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Introduction

We present a new Eulerian-Lagrangian (EL) finite volume
method for solving the convection-diffusion equation,

ut +∇ ⋅F(u) = ϵ∆u + g(x, t), x ∈ D, t > 0. (1)

Standard Eulerian methods suffer from the CFL
condition, resulting in needing to take small time steps
for stability (CFL < 1). The EL framework loosens this
constraint by tracing the characteristics backwards in
time, that is, the traceback mesh moves (approximately)
with the fluid velocity. This allows much larger time
steps (CFL > 1) and reduces the computational cost.

Defining the space-time region Ωj

Consider the 1D case ut + f(u)x = ϵuxx + g(x, t).
The particle velocities νj+12 (i.e., slopes of the linear
space-time curves x̃j±12(t)) are defined using the
Rankine-Hugoniot jump condition.

Figure: The traceback space-time region Ωj for cell Ĩj(t).

The semi-discrete formulation

Integrating over Ωj and applying the divergence theorem,
d

dt∫Ĩj(t)
u(x, t)dx
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where Fj+12(t) ∶= f(u(x̃j+12(t), t)) − νj+12u(x̃j+12(t), t) is
the modified flux function. F̂j+12(t) = F̂j+12(u

−
j+12

, u+
j+12

; t) is
any monotone numerical flux.
Notation: Overlines uj denote uniform cell averages;
tildes ũj denote nonuniform cell averages.
Goal: Solve equation (2) using the method of lines.

The ELRK-FV algorithm

Step 1. Construct the approximate characteristics that are linear space-time curves,
hence constructing Ωj for j = 1, 2, ...,N .
Step 2. Compute the nonuniform cell averages {ũj(tn) : j = 1, 2, ...,N} at time tn
using Remark 1 (below). These are the cell averages that we will evolve up to time tn+1.
Step 3. Evolve the cell averages from tn to tn+1 over Ωj. Use an IMEX Runge-Kutta
scheme [1]. The terms (B), (C), and (D) on the righthand-side of equation (2) can be
evaluated as needed (below). Two-dimensional problems are solved with Strang splitting.

Evaluating terms (B), (C), and (D) in equation (2)

(B) We need the left and right limits u±
j+12

. Use local cell averages to compute

WENO-AO [2] reconstruction polynomials, Rj(x ∈ Ĩj) for j = 1, 2, ...,N .

u−
j+12
≈ Rj(x̃j+12(t)) and u+

j−12
≈ Rj(x̃j−12(t)) (3)

Remark 1: nonuniform cell averages are computed by integrating Rj(x ∈ Ij) (using
uniform cell averages) over each respective intersection of cells.
(C) The uniform cell averages uxx,j(t) are easily computed using the following equation,

uxx(t) =Du(t), (4)

where D is a sparse Toeplitz matrix dependent on ∆x and the WENO-AO reconstruction
polynomials. The desired nonuniform cell averages (C) are computed using Remark 1.
(D) Use a Gauss-Legendre quadrature of high enough order.

Numerical tests (the equilibrium solution)

The 0D2V (f = f(vx, vy, t)) linearized Leonard-Bernstein Fokker-Planck equation is

ft =
1

ϵ
∇v ⋅ ((v − v)f +D∇vf) , (5)

where ϵ = 1, gas constant R = 1/6, temperature T = 3, number density n = π, and
diffusion coefficient D = RT = 1/2. The equilibrium solution is the Maxwellian,

fM(vx, vy) =
n

2πRT
Exp(−(vx − vx)

2 + (vy − vy)2
2RT

) . (6)

Set f(vx, vy, t = 0) = fM1(vx, vy) + fM2(vx, vy), where fM1 and fM2 are randomly
generated Maxwellians that preserve the macro-parameters.

Figure: The numerical solution with f0 = fM1 + fM2. Mesh 200 × 200, CFL = 6. Times shown: 0.0, 0.3, 3.0.

Numerical tests (order of convergence)

For testing convergence we set f(vx, vy, t = 0) = fM(vx, vy) and use
WENO-AO(5,3) (fourth-order in space due to diffusion) [2], IMEX(2,3,3)
(third-order in time) [1], and Strang splitting (second-order in time).

CFL = 0.95
Nx = Ny L1 Error Order

50 9.07E-04 -
100 7.19E-05 3.66
200 5.35E-06 3.75
400 3.54E-07 3.92

CFL = 8
Nx = Ny L1 Error Order

50 5.70E-03 -
100 1.08E-03 2.40
200 1.69E-04 2.67
400 2.73E-05 2.63

Figure: Left: convergence study with spatial mesh refinement at Tf = 0.5. Right: temporal
convergence at Tf = 0.1.

Takeaways:

○ The spatial error dominates for small CFL numbers.

○ The time-stepping and splitting errors dominate for larger CFL numbers.

○ Very large CFL numbers and time steps are allowed!

○ The method can handle nonlinear problems such as viscous Burgers’ equa-
tion (not shown).

Ongoing and future work

1. Modify the ELFV method to handle shocks/intersecting characteristics
for hyperbolic conservation laws (ongoing).
2. Develop a non-splitting algorithm for two-dimensional problems.
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