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fracture, while the softened relation (right) shows an allowed material weakening region. 
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The Damage Mechanics Problem One Dimensional Random Coefficient Problem Ensemble Simulations 

We present a damage mechanics model for fracture in brittle materials undergoing uniaxial load­ We approximate the damage mechanics problem in one dimension. Nondimensionalizing all quan­ We solve the damage mechanics problem for a series of 1000 random samples of the random 
ing. In a perfectly brittle material, the stress-strain relation behaves linearly until a critical point tities yields the problem formulation: critical yield stress field defined in 3, 4 for various material correlation lengths, e. In each ensemble 
is reached, at which point the material fractures and the stress returns to zero. To ensure math­ of simulations, we plot the total integrated material stress over time. In the below figures we arePC 1.t Ou a 
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ionalizing, the linear material stress is equal to that of the mate
les a- and E may be used interchangeably. The random yield stre
the damage function D(E). Since we assume the material is unde

ematical feasibility and continuity of our model, we modify the stress-strain relation to include a (5) able to see where the nonlinearity in the model takes effect, which in turn shows when the material 
softening region, which extends the time of fracture by introducing material weakening. begins taking damage. By nondimens rial strain, and so 

the two variab ss of the material 
is captured by rgoing a constant 
expansion rate at the right-most end, the boundary and initial conditions are 

u(x, t� 0) � �� 0, u(x � 0, t) � 0, u(x � 1, t)� ct. 

Proposition 

The randam caef(icient nanlinear PDE defined in 5 with damage defined in 1, 2 is well pased [2]. 

Numerical Discretization and Solution 

Figure 1. Stress-Strain relation in the damage mechanics problem. The idealized relation (left) shows instantaneous 
To solve the damage mechanics problem we employ a finite-difference discretization for the problem. 
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�The spatial domain is discretized using M +2 equally spaced points: 
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. Figure 5. Global mean stress vs. time curves for correlation lengths 0.05 (top left), 0.10 (top right), 0.50 (bottom left), Where Material damage is computed in relation to the strain. Damage is zero until a critical strain value, and 1.00 (bottom right) together with 1 standard-deviation uncertainty interval. Since the material underwent a 
E*(x), is reached. Afterwards damage increases to a value of 1. u11 

� u(nb:,.t), v11 
� �(nb:,.t), constant expansion rate, the strain is directly proportional to time. dt 

At a Glance 

• Goal: generate a quantity of interest - the stress-strain curve of a material - and to understand 
the uncertainty in this quantity due to the random distribution of material defects 

• Challenges: this model is a random coefficient nonlinear PDE, raising questions of 
well-posedness and computational feasibility 

• Our Solution: in [2] we prove the random coefficient problem is well posed in the properly 
chosen function space for almost all of the probability space, and demonstrate computational 
feasibility using direct Monte-Carlo (MC) sampling methods 

0 = XQ < XJ < ... < XAJ < X1\J+l = 1, Uj(t) � 1.t(Xj, t). 

Using second order centered differences we convert the operators t and fx-(1 - n(�) )� into 
the (quasi) linear operators Alu and AN (u)u respectively. The MOL semidiscretized problem reads 

d2u du d 
' + �dt - v AL u- AN(u)u� g(t), uj(t) ""u(xj, t), 

dte dt 

and g(t) is due to the boundary condition at x = 1. Solving the problem forward in time is done using 
the Newmark-/l method. 
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Figure 3. Damage profile in both space and time for a 
sample problem. The critical stress profile is inset to show Here w is a hidden random variable which governs the random defects of the material. damage occurring at the weak point in the material. 
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Figure 2. Damage profile for our model. There is no damage until a critical value is reached. At which point the damage 
is linear in relation to the stress. 

To ensure damage is irreversible in time, we define: 

D(,(t)) � sup { D(,(t))} (2)
s$_t 

Random Critical Strain 

To simulate real materials, our critical strain is distributed according to a log-normal distribution. 
Samples of E*(x; w) represent applying the uniaxial loading conditions on various samples of a partic­
ular material. 

log (,'(x;w)) ~ N(m(x),Ce), (3) 

The function m(x) is the mean log-critical-strain, and Ceis the covariance operator, chosen to be the c 

solution operator to the problem: 

v vd2 

' + {2� f(x), v(O)� v(l) � 0,Ce • f >-> v. (4)dx 

This distribution can be sampled using the Karhunen-Loeve Expansion. 

Convergence Analysis 

We did a convergence analysis for the 10 problem described above using a fixed critical strain: 

,'(x) � exp (- exp (-lOO(x - 0.3)2)), 11, � 0.1. 

The expansion speed was fixed at c = 0.5 and the simulation time was set to a maximum time of 
1. The Rayleigh damping parameters were set to 1J = v = 0.1. 
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Figure 4. Observed convergence results for numerical discretization scheme. The problem is second order convergent 
in space as expected, and is first order convergent in time. 

Figure 6. Comparison of stress-strain means (left) and standard deviations (right) over various correlation lengths 
examined. Since the material underwent a constant expansion rate, the strain is directly proportional to time . 

Conclusions and Outlook 

We demonstrated the numerical feasibility of the one-dimensional random yield strength problem 
for material damage. In [2] we proved the well-posedness of the damage mechanics problem. Fur­
thermore we demonstrated the ability to characterize material stress behavior for various random 
critical yield strains. 

Future work is focused on efficient sampling methods for the random coefficient PDE problem. A 
Multilevel Monte-Carlo (MLMC) approach can be used to sample from the distribution of random 
yield strengths for a given material, and gain high accuracy on various observables such as the mean 
and standard deviation of the stress-strain curves seen above, while minimizing computational costs. 
This approach can then be applied to higher dimensional problems for damage mechanics which can 
result in high accuracy and low cost. 
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