
Modeling Multi-Component Surface-Volume Reactions
Ryan Evans, and Dr. David Edwards

Department of Mathematical Sciences, University of Delaware

MATHEMATICAL MODEL
• It is the reactions occuring at the boundary that are of primary interest:
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• By the mass-action principle the governing equations for B1, B12, B2 are:
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• Here Ci(x, η, t) denotes the unbound ligand concentration. It can be
shown that at the boundary Ci(x, 0, t) is given by the formula:

C1(x, 0, t) = 1− Da
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C2(x, 0, t) = 1− Da
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• Here BΣ := B1 + B12 + B2, Da - Damköhler number, key perturbation
parameter and is very small. Represents the ratio of reaction to diffusion. Also
Dr = D̃1

D̃2
, the ratio of the diffusivities of the two ligands.

• The integral terms in (4), (5) represent upstream ligand depletion.

INTRODUCTION
• In a surface-volume reaction,

one reactant (the unbound lig-
and) is convected in a fluid over
a surface to which another reac-
tant (the receptor) is confined.

• These reactions are quite com-
mon and occur in antigen-
antibody interactions, drug ab-
sorption, and blood clotting,
among others 1,2,3.

• Mathematical models exist for
single component reactions,
but there is little quantita-
tive information regarding
multi-component reactions.
Here we analyze a mathemat-
ical model multi-component
surface volume reactions.

• Below is a schematic for ligand
flow through a channel 4.

PERTURBATION ANALYSIS

• Experimentalists are interested an approximation to the average of ~B:

~B(t) =
1

xmax − xmin

∫ xmax

xmin

~B(x, t)dx

• A regular expansion of the form

~B = ~B0 + Da ~B1 +O(Da2)

has a secular term.

• By manipulating the average of equations (1)-(3), together with (4) and (5),
we obtain a simple set of ODE’s:

d~B

dt
= M−1(t)(A~B + ~f) +O(Da2) (6)

• We have eliminated the secularity without the aid of a multiple scale ex-
pansion. Also we don’t have to manipulate the data to obtain the average.
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NUMERICAL VERIFICATION
• In order to test the accuracy of our approximation (6) we developed a

semi-implicit finite difference scheme. The results are depicted for B1 be-
low. Similar results for B12, B2 hold.

Left: B1, Middle: Error in (6) for Da = .01, Right: Error in (6) for different Da

• Our approximation (6) does quite well, giving five digits of accuracy for
Da = .01.

• Motivated by previous results 5 and (6) we asked: how well does our ap-
proximation - that is only formally valid for Da << 1 - do for moderate
and large Da?

• Error remains small, and reaches an asymptote corresponding to about a
one percent error.


