Edge-Disjoint Spanning Trees

Wiseley Wong, Dr. Sebastian Cioabă

Department of Mathematical Sciences, University of Delaware

ABSTRACT

Partially answering a question of Seymour, we obtain a sufficient eigenvalue condition for the existence of k edge-disjoint spanning trees in a regular graph, when $k \in\{2,3\}$. We construct examples of graphs that show our bounds are essentially best possible.

Standard Theory

A graph G is an ordered pair (V, E), where V is a where $\lambda_{i}(A)$ is the i-th largest eigenvalue of A [1]. set of vertices and E is a set of edges. The number of The eigenvalues of $A(H)$ interlace those of $A(G)$, edges coming out of a vertex v is called the degree, where $A(H)$ is a principal submatrix of $A(G) . A(H)$ and the graph is regular if every vertex has the same can be seen as its own adjacency matrix and thus is degree d. A tree is a connected graph with no cycles, represented by a graph H, which is called an induced and spanning if its edges are a subset of the edges subgraph of G
of G, and it contains all vertices of G. If the vertex set is partitioned in t parts, the quoIf $|V|=n$, then its adjacency matrix $A(G)$ is an tient matrix of a graph is a $t \times t$ matrix whose (i, j) $n \times n$ matrix where its (i, j) entry is 1 if v_{i} is adjacent entry is the average number of edges going between to v_{j}, and 0 otherwise. The Laplacian Matrix of a part i to part j. The eigenvalues of a quotient matrix graph G is $L(G)=D-A(G)$, where D is a diago- interlace the eigenvalues of $A(G)$ [1]
nal matrix whose i-th diagonal entry is the degree of A sufficient and necessary condition for edge-disjoint vertex i.
Kirchhoff's Matrix Tree Theorem [3] is a classic Tutte independently ([4], [5]), which is stated as folresult relating eigenvalues and spanning trees, given lows:
as follows.
Theorem 2. Let $\sigma(G)$ denote the maximum number Theorem 1. Let $0=\mu_{1} \leq \mu_{2} \leq \ldots \leq \mu_{n}$ be the of edge-disjoint spanning trees of G. Then $\sigma(G) \geq k$ eigenvalues of $L(G)$. Then the number of spanning if and only if for all partitions of the vertex set into t trees of G is $\frac{\prod_{i=2}^{n} \mu_{i}}{n}$. parts, the number of edges joining amongst the t parts is at least $k(t-1)$.
Given two square matrices A and B, with dimensions n and m respectively, $n \geq m$, the eigenvalues of B interlace those of A if for $1 \leq i \leq m$,

$$
\lambda_{i}(A) \geq \lambda_{i}(B) \geq \lambda_{n-m+i}(A)
$$

We provide a sufficient eigenvalue condition for a graph to have at least 2 and 3 edge-disjoint spanning trees. These structures are important in computer science and chemistry.

Extremal Configurations

The graph to the far left is a 5 -regular graph containing 1 edge-disjoint spanning tree and containing 1 edge-disjoint spanning tree and
$\lambda_{2} \approx 4.62>5-\frac{3}{5+2} \approx 4.57$. This shows $\lambda_{2} \approx 4.62>5-\frac{5+2}{5+2} \approx 4.57$. This shows
that there are graphs with λ_{2} slightly above the bound that fail the conclusion of Theorem 2.

The other graph is a 10 -regular graph con taining 2 edge-disjoint spanning trees and
$\lambda_{2} \approx 9.609>10-\frac{5}{10+2} \approx 9.583$. This shows that there are graphs with λ_{2} slightly above the bound that fail the conclusion of Theorem 3

Results

These are our results
Theorem 3. Let $d \geq 4$ and G be a d-regular graph such that $\lambda_{2}<d-\frac{3}{d+1}$. Then G contains at least 2-edge disjoint spanning trees
Theorem 4. Let $d \geq 6$ and G be a d-regular graph such that $\lambda_{2}<d-\frac{5}{d+1}$. Then G contains at least 3-edge disjoint spanning trees
We constructed the extremal configurations below, which shows the bounds are best possible. To find a

Case of Theorem 3

The proof of both theroems use the contrapositive. In Theorem 3, we assume a graph has exactly 1 edge disjoint spanning tree. Then by Theorem 2, there exists a partition of the vertex set with less than $2(t-1)$ edges going amongst the parts.
The restriction on the edges narrows down the possible structures of the graph. A possible example is

Figure 1: A possible structure of a graph with its vertex set partitioned into 3 parts.

The natural partition in 3 parts for a quotient matrix P, with a simple eigenvalue interlacing argument on $\lambda_{2}(P)$ and $\lambda_{2}(G)$ gives $\lambda_{2}(G) \geq d-\frac{3}{d+1}$ (since we are showing the contrapositive).

For larger t, calculating the eigenvalues becomes more difficult. Two cases of Theorem 4 are shown to the right, where a partition into $t=4$ and 5 parts are considered.
similar sufficient eigenvalue condition for more than 3 edge-disjoint spanning trees remains open due to the large increase in cases to consider and from using other results that are only known for small values We conjecture the following.

Conjecture 5. Let $d \geq 8$ and $4 \leq k \leq\left\lfloor\frac{d}{2}\right\rfloor$ be two integers. If G is $\bar{a} d$-regular graph such that $\lambda_{2}(G)<d-\frac{2 k-1}{d+1}$, then $\sigma(G) \geq k$

Cases of Theorem 4

In Theorem 4, the contrapositive assumes there exists a partition of the vertex set with less than $3(t-1)$ edges going amongst the parts. Two possible structures of a graph are given below.

Figure 2: Two graphs with its vertex set partitioned into 4 and 5 parts.

Instead of considering the natural partition in 4 or 5 parts to represent a quotient matrix, the color coding shows we partition further into just 3 parts Looking at its quotient matrix, we following another interlacing argument to conclude $\lambda_{2} \geq d-\frac{5}{d+1}$

For larger t, the restriction on edges amongst parts concludes there will be at least 2 parts with no edge between them. Analyzing the induced subgraphs on these parts directly, with eigenvalue interlacing, concludes $\lambda_{2} \geq d-\frac{5}{d+1}$

References

[1] A.E. Brouwer and W.H. Haemers, Spectra of Graphs, Springer Text 2012, available online at http://honepages.cwi.n1/aeb//nath/ipm.paf.
[2] S. M. Cioabă, W. Wong, Edge-Disjoint Spanning Trees and Eigenvalues of Regular Graphs, Submitted to Linear Alg. Appl.
[3] G. Kirchhot. Über die Au'ssung der Gleichungen, auf welche man bei der untersuchung der linearen verteilung galvan

