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Introduction: Viscoelasticity

Viscoelasticity have been used to model deformation and stress in certain solids,
including metals, polymers, and biological materials, when they are under
external forces. Example. Some viscoelastic solids (See [6]):

a. Skin
b. Heart’s artery wall
c. Polymers

Introduction: TRCQ

Trapezoidal rule based Convolution Quadrature method (TRCQ) [3,5] is a time
discretization scheme which approximates a convolution equation:

u(t) = (f ∗ g)(t) =

∫ t

0
f (t − τ )g(τ )dτ.

TRCQ approximation with time-step κ will be denoted as uκ = f κ ∗ g.

Notation

What is given? We consider a viscoelastic ma-
terial identified by:

I Mass density ρ,
I Viscoelastic material tensor C.

We work on its reference configuration with:
I Domain Ω ⊆ Rd ,
I Boundary parts (Dirichlet and Neumann)

ΓD, ΓN.
This solid deforms under:

I Forcing term f,
I Dirichlet and Neumann data α,β.

We want to compute
I Displacement u,
I Stress σ.

Viscoelastic law

Defines a relation between stress and strain.
I Stress: σ(t) = ∫ t

0D(t − τ )ε(u̇(τ )) dτ , Strain: ε(u) = 1
2(∇u +∇u>)

Viscoelastic material tensor. Determines the Laplace domain relation:

C(s) = sL{D}(s) ∀s ∈ C+ := {s ∈ C : Res > 0}.

I This tensor is symmetric, positive and bounded such that
I ‖C(s)‖ ≤ |s|rφ(Res) ∀s ∈ C+. Here r ≥ 0, and φ(x−1) polynomially bounded.

Model problem and previous work

Viscoelastic wave. Consider the Sobolev spaces H1(Ω) and H(div,Ω).
Find (displacement) u : [0,∞)→ H1(Ω) and (stress) σ : [0,∞)→ H(div,Ω) such that for all t ≥ 0

(Conserv. of Momentum) ρü(t) = divσ(t) + f(t),

(Boundary Condition) γDu(t) = α(t), γNσ(t) = β(t),

(Initial Condition) u(0) = 0, u̇(0) = 0.

Previous work. Detailed analysis of this PDE and properties of the viscoelastic tensor is done in
our team paper last year [2]. FEM semi-discretization results were presented in WRS 2018.
Current work. Stability and error estimates of the fully-discretized system based on TRCQ.

Procedure

We approach the problem in the following way
I Consider the FEM semi-discretization: For a FEM space Vh ⊆ H1(Ω), find uh : [0,∞)→ Vh

I Analyze the Laplace domain transfer function: J(s)(Ah,B,F) = Uh

I Introduce TRCQ approximation: uκh approximates J ∗ (αh,β, f) = uh

I Study the fully-discretized system (TRCQ is a second order system [3])

Transfer function analysis

This function maps the data to the solution. We study the transfer function of FEM
semi-discretization of the problem in Laplace domain.
Data. Force and Neumann data are same. We consider an approximation of Dirichlet data: Ah.
Definition. For s ∈ C+, transfer function J(s) maps (Ah,B,F) to Uh such that:

γDUh = Ah, s2(ρUh,wh)Ω + (C(s)ε(Uh), ε(wh))Ω = (F,wh)Ω + 〈B, γwh〉ΓN ∀wh ∈ Vh ∩ kerγD.

Stability analysis. This enables us to use TRCQ method.

Main result

Regularity of data. We assume that our data is sufficiently regular:

f ∈W 5
+(R; L2(Ω)), αh ∈W 2r+8

+ (R; H1/2(ΓD)), β ∈W 6
+(R; H−1/2(ΓN)),

where W m
+ (R; X ) := {f ∈ Cm−1(R; X ) : f (m) ∈ L1(R; X ), f ≡ 0 on (−∞,0)} are Sobolev spaces.

Theorem (TRCQ Approximation). For each time step tn = nκ, n = 0,1, . . . ,N we have

‖uh(tn)− uκh(tn)‖1,Ω ≤ κ2
(

Df (tn)

∫ tn

0
‖f(4)(τ )‖Ω dτ + Dα(tn)

∑r+2

k=0

∫ tn

0
‖α(r+6+k)

h (τ )‖1/2,ΓDdτ

+ Dβ(tn)
∑1

k=0

∫ tn

0
‖β(5+k)

h (τ )‖−1/2,ΓN dτ
)
.

Notes
I Each piece of data produces different amount of error. (Details by transfer function analysis)
I Most expensive error: Dirichlet data. Lifting Dirichlet data requires a bound on C(s).
I Exact error scales are studied and they are all polynomials in time: Df ,Dα,Dβ.
I For the models studied in [4]: Df (t),Dα(t),Dβ(t) . t5. (This covers the examples in this poster)

Key tools and contributions

Banjai’s result. Our proof uses ideas from [1], improves them and shows that
the error is not exponential in time.

Lubich’s result. We also make use of the following result from [4]. This is a
special case when −1 < r ≤ 0. If g ∈W r+5(R; X ) and fκ is the TRCQ
approximation of f : [0,∞)→ B(X ,Y ), then for t > 0:

‖(fκ − f ) ∗ g(t)‖Y ≤ C(t)κ2
∫ t

0
‖gr+5‖Xdτ.

Here C is non-decreasing and polynomially bounded. Our contribution is to
obtain the exact form of this function, and include the case r = 0.

Examples and simulation design

Zener’s fractional model. For symmetric tensors C0,C1 > c > 0 a.e., and
fractional derivative of type Caputo with ν ∈ (0,1):

I Viscoelastic material tensor: C(s) = (1 + asν)−1(C0 + sνC1),
I Stress-strain relation (Time domain): σ(t) + a∂νσ(t) = C0ε(u(t)) + C1ε(∂νu(t)).

Isotropic model. A special case: C(s)M = 2µ(s)(1
2(M + M>)) + λ(s)(trM)I.

Desiging a simulation. In the experi-
ments, we capture the memory effect of a
light viscoelastic material (ρ = 0.01) with
isotropic fractional Zener model of order
ν = 0.7. We impose the pressing-hand ef-
fect as Neumann boundary condition. Cor-
responding faces are activated during the
hand-press time and then freed.

Future work

I Implementation on non-polyhedral domains, such as cylindrical, spherical.
I Using TRCQ approximation on poroviscoelastic materials. This involves

coupling pressure diffusion coming from fluid flow in porous media with the
deformation of the solid.
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Simulation: Memory effect on a viscoelastic polymer

Designed and produced by the
presenter based on the team’s
MATLAB library. Numerical so-
lution is computed by P3 el-
ements on 6,144 tetrahedra
with 1000 time-steps. Plotted
on 124,416 boundary faces.
Computation took 11 hours via
12 parallel MATLAB workers on
UD HPC cluster. Time = 0.23 s 0.30 s 0.40 s 0.44 s 0.78 s 0.80 s 0.95 s 1.31 s 1.96 s
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