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Viscoelasticity have been used to model deformation and stress in certain solids,
including metals, polymers, and biological materials, when they are under
external forces. Example. Some viscoelastic solids (See [6]):
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a. Skin
b. Heart’s artery wall
c. Polymers

Trapezoidal rule based Convolution Quadrature method (TRCQ) [3,5] is a time
discretization scheme which approximates a convolution equation:

u(t) = (f = g)(t /ft—T

TRCQ approximation with time-step « will be denoted as u” = " x g.

What is given? We consider a viscoelastic ma-
terial identified by:

» Mass density p,
» Viscoelastic material tensor C.
We work on its reference configuration with:
» Domain Q C RY,
» Boundary parts (Dirichlet and Neumann)
o, TN
This solid deforms under:
» Forcing term f,
» Dirichlet and Neumann data o, 3.
We want to compute
» Displacement u,
» Stress o.

Viscoelastic law

Defines a relation between stress and strain.
» Stress: o(t) = [§D(t — 7)e(u(r))dr, Strain: e(u) = }(Vu+Vu')
Viscoelastic material tensor. Determines the Laplace domain relation:
C(s) =sL{D}(s) VseC(C,:={secC:Res> 0}
» This tensor is symmetric, positive and bounded such that
» [|C(s)]| < |s|"¢p(Res) Vs e C.. Herer >0, and ¢(x~ ') polynomially bounded.

Simulation: Memory effect on a viscoelastic polymer

Viscoelastic wave. Consider the Sobolev spaces H'(Q) and H(div, Q).
Find (displacement) u : [0, 00) — H'(Q) and (stress) o : [0, c0) — H(div, Q) such that for all t > 0

(Conserv. of Momentum) pu(t) = divo(t) + (1),
(Boundary Condition) vpUu(t) = a(t), vNa'(t) = (1),
(Initial Condition) u(0)=0, u(0)=

Previous work. Detailed analysis of this PDE and properties of the viscoelastic tensor is done in
our team paper last year [2]. FEM semi-discretization results were presented in WRS 2018.
Current work. Stability and error estimates of the fully-discretized system based on TRCQ.

We approach the problem in the following way
» Consider the FEM semi-discretization: For a FEM space V,, C H'(Q), find u, : [0, 00) — V},
» Analyze the Laplace domain transfer function: J(s)(As, B, F) = Uy,

» Introduce TRCQ approximation: u} approximates J * (o, 3,f) = up

» Study the fully-discretized system (TRCQ is a second order system [3])

Transfer function analysis

This function maps the data to the solution. We study the transfer function of FEM
semi-discretization of the problem in Laplace domain.

Data. Force and Neumann data are same. We consider an approximation of Dirichlet data: Ap.
Definition. For s € C,, transfer function J(s) maps (Ap, B, F) to Uy, such that:

voUn = Ap,  8°(pUn, Wh)a + (C(S)e(Up), e(Wh))a = (F, Wh)a + (B, YWp)r,,
Stability analysis. This enables us to use TRCQ method.

vwp, € V' nkeryp.

Regularity of data. We assume that our data is sufficiently regular:

fc WX(RL3Q)), apc W3R;HVA(Tp)), Be WER;HV3(y)),
where WM(R; X) := {f € C" (R; X) : f™ ¢ LY(R; X), f=0on (—o0, O)} are Sobolev spaces.
Theorem (TRCQ Approximation). For each time step t, = nx, n=0,1,..., N we have

tn
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Jun(ts) — uh(t)l1.0 < w*(Di(tn) |

Notes
» Each piece of data produces different amount of error. (Details by transfer function analysis)
» Most expensive error: Dirichlet data. Lifting Dirichlet data requires a bound on C(s).
» Exact error scales are studied and they are all polynomials in time: Dy, D,,, D;.
» For the models studied in [4]: Ds(t), D.(t), Ds(t) < . (This covers the examples in this poster)

Key tools and contributions

Banjai’s result. Our proof uses ideas from [1], improves them and shows that
the error is not exponential in time.

Lubich’s result. We also make use of the following result from [4]. This is a
special case when —1 < r < 0. If g €¢ W™(R; X) and f, is the TRCQ
approximation of f : [0,00) — B(X, Y), then for t > 0O:

I(F.— f) / 19”5 xdr

Here C is non-decreasing and polynomially bounded. Our contribution is to
obtain the exact form of this function, and include the case r = 0.

a(f)|ly < C(t)

Examples and simulation design

Zener’s fractional model. For symmetric tensors Cy,C1 > ¢ > 0 a.e., and
fractional derivative of type Caputo with v € (0, 1):

» Viscoelastic material tensor: C(s) = (1 + as”)~'(Co + s"C4),
» Stress-strain relation (Time domain): o (t) + ad”o(t) = Coe(u(t)) + C1e(0u(t)).
Isotropic model. A special case: C(s)M = 2u(s)(5(M + MT)) + X(s)(trM)L.

Desiging a simulation. In the experi-
ments, we capture the memory effect of a
light viscoelastic material (p = 0.01) with
Isotropic fractional Zener model of order
v = 0.7. We impose the pressing-hand ef-
fect as Neumann boundary condition. Cor-
responding faces are activated during the
hand-press time and then freed.

Activated

» Implementation on non-polyhedral domains, such as cylindrical, spherical.

» Using TRCQ approximation on poroviscoelastic materials. This involves
coupling pressure diffusion coming from fluid flow in porous media with the
deformation of the solid.
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Designed and produced by the
presenter based on the team’s
MATLAB library. Numerical so-
lution Is computed by Pz el-
ements on 6,144 tetrahedra
with 1000 time-steps. Plotted
on 124,416 boundary faces.
Computation took 11 hours via
12 parallel MATLAB workers on
UD HPC cluster.
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