

TRCQ for Viscoelastic Waves

Hasan Eruslu and Francisco-Javier Sayas

Department of Mathematical Sciences, University of Delaware

Introduction: Viscoelasticity

Viscoelasticity have been used to model deformation and stress in certain solids, including metals, polymers, and biological materials, when they are under external forces. **Example.** Some viscoelastic solids (See [6]):

- Heart's artery wall
- Polymers

Introduction: TRCQ

Trapezoidal rule based Convolution Quadrature method (TRCQ) [3,5] is a time discretization scheme which approximates a convolution equation:

$$u(t)=(f*g)(t)=\int_0^t f(t- au)g(au)\mathrm{d} au.$$

TRCQ approximation with time-step κ will be denoted as $u^{\kappa} = f^{\kappa} * g$.

Notation

What is given? We consider a viscoelastic material identified by:

- Mass density ρ,
- Viscoelastic material tensor C.

We work on its reference configuration with:

- ▶ Domain $\Omega \subseteq \mathbb{R}^d$,
- Boundary parts (Dirichlet and Neumann) Γ_D, Γ_N .

This solid deforms under:

- Forcing term f,
- ▶ Dirichlet and Neumann data α , β .

We want to compute

- Displacement u,
- Stress σ .

Viscoelastic law

Defines a relation between stress and strain.

▶ Stress:
$$\sigma(t) = \int_0^t \mathcal{D}(t - \tau) \varepsilon(\dot{\mathbf{u}}(\tau)) \, d\tau$$
, Strain: $\varepsilon(\mathbf{u}) = \frac{1}{2} (\nabla \mathbf{u} + \nabla \mathbf{u}^\top)$

Viscoelastic material tensor. Determines the Laplace domain relation:

$$\mathsf{C}(s) = s\mathcal{L}\{\mathcal{D}\}(s) \quad \forall s \in \mathbb{C}_+ := \{s \in \mathbb{C} : \mathsf{Re}s > 0\}.$$

- ► This tensor is symmetric, positive and bounded such that
- ▶ $\|C(s)\| \le |s|^r \phi(Res)$ $\forall s \in \mathbb{C}_+$. Here $r \ge 0$, and $\phi(x^{-1})$ polynomially bounded.

Model problem and previous work

Viscoelastic wave. Consider the Sobolev spaces $H^1(\Omega)$ and $\mathbb{H}(\text{div}, \Omega)$.

Find (displacement) $\mathbf{u}:[0,\infty)\to \mathbf{H}^1(\Omega)$ and (stress) $\boldsymbol{\sigma}:[0,\infty)\to \mathbb{H}(\mathrm{div},\Omega)$ such that for all $t\geq 0$

(Conserv. of Momentum) $\rho \ddot{\mathbf{u}}(t) = \operatorname{div} \boldsymbol{\sigma}(t) + \mathbf{f}(t),$ (Boundary Condition) $\gamma_D \mathbf{u}(t) = \alpha(t), \quad \gamma_N \boldsymbol{\sigma}(t) = \boldsymbol{\beta}(t),$

(Initial Condition) $u(0) = 0, \quad \dot{u}(0) = 0.$

Previous work. Detailed analysis of this PDE and properties of the viscoelastic tensor is done in our team paper last year [2]. FEM semi-discretization results were presented in WRS 2018. Current work. Stability and error estimates of the fully-discretized system based on TRCQ.

Procedure

We approach the problem in the following way

- ▶ Consider the FEM semi-discretization: For a FEM space $V_h \subseteq H^1(\Omega)$, find $\mathbf{u}_h : [0, \infty) \to V_h$
- ▶ Analyze the Laplace domain transfer function: $J(s)(\mathbf{A}_h, \mathbf{B}, \mathbf{F}) = \mathbf{U}_h$
- ▶ Introduce TRCQ approximation: \mathbf{u}_h^{κ} approximates $\mathcal{J} * (\alpha_h, \beta, \mathbf{f}) = \mathbf{u}_h$
- Study the fully-discretized system (TRCQ is a second order system [3])

Transfer function analysis

This function maps the data to the solution. We study the transfer function of FEM semi-discretization of the problem in Laplace domain.

Data. Force and Neumann data are same. We consider an approximation of Dirichlet data: \mathbf{A}_h . **Definition.** For $s \in \mathbb{C}_+$, transfer function J(s) maps $(\mathbf{A}_h, \mathbf{B}, \mathbf{F})$ to \mathbf{U}_h such that:

 $\gamma_D \mathsf{U}_h = \mathsf{A}_h, \quad s^2(\rho \mathsf{U}_h, \mathsf{w}_h)_\Omega + (\mathsf{C}(s)\varepsilon(\mathsf{U}_h), \varepsilon(\mathsf{w}_h))_\Omega = (\mathsf{F}, \mathsf{w}_h)_\Omega + \langle \mathsf{B}, \gamma \mathsf{w}_h \rangle_{\Gamma_N} \qquad orall \mathsf{w}_h \in \mathsf{V}^h \cap \ker \gamma_D.$ Stability analysis. This enables us to use TRCQ method.

Main result

Regularity of data. We assume that our data is sufficiently regular:

$$\mathbf{f} \in W^5_+(\mathbb{R}; \mathbf{L}^2(\Omega)), \quad \boldsymbol{\alpha}_h \in W^{2r+8}_+(\mathbb{R}; \mathbf{H}^{1/2}(\Gamma_D)), \quad \boldsymbol{\beta} \in W^6_+(\mathbb{R}; \mathbf{H}^{-1/2}(\Gamma_N)),$$

where $W^m_+(\mathbb{R};X):=\{f\in\mathcal{C}^{m-1}(\mathbb{R};X):f^{(m)}\in L^1(\mathbb{R};X),\,f\equiv 0 \text{ on }(-\infty,0)\}$ are Sobolev spaces. **Theorem** (TRCQ Approximation). For each time step $t_n = n\kappa$, n = 0, 1, ..., N we have

$$\|\mathbf{u}_{h}(t_{n}) - \mathbf{u}_{h}^{\kappa}(t_{n})\|_{1,\Omega} \leq \kappa^{2} \Big(D_{f}(t_{n}) \int_{0}^{t_{n}} \|\mathbf{f}^{(4)}(\tau)\|_{\Omega} d\tau + D_{\alpha}(t_{n}) \sum_{k=0}^{r+2} \int_{0}^{t_{n}} \|\alpha_{h}^{(r+6+k)}(\tau)\|_{1/2,\Gamma_{D}} d\tau + D_{\beta}(t_{n}) \sum_{k=0}^{1} \int_{0}^{t_{n}} \|\beta_{h}^{(5+k)}(\tau)\|_{-1/2,\Gamma_{N}} d\tau \Big).$$

Notes

- Each piece of data produces different amount of error. (Details by transfer function analysis)
- ▶ Most expensive error: Dirichlet data. Lifting Dirichlet data requires a bound on C(s).
- Exact error scales are studied and they are all polynomials in time: $D_f, D_{\alpha}, D_{\beta}$.
- For the models studied in [4]: $D_f(t), D_{\alpha}(t), D_{\beta}(t) \leq t^5$. (This covers the examples in this poster)

Key tools and contributions

Banjai's result. Our proof uses ideas from [1], improves them and shows that the error is not exponential in time.

Lubich's result. We also make use of the following result from [4]. This is a special case when $-1 < r \le 0$. If $g \in W^{r+5}(\mathbb{R}; X)$ and f_{κ} is the TRCQ approximation of $f:[0,\infty)\to \mathcal{B}(X,Y)$, then for t>0:

$$\|(f_{\kappa}-f)*g(t)\|_{Y}\leq C(t)\kappa^{2}\int_{0}^{t}\|g^{r+5}\|_{X}d au.$$

Here C is non-decreasing and polynomially bounded. Our contribution is to obtain the exact form of this function, and include the case r=0.

Examples and simulation design

Zener's fractional model. For symmetric tensors C_0 , $C_1 > c > 0$ a.e., and fractional derivative of type Caputo with $\nu \in (0, 1)$:

- ▶ Viscoelastic material tensor: $C(s) = (1 + as^{\nu})^{-1}(C_0 + s^{\nu}C_1)$,
- ▶ Stress-strain relation (Time domain): $\sigma(t) + a\partial^{\nu}\sigma(t) = C_0\varepsilon(\mathbf{u}(t)) + C_1\varepsilon(\partial^{\nu}\mathbf{u}(t))$. **Isotropic model.** A special case: $C(s)M = 2\mu(s)(\frac{1}{2}(M + M^{\top})) + \lambda(s)(trM)I$.

Designing a simulation. In the experiments, we capture the memory effect of a light viscoelastic material ($\rho = 0.01$) with isotropic fractional Zener model of order $\nu = 0.7$. We impose the pressing-hand effect as Neumann boundary condition. Corresponding faces are activated during the hand-press time and then freed.

Future work

- Implementation on non-polyhedral domains, such as cylindrical, spherical.
- Using TRCQ approximation on poroviscoelastic materials. This involves coupling pressure diffusion coming from fluid flow in porous media with the deformation of the solid.

References

- [1] L. Banjai. Multistep and multistage convolution quadrature for the wave equation: Algorithms and experiments. SIAM J. Sci. Comput., 2009.
- [2] T. Brown, S. Du, H. Eruslu, and F.-J. Sayas. *Analysis of models for viscoelastic wave propagation.* Applied Mathematics and Nonlinear Sciences, 2018.
- [3] C. Lubich. Convolution quadrature and discretized operational calculus. I. Numer. Math., 52(2): 129-145, 1988.
- [4] C. Lubich. On the multiple time-step discretization of linear initial-boundary problems and their integral equations. Numer. Math., 67(3):365-389,1994.
- [5] M. Hassell and F.-J. Sayas. Convolution quadrature for wave simulations. In *Numerical simulation in physics and* engineering, pp 71-159, SEMA SIMAI Springer Ser., 9, Springer, [Cham], 2016.
- [6] Photo credit: Q. Xu and H. Zhu. https://bit.ly/2GmslJb. 2016.

Simulation: Memory effect on a viscoelastic polymer

Designed and produced by the presenter based on the team's MATLAB library. Numerical solution is computed by \mathcal{P}_3 elements on 6,144 tetrahedra with 1000 time-steps. Plotted on 124,416 boundary faces. Computation took 11 hours via 12 parallel MATLAB workers on UD HPC cluster.

Partially supported by NSF through grant DMS 1818867