Bifurcations of a Prescribed Mean Curvature Equation

Nicholas D. Brubaker ${ }^{1}$, Alan E. Lindsay ${ }^{2}$, John A. Pelesko ${ }^{1}$

${ }^{1}$ Department of Mathematical Sciences, University of Delaware (\{brubaker, pelesko\}@math.udel .edu);
${ }^{2}$ Department of Mathematics, University of Arizona (alindsay@math.arizona.edu);

Introduction

Mathematical models of the form $H u=f(u)$, where H is the mean curvature operator, are crucial in understanding capillary surfaces. They are particularly interesting mathematically due to the fact that many of their solutions sets undergo intriguing bifurcations (see e.g., [PX11]). Here, we study the solution set of the problem

$$
\operatorname{div} \frac{\nabla u}{\sqrt{1+\varepsilon^{2}|\nabla u|^{2}}}=\frac{\lambda}{(1+u)^{2}}, \quad x \in \Omega ; \quad u=0, \quad x \in \partial \Omega
$$

which derives from electrostatically deflecting a planar soap film. Specifically, we look at the two cases where $\Omega=[-1,1]$ and $\Omega=\left\{x \in \mathbb{R}^{2}:|x|<1\right\}$. Note that here λ, which characterizes the applied voltage, and ε, which characterizes the size the undeflected planar soap film, are nonnegative, dimensionless parameters.

One-dimensional

The 1D version of (1) reduces via symmetry to

$$
\begin{align*}
& \left(\frac{u^{\prime}}{\sqrt{1+\varepsilon^{2}\left|u^{\prime}\right|^{2}}}\right)^{\prime}=\frac{\lambda}{(1+u)^{2}}, \quad 0<x<1 ; \tag{2}\\
& u^{\prime}(0)=u(1)=0
\end{align*}
$$

which has the first integral $\varepsilon^{-2}\left(1+\varepsilon^{2}\left|u^{\prime}\right|^{2}\right)^{-1 / 2}-\lambda(1+$ $u)^{-1}=E$. Therefore, in solving for u^{\prime} and separating variables yields the following.
Lemma. The values $(\lambda, \varepsilon, \alpha)$ give a solution u of the ordinary differential equation (2), with $u(0)=\alpha$, if and only if $T(\alpha ; \lambda, \varepsilon)=1$, where $E=\varepsilon^{-2}-\lambda /(1+\alpha)$ and

$$
T(\alpha ; \lambda, \varepsilon):=\int_{\alpha}^{0} \frac{\varepsilon^{3}(\lambda+E(1+z))}{\sqrt{(1+z)^{2}-\varepsilon^{4}(\lambda+E(1+z))}} \mathrm{d} z .
$$

From this we have
Theorem 1. There exists an $\varepsilon^{*}>0$ such that
(i) if $\varepsilon \leq \varepsilon^{*}$, then there exists a value $\lambda^{*}(\varepsilon)$ such that (a) for $\lambda \in\left(0, \lambda^{*}\right)$, (2) has exactly two solutions; (b) for $\lambda=\lambda^{*}$, (2) has exactly one solution; (c) for $\lambda>\lambda^{*}$, (2) has no solutions.
(ii) if $\varepsilon>\varepsilon^{*}$, then there exists three values λ_{*}, $\lambda_{* *}$ and λ^{*}, which depend on ε, such that (a) for $\lambda \in\left(0, \lambda_{*}\right] \cup\left[\lambda_{* *}, \lambda^{*}\right)$, (2) has exactly two solutions; (b) for $\lambda \in\left(\lambda_{*}, \lambda_{* *}\right) \cup\left\{\lambda^{*}\right\}$, (2) has exactly one solution; (c) for $\lambda>\lambda^{*}$, (2) has no solutions.

Result: The solutions set of (2) undergoes a splitting bifurcation at $\varepsilon=\varepsilon^{*} \approx 2.857$, i.e., when ε transitions from less than or equal to to greater than ε^{*}, the upper solution branch splits into two parts (see the middle and bottom subfigures of Fig. 1).

Figure 1. Top: Bifurcation surface, $\lambda(\varepsilon,|u(0)|)$, of (2) for $0 \leq \varepsilon<10$. The black contours represent solutions for $\bar{\varepsilon}=5 / 3$ (see Middle) and $\varepsilon=10 / 3$ (see Bottom), which yield bifurcation curves that capture the qualitative shape described in the two cases of Theorem 1.
reduces to

$$
\begin{aligned}
& \frac{1}{r}\left(\frac{r u^{\prime}}{\sqrt{1+\varepsilon^{2}\left|u^{\prime}\right|^{2}}}\right)^{\prime}=\frac{\lambda}{(1+u)^{2}}, \quad 0<r<1 \\
& u^{\prime}(0)=u(1)=0
\end{aligned}
$$

This problem exhibits a dead-end bifurcation (see Figure 2).

- If $\varepsilon=0$, then for all $\alpha \in(-1,0]$ there exists a solution u of (3) such that $u(0)=\alpha$ [PB03].
- However, for $\varepsilon>0$, there exists an $\alpha_{*}(\varepsilon) \in$

Figure 2. Left: Bifurcation curves of (3) computed for $\varepsilon=0.05,0.1,0.5,1,2$ (from right to left). Note that at this scale the $\varepsilon=0.05$ and $\varepsilon=0.1$ curves appear equal. Right: Magnified portion of the left fig. Here, $\varepsilon=0.05,0.1,0.5$ curves are seen. Note that all of the curves stop before $|u(0)|$ reaches 1
Asymptotic analysis. To analyze the dead-end bifurcation for $\varepsilon \ll 1$, we look at (3) with the point constraint $u(0)=-1+\delta$, for $0<\delta \ll 1$. Since the problem involves two small parameters, the analysis must be performed in the distinguished limit $\varepsilon^{2} / \delta=\delta_{0}$ for $\delta_{0}=\mathcal{O}(1)$; Expanding u and λ as $u \sim u_{0}+\varepsilon^{2} u_{1}$ and $\lambda \sim \lambda_{0}+\varepsilon^{2} \lambda_{1}$ leads to a singular perturbation problem with a boundary layer of width $\mathcal{O}\left(\delta^{3 / 2}\right)$ at $r=0$. The leading order inner problem is

$$
\begin{aligned}
& \frac{1}{\rho}\left(\frac{\rho w_{0}^{\prime}}{\sqrt{1+\delta_{0}\left(w_{0}^{\prime}\right)^{2}}}\right)^{\prime}=\frac{4}{9 w_{0}^{2}}, 0<\rho<\infty \\
& w_{0}(0)=1, \quad w_{0}^{\prime}(0)=0
\end{aligned}
$$

Acknowledgements

N.D.B. thanks the National Science Foundation for their support through the Graduate Research Fellowship Program. J.A.P. thanks the National Science Foundation, NSF Award No. 312154.

Two-dimensional

The 2D version of (1) with Ω equal to the unit disk whose far field behavior is

$$
w_{0} \sim \rho^{2 / 3}+\tilde{A}\left(\delta_{0}\right) \sin \left[\frac{2 \sqrt{2}}{3} \log \rho+\tilde{\phi}\left(\delta_{0}\right)\right]
$$

However there exists a value $\delta_{0}^{*} \approx 18.142468$ such that if $\delta_{0}>\delta_{0}^{*}$, then no solution to this inner problem exists. Therefore asymptotic analysis is only valid for $\varepsilon^{2} / \delta \leq \delta_{0}^{*}$. By performing matching we find that

$$
\lambda \sim \frac{4}{9}-\delta \frac{4}{3} \tilde{A}\left(\frac{\varepsilon^{2}}{\delta}\right) \sin \left[\tilde{\phi}\left(\frac{\varepsilon^{2}}{\delta}\right)-\sqrt{2} \log \delta\right]
$$

for $\varepsilon \ll 1$ and $\delta \ll 1$, with $\varepsilon^{2} / \delta \leq \delta_{0}^{*}$, and since the asymptotic approximation fails beyond $\varepsilon^{2} / \delta=\delta_{0}^{*}$, we have the following result.

For $\varepsilon \ll 1$, the dead-end bifurcation point of (3) has the asymptotic expansion
$\left|\alpha_{*}(\varepsilon)\right| \sim 1-\frac{\varepsilon^{2}}{\delta_{0}^{*}}$,
$\lambda_{*}(\varepsilon) \sim \frac{4}{9}-\varepsilon^{2} \frac{4 \tilde{A}\left(\delta_{0}^{*}\right)}{3 \delta_{0}^{*}} \sin \left[\tilde{\phi}\left(\delta_{0}^{*}\right)-\sqrt{2} \log \frac{\varepsilon^{2}}{\delta_{0}^{*}}\right]$
where $\tilde{A}\left(\delta_{0}\right)$ and $\tilde{\phi}\left(\delta_{0}\right)$ are functions determined from the inner problem's far field behavior.

FIGURE 2. Comparison of the asymptotic prediction of the above result, (dashed line), of the dead-end point $\left(\lambda_{*}(\varepsilon),\left|\alpha_{*}(\varepsilon)\right|\right)$ with the full numerical computation (solid) for: Left the $\mathcal{O}\left(\varepsilon^{2}\right)$ correction of $\left|\alpha_{*}(\varepsilon)\right|$; Right: $\lambda_{*}(\varepsilon)$. Notice that the scale on the y-axis of the right figure is quite fine and so the agreement for $\lambda_{*}(\varepsilon)$ is in fact better than the figures makes it appear.

References

[PB03] J. A. Pelesko and D. H. Bernstein, Modeling MEMS and NEMS, Chapman \& Hall/CRC, 2003.
[PX11] H. Pan and R. Xing, Time Maps and Exact Multiplicity Results for One-Dimensional Prescribed Mean Curvature Equations. II, Nonlinear Anal. 74 (2011), no. 11, 37513768

