary of the delamination, ∂Ω0, can be split into ∂Ω0 ∩Ω+ = Γ+ and ∂Ω0 ∩Ω− = Γ−. If the

thickness of Ω0 is small enough, then they can be written in the curvilinear coordinates as:

Γ± := {xΓ ± δf±(xΓ)ν(xΓ) : xΓ ∈ Γ0},
where 0 < δ < η∗ characterizes the thickness of Ω0, and f± : Γ0 → [0, 1/2] are the two functions that

describe the profile of the delamination, as shown in Figure 1, Panel (b).

3. Let τ 1, τ 2 be an orthonormal set of tangential vectors to the surface Γ0. Given a smooth vector field

v = v1τ 1 + v2τ 2 + v3ν ∈ (C∞(Γ0))
3 and a smooth scalar field ρ ∈ C∞(Γ0), we define

vT = v1τ 1 + v2τ 2, curlΓvT := ∂1v2 − ∂2v1,
−−→
curlΓρ := ∂2ρτ 1 − ∂1ρτ 2, divΓvT := ∂1v1 + ∂2v2.

The asymptotic setting

If the parameter δ we formally assume that the following asymptotic expansions of the fields are valid in

a neighborhood of Ω0:

E±(xΓ, η) =
∞∑
l=0

δlE±
l (xΓ, η) in Ω± and Eδ(xΓ,

η

δ
) =

∞∑
l=0

δlEl(xΓ,
η

δ
) in Ω0,

where each of the terms E±
l (xΓ, η), and El, l ≥ 0, are independ of δ for all l ≥ 0.

The new model

Let the jump and mean values between the surfaces Γ± be respectively denoted by:

[u] = u+|Γ+
− u−|Γ− and 〈u〉 = 1

2
(u+|Γ+

+ u−|Γ−),

Using this notation, after neglecting terms of order O(δ2), it can be derived:

The new model

∇×
(
1

μ
∇× E

)
− k2εE = 0 in Ω+ ∪ Ω− ∪ Ωext,

[ν × E] = A1

(〈
1

μ
∇× E

〉
T

)
,

[
ν ×

(
1

μ
∇× E

)]
= A2 (〈ET 〉) on Γ0,

and ν × E and ν ×
(
1

μ
∇× E

)
are continuous on Γ1 ∪ Γ,

where in Ωext, E = Es + Ei is the total field, Ei is an incident field, and Es satisfies the Silver-

Müller radiation condition (1).

Here the operators Ai : H → H∗ are

Ai(λ) = δ 〈f〉αiλ− δ
−−→
curlΓ (〈f〉 βicurlΓλ) ,

for i = 1, 2, where 〈f〉 = f++f−
2 , α1 = 2μδ, α2 = 2k2εδ, β1 =

2
k2εδ

, and β2 =
2
μδ

,and where

H := {u |u ∈ H−1/2(Γ0), curlΓu ∈ H−1/2(Γ0),
√
〈f〉u ∈ L2

t (Γ0),
√
〈f〉curlΓu ∈ L2(Γ0)},

‖u‖2H := ‖u‖2H−1/2 + ‖curlΓu‖2H−1/2 +
∥∥∥√〈f〉u

∥∥∥2
L2
t

+
∥∥∥√〈f〉curlΓu

∥∥∥2
L2

.

Remark. Our new model does not include a differential equation in the thin domain Ω0.

The variational formulation of the new model

Assumption 1. Assume that the relative boundary ∂Γ0 of Γ0 in Γ is a C2− regular and non self-
intersecting curve in R

3, and that:

a) f±(xΓ) = 0 if and only if xΓ ∈ ∂Γ0

b) The weight 〈f〉 satisfies that there is a constant 0 < s < 1 such that limρ→0+
〈f〉(xΓ)
ρ(xΓ)s

= C �= 0 for
some constant C ∈ R, where ρ(xΓ) = dist(xΓ, ∂Γ0).

Lemma. Under the hypothesis of Assumption 1, the operator A1 : H → H∗ is invertible.

Let BR be a ball such that Ω ⊂ BR, and let SR be the boundary of BR. Let H−1/2(divSR
, SR) :=

{u |u ∈ H−1/2(SR), divSR
u ∈ H−1/2(SR)}.

Denote by Ge : H
−1/2(divSR

, SR) → H−1/2(divSR
, SR) is the well-known exterior electric-to-magnetic

Calderón operator defined by Ge(λ) = x̂×Hs, where (Es,Hs) satisfy

ikEs +∇×Hs = 0, ikHs −∇× Es = 0 in R
3 \BR,

x̂× Es = λ on SR, lim
r→∞ r(Hs × x̂− Es) = 0.

A variational formulation of the new model is

a+(E,v) + b(E,v) + ik

∫
SR

Ge(x̂× E) · vT ds = L(v) for all v ∈ X (2)

with

a+(E,v) :=

∫
Bδ

R

(
1

μ
∇× E · ∇ × v

)
dV +

∫
Γ0

〈f〉 β2curlΓ 〈ET 〉 curlΓ 〈vT 〉 ds

b(E,v) := −
∫
Bδ

R

k2εE · v dV −
∫
Γ0

δ 〈f〉α2 〈ET 〉 · 〈v〉T ds +
1

δ

∫
Γ0

A−1
1 ([ν × E]) · [ν × v] ds,

L(v) =
∫
SR

(x̂× (∇× Ei)) · v − ik 〈Ge(x̂× Ei),vT 〉SR
,

and the solutions space is

X := {u ∈ H(curl, Bδ
R) |

√
〈f〉 〈uT 〉 ∈ L2

t (Γ0)
√
〈f〉curlΓ 〈uT 〉 ∈ L2(Γ0)} with

||u||2X := ||u||2
H(curl,Bδ

R)
+ ||

√
〈f〉 〈uT 〉 ||2L2

t (Γ0)
+ ||

√
〈f〉curlΓ 〈uT 〉 ||2L2(Γ0)

.

Well-posedness

Theorem. If, in addition to the hypothesis specified in Assumption 1, there is a constant c > 0, such
that �(ε±),�(εδ), μ±, μδ ≥ c > 0, �(ε±) ≥ c + �(ε±) > 0 and �(εδ) ≥ c + �(εδ) > 0, then the
problem 2 has a unique solution for all L ∈ X∗.

Numerical validation of the new model

To validate our new model, we present an error analysis based in the comparison between the standard

model and our new model. The numerical experiments were implemented in the finite element package

Netgen/Ngsolve, in the setting shown in Figure 2, Panel (a), with: r1 = 1.3, r = 0.8, f− = 0, f+ = 1,

μ+ = 1, μ− = 1, μδ = 2, ε+ = 1. + 1.01i, ε− = 2. + 2.01i, εδ = 3.5 + 3.51i.As incident field, the plane

wave Ei = peikd·x, with k = 3, d = (0, 0, 1), and p = (1, 0, 0).
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Figure 2: Panel (a) Configuration of the numerical experiments. Panel (b) H(curl) relative error of the total fields resulting

from different values of δ. The approximate rate of convergence is O(δ).

where we defined the relative H(curl) error for each δ by eHcurl(δ) =
||EATC−Elayer||H(curl,Ωext)

||Elayer||H(curl,Ωext)
.

(a) (b)

Figure 3: Panel (a) and (b) show respectively the solutions to the standard and new model, for δ = 0.003.

• Therefore, as shown in Figure 2, Panel (b), the new model was successfully validated as an O(δ)
approximation of the standard model.


