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Department of Mathematical Sciences, University of Delaware

Abstract
Partially answering a question of Seymour, we obtain a sufficient eigenvalue condition for the existence of
k edge-disjoint spanning trees in a regular graph, when k ∈ {2, 3}. We construct examples of graphs that
show our bounds are essentially best possible.

Standard Theory

A graph G is an ordered pair (V,E), where V is a
set of vertices and E is a set of edges. The number of
edges coming out of a vertex v is called the degree,
and the graph is regular if every vertex has the same
degree d. A tree is a connected graph with no cycles,
and spanning if its edges are a subset of the edges
of G, and it contains all vertices of G.

If |V | = n, then its adjacency matrix A(G) is an
n×n matrix where its (i, j) entry is 1 if vi is adjacent
to vj , and 0 otherwise. The Laplacian Matrix of a
graph G is L(G) = D − A(G), where D is a diago-
nal matrix whose i-th diagonal entry is the degree of
vertex i.

Kirchhoff’s Matrix Tree Theorem [3] is a classic
result relating eigenvalues and spanning trees, given
as follows.

Theorem 1. Let 0 = µ1 ≤ µ2 ≤ ... ≤ µn be the
eigenvalues of L(G). Then the number of spanning
trees of G is

Qn
i=2 µi

n .

Given two square matrices A and B, with dimensions
n and m respectively, n ≥ m, the eigenvalues of B
interlace those of A if for 1 ≤ i ≤ m,

λi(A) ≥ λi(B) ≥ λn−m+i(A),

where λi(A) is the i-th largest eigenvalue of A [1].
The eigenvalues of A(H) interlace those of A(G),
where A(H) is a principal submatrix of A(G). A(H)
can be seen as its own adjacency matrix and thus is
represented by a graph H, which is called an induced
subgraph of G.

If the vertex set is partitioned in t parts, the quo-
tient matrix of a graph is a t× t matrix whose (i, j)
entry is the average number of edges going between
part i to part j. The eigenvalues of a quotient matrix
interlace the eigenvalues of A(G) [1] .

A sufficient and necessary condition for edge-disjoint
spanning trees was proven by Nash-Willams and
Tutte independently ([4], [5]), which is stated as fol-
lows:

Theorem 2. Let σ(G) denote the maximum number
of edge-disjoint spanning trees of G. Then σ(G) ≥ k
if and only if for all partitions of the vertex set into t
parts, the number of edges joining amongst the t parts
is at least k(t− 1).

We provide a sufficient eigenvalue condition for a
graph to have at least 2 and 3 edge-disjoint spanning
trees. These structures are important in computer
science and chemistry.

Results

These are our results.

Theorem 3. Let d ≥ 4 and G be a d-regular graph
such that λ2 < d − 3

d+1 . Then G contains at least
2-edge disjoint spanning trees.

Theorem 4. Let d ≥ 6 and G be a d-regular graph
such that λ2 < d − 5

d+1 . Then G contains at least
3-edge disjoint spanning trees.

We constructed the extremal configurations below,
which shows the bounds are best possible. To find a

similar sufficient eigenvalue condition for more than
3 edge-disjoint spanning trees remains open due to
the large increase in cases to consider and from using
other results that are only known for small values.
We conjecture the following.

Conjecture 5. Let d ≥ 8 and 4 ≤ k ≤ bd2c be
two integers. If G is a d-regular graph such that
λ2(G) < d− 2k−1

d+1 , then σ(G) ≥ k.

Case of Theorem 3
The proof of both theroems use the contrapositive.
In Theorem 3, we assume a graph has exactly 1 edge
disjoint spanning tree. Then by Theorem 2, there
exists a partition of the vertex set with less than
2(t− 1) edges going amongst the parts.

The restriction on the edges narrows down the pos-
sible structures of the graph. A possible example is
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Figure 1: A possible structure of a graph with its vertex set
partitioned into 3 parts.

The natural partition in 3 parts for a quotient matrix
P , with a simple eigenvalue interlacing argument on
λ2(P ) and λ2(G) gives λ2(G) ≥ d − 3

d+1 (since we
are showing the contrapositive).

For larger t, calculating the eigenvalues becomes
more difficult. Two cases of Theorem 4 are shown
to the right, where a partition into t = 4 and 5 parts
are considered.

Cases of Theorem 4
In Theorem 4, the contrapositive assumes there ex-
ists a partition of the vertex set with less than 3(t−1)
edges going amongst the parts. Two possible struc-
tures of a graph are given below.
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Figure 2: Two graphs with its vertex set partitioned into 4 and
5 parts.

Instead of considering the natural partition in 4 or
5 parts to represent a quotient matrix, the color
coding shows we partition further into just 3 parts.
Looking at its quotient matrix, we following another
interlacing argument to conclude λ2 ≥ d− 5

d+1 .

For larger t, the restriction on edges amongst parts
concludes there will be at least 2 parts with no edges
between them. Analyzing the induced subgraphs on
these parts directly, with eigenvalue interlacing, con-
cludes λ2 ≥ d− 5

d+1 .

References
[1] A.E. Brouwer and W.H. Haemers, Spectra of Graphs, Springer Text 2012, available online at http://homepages.cwi.nl/̃ aeb/math/ipm.pdf.
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Extremal Configurations

The graph to the far left is a 5-regular graph
containing 1 edge-disjoint spanning tree and
λ2 ≈ 4.62 > 5 − 3

5+2 ≈ 4.57. This shows

that there are graphs with λ2 slightly above
the bound that fail the conclusion of Theo-
rem 2.

The other graph is a 10-regular graph con-
taining 2 edge-disjoint spanning trees and
λ2 ≈ 9.609 > 10 − 5

10+2 ≈ 9.583. This

shows that there are graphs with λ2 slightly
above the bound that fail the conclusion of
Theorem 3.
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