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Introduction
Mathematical models of the form Hu = f(u), where H is the mean curvature operator, are crucial in under-
standing capillary surfaces. They are particularly interesting mathematically due to the fact that many of their
solutions sets undergo intriguing bifurcations (see e.g., [PX11]). Here, we study the solution set of the problem

div
∇u√

1 + ε2|∇u|2
=

λ

(1 + u)2
, x ∈ Ω; u = 0, x ∈ ∂Ω, (1)

which derives from electrostatically deflecting a planar soap film. Specifically, we look at the two cases where
Ω = [−1, 1] and Ω = {x ∈ R2 : |x| < 1}. Note that here λ, which characterizes the applied voltage, and ε, which
characterizes the size the undeflected planar soap film, are nonnegative, dimensionless parameters.

One-dimensional
The 1D version of (1) reduces via symmetry to(

u′√
1 + ε2|u′|2

)′
=

λ

(1 + u)2
, 0 < x < 1;

u′(0) = u(1) = 0,

(2)

which has the first integral ε−2(1+ε2|u′|2)−1/2−λ(1+
u)−1 = E. Therefore, in solving for u′ and separating
variables yields the following.
Lemma. The values (λ, ε, α) give a solution u of the
ordinary differential equation (2), with u(0) = α, if
and only if T (α;λ, ε) = 1, where E = ε−2 − λ/(1 + α)
and

T (α;λ, ε) :=

∫ 0

α

ε3(λ+ E(1 + z))√
(1 + z)2 − ε4(λ+ E(1 + z))

dz .

From this we have

Theorem 1. There exists an ε∗ > 0 such that
(i) if ε ≤ ε∗, then there exists a value λ∗(ε)

such that (a) for λ ∈ (0, λ∗), (2) has ex-
actly two solutions; (b) for λ = λ∗, (2) has
exactly one solution; (c) for λ > λ∗, (2)
has no solutions.

(ii) if ε > ε∗, then there exists three values λ∗,
λ∗∗ and λ∗, which depend on ε, such that (a)
for λ ∈ (0, λ∗]∪[λ∗∗, λ

∗), (2) has exactly two
solutions; (b) for λ ∈ (λ∗, λ∗∗) ∪ {λ∗}, (2)
has exactly one solution; (c) for λ > λ∗,
(2) has no solutions.

Result: The solutions set of (2) undergoes a splitting
bifurcation at ε = ε∗ ≈ 2.857, i.e., when ε transitions
from less than or equal to to greater than ε∗, the up-
per solution branch splits into two parts (see the middle
and bottom subfigures of Fig. 1).
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1Figure 1. Top: Bifurcation surface, λ(ε, |u(0)|), of
(2) for 0 ≤ ε < 10. The black contours represent solu-
tions for ε = 5/3 (see Middle) and ε = 10/3 (see Bot-
tom), which yield bifurcation curves that capture the
qualitative shape described in the two cases of Theo-
rem 1.

Two-dimensional
The 2D version of (1) with Ω equal to the unit disk
reduces to

1

r

(
ru′√

1 + ε2|u′|2

)′
=

λ

(1 + u)2
, 0 < r < 1;

u′(0) = u(1) = 0.

(3)

This problem exhibits a dead-end bifurcation (see
Figure 2).

• If ε = 0, then for all α ∈ (−1, 0] there exists a
solution u of (3) such that u(0) = α [PB03].

• However, for ε > 0, there exists an α∗(ε) ∈
(−1, 0) such that if u is a solution of (3), then
|u(0)| < |α∗|.
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Figure 2. Left: Bifurcation curves of (3) computed
for ε = 0.05, 0.1, 0.5, 1, 2 (from right to left). Note that
at this scale the ε = 0.05 and ε = 0.1 curves appear
equal. Right: Magnified portion of the left fig. Here,
ε = 0.05, 0.1, 0.5 curves are seen. Note that all of the
curves stop before |u(0)| reaches 1.

Asymptotic analysis. To analyze the dead-end bi-
furcation for ε� 1, we look at (3) with the point con-
straint u(0) = −1 + δ, for 0 < δ � 1. Since the prob-
lem involves two small parameters, the analysis must
be performed in the distinguished limit ε2/δ = δ0 for
δ0 = O(1); Expanding u and λ as u ∼ u0 + ε2u1 and
λ ∼ λ0 +ε2λ1 leads to a singular perturbation problem
with a boundary layer of width O(δ3/2) at r = 0 . The
leading order inner problem is

1

ρ

(
ρw′0√

1 + δ0(w′0)2

)′
=

4

9w2
0

, 0 < ρ <∞;

w0(0) = 1, w′0(0) = 0,

whose far field behavior is

w0 ∼ ρ2/3 + Ã(δ0) sin

[
2
√

2

3
log ρ+ φ̃(δ0)

]
.

However there exists a value δ∗0 ≈ 18.142468 such that
if δ0 > δ∗0 , then no solution to this inner problem ex-
ists. Therefore asymptotic analysis is only valid for
ε2/δ ≤ δ∗0 . By performing matching we find that

λ ∼ 4

9
− δ 4

3
Ã

(
ε2

δ

)
sin

[
φ̃

(
ε2

δ

)
−
√

2 log δ

]
for ε � 1 and δ � 1, with ε2/δ ≤ δ∗0 , and since the
asymptotic approximation fails beyond ε2/δ = δ∗0 , we
have the following result.

For ε � 1, the dead-end bifurcation point of
(3) has the asymptotic expansion

|α∗(ε)| ∼ 1− ε2

δ∗0
,

λ∗(ε) ∼
4

9
− ε2 4Ã (δ∗0)

3δ∗0
sin

[
φ̃ (δ∗0)−

√
2 log

ε2

δ∗0

]
,

where Ã(δ0) and φ̃(δ0) are functions determined
from the inner problem’s far field behavior.
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1Figure 2. Comparison of the asymptotic prediction
of the above result, (dashed line), of the dead-end
point (λ∗(ε), |α∗(ε)|) with the full numerical computa-
tion (solid) for: Left the O(ε2) correction of |α∗(ε)|;
Right: λ∗(ε). Notice that the scale on the y-axis of
the right figure is quite fine and so the agreement for
λ∗(ε) is in fact better than the figures makes it appear.
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