

HDG for transient elastic waves

Shukai Du, Francisco-Javier Sayas

Department of Mathematical Sciences, University of Delaware

Abstract

We present a semi-discrete HDG method for transient elastic waves that has a uniform-in-time superconvergence property. We show that the proof for superconvergence can be easily obtained by using a newly devised tailored projection and some existing techniques in traditional HDG methods. We also present numerical experiments that support our analysis. We finish with some simulations for elastic waves on a thick plate, using high order elements.

Model and numerical method

Geometry. $\Omega \subset \mathbb{R}^3$, $\Gamma := \partial \Omega$.

Transient elastic waves

$$ho\ddot{\mathbf{u}} = \operatorname{div} \boldsymbol{\sigma} + \mathbf{f}$$
 (Newton's law),
 $\boldsymbol{A}\boldsymbol{\sigma} = \boldsymbol{\varepsilon}(\mathbf{u})$ (Hooke's law),
 $\boldsymbol{\varepsilon}(\mathbf{u}) = \frac{1}{2}(\nabla \mathbf{u} + \nabla \mathbf{u}^{\perp})$ (Strain),
 $\mathbf{u}|_{\Gamma} = \mathbf{g}$ (Bd. condition).

HDG+ method[1]. Find

$$oldsymbol{\sigma}_h|_K\in\mathcal{P}_k^{ ext{sym}},\quad \mathbf{u}_h|_K\in\mathcal{P}_{k+1},\quad \hat{\mathbf{u}}_h|_F\in\mathcal{P}_k.$$

• V Local solver (given $\hat{\mathbf{u}}_h$, find $\boldsymbol{\sigma}_h, \mathbf{u}_h$):

$$(\mathcal{A}\boldsymbol{\sigma}_{h},\boldsymbol{\theta})_{\mathcal{T}_{h}} + (\mathbf{u}_{h},\operatorname{div}\boldsymbol{\theta})_{\mathcal{T}_{h}} - \langle \hat{\mathbf{u}}_{h},\boldsymbol{\theta}\mathbf{n} \rangle_{\partial \mathcal{T}_{h}} = 0,$$

$$(\rho \ddot{\mathbf{u}}_{h},\boldsymbol{w})_{\mathcal{T}_{h}} - (\operatorname{div}\boldsymbol{\sigma}_{h},\boldsymbol{w})_{\mathcal{T}_{h}}$$

$$+ \langle \boldsymbol{\tau} P_{\boldsymbol{M}}(\mathbf{u}_{h} - \hat{\mathbf{u}}_{h}), \boldsymbol{w} \rangle_{\partial \mathcal{T}_{h}} = (\mathbf{f},\boldsymbol{w})_{\mathcal{T}_{h}}.$$

Energy conservation. When there is no input data $(\mathbf{f}, \mathbf{g} = 0)$, we have

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\|\dot{\mathbf{u}}_h\|_{\rho}^2 + \|\boldsymbol{\sigma}_h\|_{\mathcal{A}} + |\mathrm{P}_M \mathbf{u}_h - \hat{\mathbf{u}}_h|_{\boldsymbol{\tau}}^2 \right) = 0.$$

HDG+ projection

Projection and remainder

$$\Pi : H^{1}_{\text{sym}} \times H^{1} \to \mathcal{P}_{k}^{\text{sym}}(K) \times \mathcal{P}_{k+1}(K),$$

$$(\boldsymbol{\sigma}, \mathbf{u}) \mapsto (\boldsymbol{\Pi} \boldsymbol{\sigma}, \boldsymbol{\Pi} \mathbf{u});$$

$$R : H^{1}_{\text{sym}} \times H^{1} \to \mathcal{R}_{k}(\partial K) := \prod_{F \in \varepsilon(K)} \mathcal{P}_{k}(F),$$

$$(\boldsymbol{\sigma}, \mathbf{u}) \mapsto \boldsymbol{\delta}.$$

If $\boldsymbol{\tau} = \mathcal{O}(h_K^{-1})$ and K shape regular, then $\|\boldsymbol{\Pi}\boldsymbol{\sigma} - \boldsymbol{\sigma}\|_K + h_K^{-1}\|\boldsymbol{\Pi}\mathbf{u} - \mathbf{u}\|_K + h_K^{1/2}\|\boldsymbol{\delta}\|_{\partial K}$ $\leq Ch_K^m(|\boldsymbol{\sigma}|_{m,K} + |\mathbf{u}|_{m+1,K}),$

for m = 1, 2, ..., k + 1.

Devising HDG+ projection

Projection-based error analysis

Error terms

- Projected solution
- $(\mathbf{\Pi}\boldsymbol{\sigma},\mathbf{\Pi}\mathbf{u}) := \prod_{K \in \mathcal{T}_h} \mathbf{\Pi}(\boldsymbol{\sigma}|_K,\mathbf{u}|_K;\boldsymbol{\tau}|_K)$
- Boundary remainder
- $oldsymbol{\delta} \coloneqq \prod_{K \in \mathcal{T}_h} \mathbf{R}(oldsymbol{\sigma}|_K, \mathbf{u}|_K; oldsymbol{ au}|_K)$
- Space discretization error
- $\boldsymbol{arepsilon}_h^{\sigma} \coloneqq \mathbf{\Pi} \boldsymbol{\sigma} \boldsymbol{\sigma}_h, \ \boldsymbol{\varepsilon}_h^u \coloneqq \mathbf{\Pi} \mathbf{u} \mathbf{u}_h, \ \hat{\boldsymbol{\varepsilon}}_h^u \coloneqq \mathrm{P}_M \mathbf{u} \hat{\mathbf{u}}_h$
- Interpolation error
- $\mathbf{e}_{\sigma} \coloneqq \mathbf{\Pi} \boldsymbol{\sigma} \boldsymbol{\sigma}, \ \mathbf{e}_{u} \coloneqq \mathbf{\Pi} \mathbf{u} \mathbf{u}$

Energy estimate

$$\|\boldsymbol{\varepsilon}_{h}^{\sigma}\|_{\mathcal{A}}^{L_{[0,T]}^{\infty}} + \|\mathbf{P}_{M}\boldsymbol{\varepsilon}_{h}^{u} - \boldsymbol{\varepsilon}_{h}^{\widehat{u}}\|_{\boldsymbol{\tau}}^{L_{[0,T]}^{\infty}} + \|\dot{\boldsymbol{\varepsilon}}_{h}^{u}\|_{\rho}^{L_{[0,T]}^{\infty}}$$

$$\leq C\Big(\|\boldsymbol{e}_{\sigma}(0)\|_{\mathcal{A}} + \|\dot{\boldsymbol{e}}_{\sigma}\|_{\mathcal{A}}^{L_{[0,T]}^{1}} + \|\ddot{\boldsymbol{e}}_{u}\|_{\rho}^{L_{[0,T]}^{1}} + \|\dot{\boldsymbol{\delta}}\|_{\boldsymbol{\tau}^{-1}}^{L_{[0,T]}^{1}} + \|\dot{\boldsymbol{\delta}}\|_{\boldsymbol{\tau}^{-1}}^{L_{[0,T]}^{1}}\Big).$$

Duality estimate (assume elliptic regularity):

$$\begin{aligned} \|\boldsymbol{\varepsilon}_{h}^{u}\|_{\Omega}^{L_{[0,T]}^{\infty}} &\leq C(1+T)^{2} \Big(h\|\mathbf{e}_{\sigma}(0)\|_{\Omega} + h\|\boldsymbol{\delta}(0)\|_{\boldsymbol{\tau}^{-1}} + \|\mathbf{e}_{u}(0)\|_{\Omega} \\ &+ h\|\dot{\mathbf{e}}_{\sigma}\|_{\Omega}^{L_{[0,T]}^{\infty}} + h\|\dot{\boldsymbol{\delta}}\|_{\boldsymbol{\tau}^{-1}}^{L_{[0,T]}^{\infty}} + \|\ddot{\mathbf{e}}_{u}\|_{\Omega}^{L_{[0,T]}^{\infty}} \\ &+ h\|\ddot{\mathbf{e}}_{\sigma}\|_{\Omega}^{L_{[0,T]}^{\infty}} + h\|\ddot{\boldsymbol{\delta}}\|_{\boldsymbol{\tau}^{-1}}^{L_{[0,T]}^{\infty}} + \|\ddot{\mathbf{e}}_{u}\|_{\Omega}^{L_{[0,T]}^{\infty}} \Big). \end{aligned}$$

Numerical experiments

- Cubic domain with Dirichlet B.C.
- Isotropic elastic material.
- $C^{\infty}(\overline{\Omega})$ exact solution
- HDG+ in space and Trapezoidal rule CQ in time
- L^2 error evaluated at fixed time T
- Space-time refinement with over-refinement in time

Figure 2: History of convergence for $\sigma(T)$ and u(T).

Simulation of elastic waves

Material parameters

- Geometry:
- $\Omega = [0, 1] \times [0, 1] \times [0, 0.05]$
- Mass density:

 $\rho(x, y, z) = 1 + 2\chi_{|x-0.5| \le 0.2 \cap |y-0.5| \le 0.2 \cap |z-0.5| \le 0.2}$

Lamé parameters:

 $\lambda(x,y,z) \equiv 1, \, \mu(x,y,z) \equiv 1.$

Input of simulation data

- Vanishing forcing term: $\mathbf{f} = 0$.
- Neumann boundary with vanishing data (free surface): y = 0, z = 0, and z = 0.05.
- Dirichlet boundary: x = 0, x = 1, and y = 1. We apply an impulse of displacement in the z direction.

Figure 1: Snapshots of elastic waves (shear waves) propagating in an inhomogeneous elastic plate. The time of snapshots are t = 100/500, t = 260/500, t = 310/500, t = 330/500, t = 390/500, t = 490/500. Space disretization by HDG+ with 2400 tetrahedras and k = 3; Time discretization by trapezoidal rule Convolution Quadrature with 500 timesteps uniformly distributed in [0, 1].

Conclusions & Future work

- HDG+ projection for linear elasticity with strong symmetric stress formulation. ✓
- Projection-based error analysis proving optimal convergence of HDG+ in steady state linear elasticity and elastodynamics. ✓
- Numerical experiments support our proof. ✓
- Tailored projection for curl-curl formulation.
- Projection-based analysis for Maxwell equations.

References

- [1] Weifeng Qiu, Jiguang Shen, and Ke Shi.
- An HDG method for linear elasticity with strong symmetric stresses.
- [2] Bernardo Cockburn and Guosheng Fu.
- Devising superconvergent HDG methods with symmetric approximate stresses for linear elasticity by M-decompositions.
- [3] Bernardo Cockburn, Guosheng Fu, and Francisco Javier Sayas. Superconvergence by M-decompositions. Part I: General theory for HDG methods for diffusion.