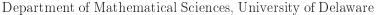


Uniqueness for an Inverse Problem with Formally Determined Offset Data

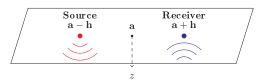
Zachary Bailey

Advisor: Dr. Rakesh



MOTIVATION

The problem under consideration arises in the study of geophysics and medical imaging. Let $\mathbf{x}=(x_1,x_2,z)$ be a point in \mathbb{R}^3 , $\mathbf{a}=(a_1,a_2,0)$ and $\mathbf{h}=(h,0,0)$ for some $h\geq 0$. We consider an acoustic medium occupying the half space $z\leq 0$ and let $q(\mathbf{x})$ represent some acoustic property of the medium (e.g. oil, minerals, a tumor).



The medium is probed by an acoustic wave, generated at $\mathbf{a} - \mathbf{h}$, and the medium response, $U^{\mathbf{a}}$ is measured at the offset boundary location $\mathbf{a} + \mathbf{h}$, for every \mathbf{a} on the boundary z = 0. The goal is to recover the acoustic property $q(\mathbf{x})$ given $U^{\mathbf{a}}(\mathbf{a} + \mathbf{h}, t)$ for all \mathbf{a} on z = 0 and for all time t.

PROGRESSING WAVE EXPANSION

Given a real valued $q = q(\mathbf{x})$ on $z \leq 0$ representing the acoustic property of the medium, emit a acoustic wave at $\mathbf{x} = \mathbf{a} - \mathbf{h}$, characterized by $U^{\mathbf{a}}(\mathbf{x}, t)$. It is known that $U^{\mathbf{a}}$ satisfies the following PDE:

$$U_{tt}^{\mathbf{a}} - \Delta_{\mathbf{x}} U^{\mathbf{a}} - q U^{\mathbf{a}} = 0,$$
 $\mathbf{x} \in \mathbb{R}^3, \ z \le 0, \ t \in \mathbb{R}$ (1)

$$\partial_z U^{\mathbf{a}}(\mathbf{x}, t) = \delta(\mathbf{x} - \mathbf{a} + \mathbf{h}, t),$$
 $\{z = 0\}, t \in \mathbb{R}$ (2)

$$U^{\mathbf{a}}(\mathbf{x}, t) = 0,$$
 $\mathbf{x} \in \mathbb{R}^3, \ z \le 0, \ t < 0$ (3)

We extend $U^{\mathbf{a}}$ to an even function in z, called $V^{\mathbf{a}}$. Then

$$V_{tt}^{\mathbf{a}} - \Delta_{\mathbf{x}} V^{\mathbf{a}} - q V^{\mathbf{a}} = \delta(\mathbf{x} - \mathbf{a} + \mathbf{h}, t), \qquad \mathbf{x} \in \mathbb{R}^3, \ t \in \mathbb{R}.$$
 (4)

$$V^{\mathbf{a}}(\mathbf{x}, t) = 0,$$
 $\mathbf{x} \in \mathbb{R}^{3}, t < 0.$ (5)

Using the "progressing wave expansion" technique, we get

$$V^{\mathbf{a}}(\mathbf{x},t) = \frac{1}{4\pi} \frac{\delta(t - |\mathbf{x} - \mathbf{a} + \mathbf{h}|)}{|\mathbf{x} - \mathbf{a} + \mathbf{h}|} + v^{\mathbf{a}}(\mathbf{x},t),$$

where $v^{\mathbf{a}}(\mathbf{x},t) = 0$ outside of the cone $t = |\mathbf{x} - \mathbf{a} + \mathbf{h}|$ and inside it is the solution of the Goursat problem:

$$v_{tt}^{\mathbf{a}} - \Delta_{\mathbf{x}} v^{\mathbf{a}} - q v^{\mathbf{a}} = 0, \qquad \mathbf{x} \in \mathbb{R}^3, \ t \ge |\mathbf{x} - \mathbf{a} + \mathbf{h}|$$
 (6)

$$v^{\mathbf{a}}(\mathbf{x}, |\mathbf{x} - \mathbf{a} + \mathbf{h}|) = \frac{1}{8\pi} \int_0^1 q(\mathbf{a} - \mathbf{h} + s(\mathbf{x} - \mathbf{a} + \mathbf{h})) ds, \qquad \mathbf{x} \in \mathbb{R}^3$$
 (7)

FORWARD PROBLEM

Forward Problem: Given $q(\mathbf{x})$, determine $v^a(\mathbf{x}, t)$.

Pitfall: Cannot measure q directly. The physical measurements we can make are

$$v^{\mathbf{a}}(\mathbf{a} + \mathbf{h}, t), \quad \mathbf{a} \in \{z = 0\}, \ t \in \mathbb{R}.$$

Inverse Problem

Inverse Problem: Given measured data $v^{\mathbf{a}}(\mathbf{a} + \mathbf{h}, t)$, is the coefficient $q(\mathbf{x})$ unique? I.e. Given two solutions of (6)-(7) $v_1^{\mathbf{a}}$ and $v_2^{\mathbf{a}}$ that yield the same measured data $v_1^{\mathbf{a}}(\mathbf{a} + \mathbf{h}, t) = v_2^{\mathbf{a}}(\mathbf{a} + \mathbf{h}, t)$, are the corresponding coefficients q_1 and q_2 equal as well?

To investigate this, we require the condition in the following theorem:

Theorem 1. If $v_1^{\mathbf{a}}(\mathbf{a} + \mathbf{h}, t) = v_2^{\mathbf{a}}(\mathbf{a} + \mathbf{h}, t)$ for all $\mathbf{a} \in \{z = 0\}$ and $t \in \mathbb{R}$, then $q_1 = q_2$ provided there is a constant C, independent of z such that

$$\|\nabla_x(q_1 - q_2)(\cdot, z)\|_{L^2(\mathbb{R}^2)} \le C\|(q_1 - q_2)(\cdot, z)\|_{L^2(\mathbb{R}^2)}, \ \forall z \in (0, 1],$$
 (8)

where $\nabla_x = e_1 \partial_1 + e_2 \partial_2$, the gradient in the first two coordinates.

Метнор

Physical Data: $v^{\mathbf{a}}(\mathbf{a} + \mathbf{h}, t)$ for $0 \le t \le 2\tau$, and the PDE (6)-(7).

Goal: Show the coefficient $q(\mathbf{x})$ is unique for each $v^{\mathbf{a}}(\mathbf{a} + \mathbf{h}, 2\tau)$, i.e. the map $F : q(\mathbf{x}) \mapsto v^{\mathbf{a}}(\mathbf{a} + \mathbf{h}, 2\tau)$ is injective.

Step 1. Formulate the PDE as a difference of two solutions with the same boundary data, $W^{\mathbf{a}} = V_1^{\mathbf{a}} - V_2^{\mathbf{a}}$, where $p = q_1 - q_2$. Then derive an identity for $W^{\mathbf{a}}$.

Step 2. Derive an identity for a mean value operator of p, M(p) in terms of p and $\int \nabla_x p$.

Step 3. Use steps 1 and 2 to estimate M(p) and $\int \nabla_x p$ in terms of p and $\int p$, then use Gronwall's to determine p = 0, i.e. $q_1 = q_2$.

STEP 1: THE ELLIPSOID

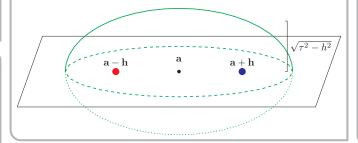
Let $W^{\mathbf{a}} = V_1^{\mathbf{a}} - V_2^{\mathbf{a}}$ where $V_1^{\mathbf{a}}$ and $V_2^{\mathbf{a}}$ solve (4)-(5). Then

$$W^{\mathbf{a}}(\mathbf{a} + \mathbf{h}, 2\tau) = \frac{1}{16\pi^2} \int_{\mathbb{R}^3} p(\mathbf{x}) \delta(\varphi(\mathbf{x})) d\mathbf{x} + \iint_{E(\mathbf{a}, \tau)} p(\mathbf{x}) k(\mathbf{x}) d\mathbf{x}, \quad (9)$$

where k is smooth and $\varphi(\mathbf{x})$ represents the ellipsoid:

$$E(\mathbf{a}, \tau) = \{0 \le \varphi(\mathbf{x})\}$$

= \{\mathbf{x} \in \mathbb{R}^3 : |\mathbf{x} - \mathbf{a} + \mathbf{h}| + |\mathbf{x} - \mathbf{a} - \mathbf{h}| \le 2\tau\}



STEP 2: MEAN VALUE IDENTITY

We can rewrite the first integral in (9) as a "mean value" operator,

$$(Mp)(\mathbf{a}, \tau) = \frac{1}{16\pi^2} \int_{\partial E(\mathbf{a}, \tau)} \frac{p(\mathbf{x})}{|\nabla \varphi(\mathbf{x})|} dS_{\mathbf{x}}$$

Taking a derivative in $\sigma = \sqrt{\tau^2 - h^2}$, we can extract the value of p at the north pole of the ellipsoid, $\mathbf{a} + \sigma \mathbf{e}_3$, and get the following estimate

$$|p(\mathbf{a} + \sigma \mathbf{e}_3)|^2 \preceq \left| \frac{\partial}{\partial \sigma} (Mp)(\mathbf{a}, \tau) \right|^2 + \int_{\partial E(\mathbf{a}, \tau)} \frac{|\nabla_y p(\mathbf{x})|^2}{\sqrt{\sigma^2 - z^2}} dS_{\mathbf{x}}.$$
 (10)

STEP 3: ESTIMATES

Let $W^{\mathbf{a}} = 0$ i.e. $V_1^{\mathbf{a}} = V_2^{\mathbf{a}}$. We first estimate

$$\left| \frac{\partial}{\partial \sigma} (Mp)(\mathbf{a}, \tau) \right|^2 \preccurlyeq \int_{\partial E(\mathbf{a}, \tau)} |p(\mathbf{x})|^2 dS_{\mathbf{x}}.$$

Thus from (10), we get

$$|p(\mathbf{a} + \sigma \mathbf{e})|^2 \preceq \int_{\partial E(\mathbf{a}, \tau)} |p(\mathbf{x})|^2 dS_{\mathbf{x}} + \int_{\partial E(\mathbf{a}, \tau)} \frac{|\nabla_x p(\mathbf{x})|^2}{\sqrt{\sigma^2 - z^2}} dS_{\mathbf{x}}$$
 (11)

Let $P(z) = \int_{\mathbb{P}^2} |p(x,z)|^2 dx$, then from the estimates (8) and (11), we get

$$P(\sigma) \le C \int_0^{\sigma} P(z)dz \quad \forall \sigma \in (0,1].$$

From Gronwall's inequality, this gives that $P(\sigma) = 0$, implying p = 0 i.e. $q_1 = q_2$.

FUTURE WORK AND REFERENCES

Future Work: A similar problem, but instead of working over the ellipsoid.

$$|\mathbf{x} - (\mathbf{a} - \mathbf{h})| + |\mathbf{x} - (\mathbf{a} + \mathbf{h})| \le 2\tau$$

we work over the hyperboloid

$$|\mathbf{x} - \mathbf{a}| - |\mathbf{x}| \le \tau$$

References:

- [1] Rakesh and G. Uhlmann The Point Source Inverse Back-Scattering Problem, Contemporary Mathematics 644, 11 pp, (2015).
- [2] Rakesh and G. Uhlmann. Uniqueness for the inverse back-scattering problem for angularly controlled potentials, Inverse Problems 30, 28 pp, (2014).
- [3] V. G. Romanov. Integral Geometry and Inverse Problems for Hyperbolic Equations, Springer Tracts in Natural Philosophy, Volume 26, (1974).