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Abstract

We present a semi-discrete HDG method for tran-
sient elastic waves that has a uniform-in-time super-
convergence property. We show that the proot for
superconvergence can be easily obtained by using
a newly devised tailored projection and some ex-
isting techniques in traditional HDG methods. We
also present numerical experiments that support our
analysis. We finish with some simulations for elastic
waves on a thick plate, using high order elements.

Model and numerical method

Geometry. 2 c R’ T = o).

Transient elastic waves

pu =divo +f (Newton’s law),

Ao - eu) (Hooke’s law),

_ %(Vu L Vuh (Strain),

ur-g (Bd. condition).
HDG+ method|1]. Find

onx Py, Wk ePri, Uplre Py

A

A AVA
AVA < =

- V' Local solver (given 1y, find o, uy):

(Ao, 0)7, + (up, div 0)7, - 4y, Onyer, = 0,

(puh7 )'E o
TPy, - ap), wyer, = d, w)T.

.\/ Global solver (solve a linear system about 1y,):

div oy, w)r

(O p, o1 = (o pn — TPy ay - ay), werr = 0.
HDG stabilization function 7|5 ~ h .

Energy conservation. When there is no input
data (f,g = 0), we have

d , R
yy (laply + 144 + IParay - Tpl7) = 0.
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HDG+ projection Projection-based error analysis

Projection and remainder Error terms

11 Hslym o P () x P
(o,1) — <Ha, [Tw);
R:HyyxH - Rp@eK):= [] PuF
Fee(K)

» Projected solution
1o, 11u) := [1ger, 1L(o|k, lK; TIK)
- Boundary remainder
0 := ke, R(O|K, UK TIK)
- Opace discretization error
ey =1llo -0y, €, :=1lu-uy, & =Pyu-uy

(o, 1) — 0.
If 7 = Ohy) and K shape regular, then

1o 1/2
o - ok + hKle-u - UK + h}é 10loK - Interpolation error

m
< Chy (1O |m, K + Wni1,K), e, =Ilo -0, ¢, :=TIu-u

fOf m = 17 27 e k T 1. Eﬂergy estimate

Devising HDG+ projection L ’ L
— leqd"" + 1P ey — el +
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Duality estimate (assume elliptic regularity):

weak commutativit L3
l ' lepllo ™ < O+ T>2(hea<0m + 110 (O)-1 + jeuO)o
[Psym@zﬁuM) x 77/-@+1} v hileoll 0T g | e, éﬁ?,ﬂ

1
> T . Lfy . L
L pl”OJGCtIODl \ +hjeslg" + hd) b+ e, Q[O’T]).

[szm x P;HJ [boundary remainder}

Simulation of elastic waves

Material parameters Input of simulation data

» Geometry:
() = [0, 11 x [0, 1] x [0, 0.09]
» Mass density:

- Vanishing forcing term: f = 0.

- Neumann boundary with vanishing data (free
surface): y = 0, z = 0, and z = 0.05.

» Dirichlet boundary: * =0, x = 1, and y = 1. We
apply an impulse of displacement in the z

1. direction.

P, Y, 2) = 1+ 2X|2-0.5/<0.2n]y—0.5|<0.2[2—0.5|<0.2-
- Lamé parameters:

)\(:anv Z) = 17 H(,Y, <)

Figure 1: Snapshots of elastic waves (shear waves) propagating in an inhomogeneous elastic plate. The time of snapshots are
t = 100/500, t = 260/500, t = 310/500, t = 330/500, t = 390/500, t = 490/500. Space disretization by HDG+ with 2400 tetrahedras

and k£ = 3; Time discretization by trapezoidal rule Convolution Quadrature with 500 timesteps uniformly distributed in [0, 1].

Numerical experiments

» Cubic domain with Dirichlet B.C.

- Isotropic elastic material.

- C*(€)) exact solution

- HDG+ in space and Trapezoidal rule CQ) in time
. [? error evaluated at fixed time T

- Opace-time refinement with over-refinement in
time
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Figure 2: History of convergence for o (1) and w(1).

Conclusions & Future work

- HDG+ projection for linear elasticity with strong
symmetric stress formulation. v

» Projection-based error analysis proving optimal
convergence of HDG+ in steady state linear
elasticity and elastodynamics. v

- Numerical experiments support our proof. v

- Tailored projection for curl-curl formulation.

» Projection-based analysis for Maxwell equations.
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