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Preface
At the 31st Annual Workshop on Mathematical Problems in Industry (MPI), Emma

Campbell of Bloom Energy presented a problem concerning the desulfurization of natural
gas used as feedstock for fuel cells.

This manuscript is really a collection of reports from teams in the group working on
several aspects of the problem. Here is a brief summary of each:

1. Edwards wrote up the main results that the bulk of the group generated during the
week. His chapter contains an outline of the general problem, scales the relevant
variables, and presents some results in various asymptotic limits.

2. Emerick and Rumschitzki manipulate the governing equations to obtain an integrod-
ifferential formulation of the evolution of the number of active sites.

3. Breward, Moore, and Raymond generate additional evolution equations for the rele-
vant quantities, and solve them in some asymptotic limits.

4. Schwendeman presents and interprets some numerical simulations of the equations,
and provides some guidance as to how to make the laboratory and field results match.

In addition to the authors of these reports, the following people participated in the
group discussions:

Ivan Christov, Los Alamos National Laboratory
Michael DePersio, University of Delaware
Hannah Dewey, Rensselær Polytechnic Institute
Pavel Dubovski, Stevens Institute of Technology
Rachel Grotheer, Clemson University
Joseph Hibdon, Northeastern Illinois University
Matthew Moye, New Jersey Institute of Technology
Jacob Ortega-Gingrich, University of Washington
Aminur Rahman, New Jersey Institute of Technology

ii



Model Formulation; Asymptotics

David A. Edwards, University of Delaware

NOTE: Though Edwards wrote up this section, it is a summary of the week’s work of the
entire group (enumerated in the preface).
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Section 1: Introduction
Fuel cells use hydrogen gas to produce electricity. Bloom Energy makes fuel cells that

obtain their hydrogen gas from the hydrocarbons in natural gas. Sulfur is added to natural
gas in order to produce odors that make leaks detectable. Typical amounts of sulfur in
natural gas are between 1–5 parts per million by volume. Unfortunately, sulfur degrades
the fuel cell components, and so must be filtered out of the natural gas feedstock. The gas
that reaches the next component in the fuel cell must have sulfur levels as low as possible.
Output concentrations in the low parts per billion (ppb) range are desirable.

The sulfur is removed from the gas through chemisorption (binding in a chemical
reaction) or physisorption (absorption/adhesion to a surface). The desulfurization process
typically occurs in beds filled with porous particles (beads) that absorb the sulfur. For our
purposes, the bed may be considered as a rectangular channel of length L (see Fig. 1.1).

W
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x̃
ỹ

z̃
Figure 1.1. Left: Actual bed geometry. Right: Idealized bed geometry. Arrow indicates
direction of flow.

In the field, these beds are connected in series. Each bed absorbs a certain fraction of
the sulfur, and then the partially-purified gas flows to the next bed. A bed is said to have
failed if

C̃(L)

C̃(0)
=
C̃(L)

C0
> CB, (1.1)

where C̃ is the concentration of sulfur (for now assumed to be independent of x̃ and ỹ),
and the subscript “B” stands for “breakout”. Note that C0 is the feed concentration of
sulfur. In the field, it is observed that only a few percent (by weight) of the absorbent
beads is sulfur at the breakout time.

The particles in the beds can be spherical, oblate spheroid, or tubular in nature.
Typical dimensions are from 1.5–4 mm. Different varieties of particles can be used; these
are typically arranged in series within the beds.

In the field, the breakout time t̃B is typically on the order of months or years, so in
order to test different varieties and mixtures of particles it is best to construct laboratory
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tests with smaller values of t̃B. These tests are typically run with a larger sulfur feed input
C0 or a higher flow rate Q. It is also possible to grind the particles, thus increasing the
effective reacting surface area in the bed. However, the results of these tests (in particular,
which of two possible bed compositions lasts longer) do not always comport with the results
in the field.

There are many reasons why this could be. In the laboratory, a standard of 50 ppb
is used, and is detected by gas chromatography. In the field, samples are sent to several
certified laboratories and the thresholds are much lower.

By modeling the desulfurization process, we hope to obtain insight that will allow
Bloom to design laboratory protocols to eliminate this discrepancy.
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Section 2: A Toy Problem
In order to understand the underlying dynamics, we consider a few toy problems.

R

L

Figure 2.1. Cylindrical tube. Arrow indicates direction of flow.

First, consider flow down a channel of radius R and length L (see Fig. 2.1), where
R � L. We may assume unidirectional plug flow with constant velocity U in the z̃-
direction. This is consistent with Darcy’s Law for the flow; the Reynolds number here is
not small (see the Appendix).

In this case, diffusion in the z̃-direction can be neglected and the flow equation is
given by

∂C̃

∂t̃
+ U

∂C̃

∂z̃
=
D

r̃

∂

∂r̃

(
r̃
∂C̃

∂r̃

)
, (2.1)

where D is the diffusion coefficient of sulfur in natural gas. At the surface r̃ = R, any sulfur
molecule diffusing to the surface binds to an active (empty) reacting site (concentration
ã):

D
∂C̃

∂r̃
(R, z̃, t̃) =

∂ã

∂t̃
. (2.2)

We note that since ã is a surface concentration, its units are moles/area, not moles/volume
like C̃. The active reacting sites evolve according to the following irreversible kinetic law:

∂ã

∂t̃
= −k̃(z̃)C̃(R, z̃, t̃)ã, (2.3)

where k̃(z̃) is a rate constant. Here we allow k̃ to vary with z̃ to model the various species
of reacting beads inside the device. However these variations are on a much larger spatial
scale (usually only three different species occupy the bed) and will be discontinuous (as
each species occupies its own region, and they do not mix).
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Introducing scalings to simplify the problem, we let

C(r, z, t) =
C̃(r̃, z̃, t̃)

C0
, a(z, t) =

ã(z̃, t̃)

amax
, r =

r̃

R
, z =

z̃

L
, t =

t̃

t∗
, k(z) =

k̃(z̃)

k0
,

(2.4a)
where amax is the total number of binding sites available on the surface of the cylinder
and k0 is a characteristic rate constant. (In practice, we would like it to be the largest one
around, so k(z) ≤ 1.) The characteristic time scale t∗ is arbitrary for now, and

C0 = C̃(r̃, 0, t̃) (2.4b)

is the inlet concentration.
Substituting (2.4) into (2.1), we have

C0

t∗

∂C

∂t
+
UC0

L

∂C

∂z
=
DC0

R2

1

r

∂

∂r

(
r
∂C

∂r

)
∂C

∂t
+
Ut∗
L

∂C

∂z
=
Dt∗
R2

1

r

∂

∂r

(
r
∂C

∂r

)
. (2.5)

Equation (2.5) motivates two possible choices for the time scale. If we let

t∗ = tc =

(
U

L

)−1

, (2.6)

then we are choosing the convective time scale, which balances the two terms on the left-
hand side (evolution and convection). If we let

t∗ = td =

(
D

R2

)−1

, (2.7)

then we are choosing the diffusive time scale, which balances evolution and diffusion. In
either case, the coefficient of the non-balanced term will depend on the Péclet number

Pe =
U/L

D/R2
=

convection rate

diffusion rate
=
td
tc
. (2.8)

Substituting (2.4) into (2.2), we have

DC0

R

∂C

∂r
(1, z, t) =

amax

t∗

∂a

∂t
t∗
td

C0

amax/R

∂C

∂r
(1, z, t) =

∂a

∂t
. (2.9)

Equation (2.9) motivates another possible choice for the time scale, namely

t∗ =
amax/R

C0
td. (2.10)
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Note that the numerator of the coefficient essentially converts the area concentration to a
volume concentration (since the receptors are distributed along a circumference of 2πR).

Lastly, substituting (2.4) into (2.3), we obtain

amax

t∗

∂a

∂t
= −amaxC0k0k(z)C(1, z, t)a

∂a

∂t
= −k0C0t∗k(z)C(1, z, t)a. (2.11)

Equation (2.11) motivates another possible choice for the time scale, namely

t∗ = tk = (C0k0)−1, (2.12)

which is the reacting time scale.
These multiple time scales indicate one explanation for the laboratory discrepancy.

Consider two possible bed compositions. In one (X), the slowest rate is the reaction rate;
in the other (Y), the slowest rate is the diffusion rate. Suppose that in the field, X is
superior (larger breakout time). Now consider a lab experiment where we retain the same
compositions, but increase the feed concentration C0 in an attempt to reduce the breakout
time for testing purposes. Increasing C0 will increase the reaction rate, thereby reducing
the breakout time for X, which is limited by the reaction rate, but not for Y, which is
limited by the diffusion rate. So in the lab, Y may look superior because its breakout time
is now longer.

To compensate for this, in an ideal laboratory setting we would design our experiment
so that each of the rates is increased by the same factor. That would imply keeping Pe
constant. Hence changing L (as we do in the lab experiment), will necessitate a change in
U . Changing C0 should be avoided, since we must also keep the following ratio constant:

td
tk

=
k0C0

D/R2
=

reaction rate

diffusion rate
= Da, (2.13)

where Da denotes the Damköhler number. This means that changing C0 would force a
change in R, which we might be able to do by grinding up the particles. This is to be
avoided if possible, because some of the particles are coated, and grinding them up would
change the position of the coating and hence the absorption properties of the particles.
Moreover, we also have to keep the ratio in (2.10) constant, which would necessitate
changing amax. (This may also happen as a result of changing R.)

This trouble could be obviated somewhat if we had an inkling of which rates would be
slowest. Then we could focus on balancing that ratio, instead of worrying about all three
ratios at once.

We conclude this section by noting that the problem as posed is unrealistic. With
plug flow, the evolution equation is independent of r, which means that the left-hand side
of (2.2) would be zero, which means that there would be no binding to the surface. This
type of model is better when there is standard Poiseuille flow, where the velocity depends
upon r, which forces a concentration gradient in r.
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Section 3: Governing Equations
We examine what happens in an individual pore, and then use the result to inform

a homogenized model at the vessel level. Consider an individual pore, again with the
geometry in Fig. 2.1. Here we denote pore-related variables with the subscript “p”.

The breakout phenomenon occurs when a goes to 0 in large portions of the vessel.
To track the evolution of a, we choose tk for a time scale as in (2.12). For transport in
the pore, we follow the discussion in [2, §12.3.1]. In general, the pore radius is so small
(on the order of nanometers, or the typical size of the mean free path), that the dominant
effect is Knudsen diffusion [2, §12.2] in the z̃-direction. Knudsen diffusion describes the
situation where the collisions most likely to occur are between the molecule and the pore,
rather than neighboring molecules. In particular, we have that Cp is uniform across the
pore, and hence depends only on zp, the distance down the pore. Thus (2.11) becomes

∂a

∂t
= −k(z)Cpa. (3.1)

(a exists only in the pores, so we don’t use a subscript “p” for it.)
At the open end (zp = 0) of any pore at position z, the concentration must be

continuous:
Cp(0, t; z) = C(z, t). (3.2)

Therefore both Cp and a will depend parametrically on z, not only through k but also
through coupling to the bulk.

This diffusion in the pore is balanced by reaction to a on its surface. Hence we have

D
∂2(πR2

pC̃p)

∂z̃2
= −∂(2πRpã)

∂t̃
. (3.3)

Here the parenthetical quantity on the left-hand side represents the total sulfur in the
cross-sectional slice, while the parenthetical quantity on the right-hand side represents the
total binding in the circumference around that slice. Substituting in our chosen scalings,
we obtain

DπR2
p

C0

L2
p

∂2Cp

∂z2p
= −2πRpamaxk0C0

∂a

∂t

∂2Cp

∂z2p
= −

2amaxk0L
2
p

DRp
(−k(z)Cpa)

= h2Tk(z)Cpa, hT = Lp

√
2k0amax

DRp
=

reaction rate

diffusion rate
, (3.4)

where we have used (3.1). hT is called the Thiele modulus [2, p. 440].
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To calculate the typical length of a pore, we use the following rule of thumb: we divide
the volume of the bead by its surface area. Since we are considering cylindrical beads, we
have the following:

Lp =
πR2

bLb

2πRbLb
=
Rb

2
, (3.5)

where the subscript “b” refers to bead. The surface area of the ends of the pellet is
considered to be negligible because Rb � Lb. (For more details on parameter values, see
the Appendix.) Substituting (3.5) into (3.4), yields

hT =
Rb

2

√
2k0amax

DRp
. (3.6)

Equation (3.4) requires two boundary conditions. We think of the pore as being a
closed cylindrical tube. Hence in addition to (3.2), there can be no diffusive flux at the
closed end z = 1, and we have

∂Cp

∂zp
(1, t; z) = 0. (3.7)

Finally, we have an initial condition on a, which is given by our scaling for ã:

a(zp, 0; z) = 1. (3.8)

In the bulk, we assume plug flow as before. Then the governing transport equation is
independent of r̃ and given by

∂C̃

∂t̃
+ U

∂C̃

∂z̃
=

flux

volume in vessel
due to pores. (3.9)

The right-hand side can be broken up as follows, where we use the word “hole” to denote
“open end of pore”:

flux

volume in vessel
=

flux

area of hole
· area

pore
· pores

bead
· bead

volume in vessel
. (3.10)

To relate this to our previous work, we see that the flux through the open end of a single
pore is given by the following:

flux

area of hole
=
DC0

Lp

∂Cp

∂zp
(0, t; z). (3.11)

The area of the hole is trivially πR2
b. The number of pores per bead is given by

pores

bead
=

total pore volume in bead

volume of pore
=
Vbφp
Vp

, (3.12)
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where V denotes volume and φp is the void fraction of pores in the bead. The number of
beads in a given volume in the vessel is given by the following:

bead

volume in vessel
=

1− φb
Vb

, (3.13)

where φb is the void fraction of beads in the vessel.
Substituting these results into (3.10) and then (3.9), we have

flux

volume in vessel
=

[
DC0

Lp

∂Cp

∂zp
(0)

]
πR2

p

[
φp(1− φb)

πR2
pLp

]
∂C̃

∂t̃
+ U

∂C̃

∂z̃
=
DC0

Rb/2

[
φp(1− φb)

Rb/2

]
∂Cp

∂zp
(0, t; z). (3.14)

Substituting our previous scalings into (3.14), we obtain

k0C
2
0

∂C

∂t
+
UC0

L

∂C

∂z
=

4DC0

R2
b

φp(1− φb)
∂Cp

∂zp
(0, t; z)

k0C0R
2
b

4Dφp(1− φb)

∂C

∂t
+

UR2
b

4Dφp(1− φb)L

∂C

∂z
=
∂Cp

∂zp
(0, t; z)

α2

(
α1
∂C

∂t
+
∂C

∂z

)
=
∂Cp

∂zp
(0, t; z), (3.15)

α1 =
k0C0L

U
=

convection time across vessel

breakout? time
, (3.16a)

α2 =
UR2

b

4Dφp(1− φb)L
=

convection rate across vessel

diffusion rate along pore
. (3.16b)

Here we have made the coefficient of the right-hand side equal to 1 in order to guarantee
that the sink term is included in the analysis. From the Appendix, we have that α2 is very
close to 1.

During the time of the workshop, we interpreted k0C0 as the breakout time. Since
that is on the order of months, while the convection time across the vessel is on the order
of seconds, we would have α1 � 1 and the first term may be neglected. However, later
asymptotic work (see §4) suggested that another, longer time scale is associated with
brekout. Thus this estimate may not be correct. To tell, we need a good estimate for k0.

However, proceeding on that assumption, to leading order our final equation is

α2
∂C

∂z
=
∂Cp

∂zp
(0, t; z). (3.17)

The necessary condition on C is given by the scaled version of (2.4b):

C(0, t) = 1. (3.18)
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Our system is thus given by (3.1), (3.4), and (3.17) subject to (3.2), (3.7), (3.8), and
(3.18). This system may be solved numerically; see the chapter by Schwendeman.

We conclude this section by noting the ramifications of our analysis for laboratory
experiments. In the laboratory, we wish to accelerate the reaction process and reduce
the breakout time. Our analysis shows that the relevant reaction rate is kC0 from (2.12).
Therefore, in the lab they should increase the feed concentration. However, one must be
careful because this could induce secondary reactions.

In order to ensure that all other time scales in the problem are untouched, one must
keep α2 constant. (α1 is so small that changing it will not affect the experiment.) This is
accomplished by setting

Ul

Ll
=
Uf

Lf

Ql

Vl
=
Qf

Vf
, (3.19)

where “l” refers to the laboratory values and “f” refers to the field values. The first line
can be interpreted as keeping the gas transit time through the vessel the same in both
settings. The second line can be interpreted as keeping the space velocity (the rate at
which the entire volume of the bed is replaced) the same in both settings.

Clearly the dimensionless breakout time for any bed composition will be a function
of α2 and hT. One anomaly we were asked to explain was the fact that when comparing
some pairs of compositions (say X and Y), one would work better in the lab, while the
other would work better in the field. In other words,

tB(α2,f,X;hT,X) < tB(α2,f,Y;hT,Y) while tB(α2,l,X;hT,X) > tB(α2,l,Y;hT,Y).

Further investigation is needed to see if just violating the constraint in (3.19) is sufficient
to cause this phenomenon.
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Section 4: An Asymptotic Discussion
Because we have no good measurements for amax, we are unsure of the size of hT. We

expect the problem to be diffusion-limited, which corresponds to the case hT → ∞. In
that case, from (3.4) we have that Cpa = 0. There are two ways this can happen:

Case 1: Cp = 0

The first case we consider is when the concentration of sulfur in the pore is equal
to zero. Far down the channel, we expect that the sulfur concentration in the bulk will
also be zero, since the sulfur has been removed upstream. Therefore, if C(z, t) = 0, then
Cp = 0 is an exact solution to our system.

However, near the upstream end of the channel, we know that C(z, t) 6= 0 by (3.18).
Hence there must be a boundary layer near the entry of the pore to match the outer
solution Cp = 0 to the boundary condition C(z, t) = 0. By choosing

ζp = hTzp, Ĉp(ζp, t) = Cp(zp, t), â(ζp, t) = a(zp, t), (4.1)

we have that (3.4) becomes

h2T
∂2Ĉp

∂ζ2p
= h2Tk(z)Ĉpâ

∂2Ĉp

∂ζ2p
= k(z)Ĉpâ, (4.2)

which is just (3.4) with hT = 1. So we have basically just compressed the transition in the
hT = O(1) case into a region of width O(h−1

T ).
Since in the limit of large hT, Cpa = 0, we have from (3.1) that a does not evolve

on the t time scale. Therefore, there must be a slow time scale where a evolves, and the
boundary layer penetrates into the pore, eventually reaching the other case that satisfies
(3.4), namely a = 0.

The scaling in (4.1) forces the flux in Ĉp to be O(hT), which forces a boundary layer
in z to balance (3.17). Hence the region where CT 6= 0 and C = 0 must occur in a narrow
band. This band will move down the pore on the slow time scale. Thus, we let

ζ = hT(z − z∗(τ)), τ = th−b
T Ĉ(ζ, τ) = C(z, t), (4.3)

where b is a constant yet to be determined. Substituting (4.3) into (3.17) and (3.1) yields
the following:

α2hT
∂Ĉ

∂ζ
= hT

∂Ĉp

∂ζp
(0, τ ; ζ)

α2
∂Ĉ

∂ζ
=
∂Ĉp

∂ζp
(0, τ ; ζ), (4.4a)

−h1−b
T

dz∗
dτ

∂â

∂ζp
+ h−b

T

∂â

∂τ
= −k(z∗(τ) + h−1

T ζ)Ĉpâ.
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The dominant term on the left-hand side is the first; to balance it with the right-hand side,
we take b = 1 to obtain, to leading order,

−dz∗
dτ

∂â

∂ζp
= −k(z∗(τ))Ĉpâ. (4.4b)

Equation (4.4b) also is just (3.17) with hT = 1.

Case 2: a = 0

We next consider the other case of interest: where a = 0. In this case, the pore is
exhausted, so we should expect that Cp = 1. However, if we let

a(zp, τ) = h−2
T ā(zp, τ), (4.5)

then (3.4) becomes
∂2Cp

∂z2p
= k(z)Cpā, (4.6)

which would seem to imply that the flux in Cp could be O(1), which would then cause an
O(1) variation in C. But substituting (4.5) into (3.1), we have

h−1
T

∂ā

∂τ
= −k(z)Cpā,

which forces ā = 0 as well. Substituting this result into (4.6) and using (3.7), we have that
Cp is a constant. From (3.17), we then have that when a = 0, C is uniform in z. Because
of the boundary condition (3.18), it follows that C must be one in this region.

z
z∗(τ)

O(h−1
T

)︷ ︸︸ ︷

Figure 4.1. Schematic of large-hT solution. Solid line: a. Dotted line: C. z∗(τ) moves
with speed which is O(h−1

T ).
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This discussion is summarized in Fig. 4.1. In the region 0 ≤ z ≤ z∗(τ), the pores
are exhausted (a = 0) and the sulfur concentration is saturated (C = 1). In the region
z∗(τ) ≤ z ≤ 1, the pores are empty (a = 1) and the sulfur concentration is zero to leading
order. Then there is a small boundary layer of width O(h−1

T ) about z∗ where both C and
a undergo a transition between these extremal values. This front moves on a time scale
which is O(hT), consistent with the observation that fouling occurs on a longer time scale
than diffusion.

Returning to dimensional variables, we obtain

τ =
t

hT
=

t̃

tkhT
,

so the fouling time scale is given by

tkhT =

(
1

C0k0

)
Rb

2

√
2k0amax

DRp
=
Rb

C0

√
amax

2k0DRp
, (4.7)

where we have used (3.6).
We now examine the small-hT limit, which corresponds to the case of very slow reac-

tion compared to transport, which is not seen experimentally. In this case, (3.4) becomes

∂2Cp

∂z2p
= 0,

which we may solve subject to (3.2) and (3.7) to obtain

Cp(zp, t) = C(z, t). (4.8)

Hence Cp is uniform in zp, which is consistent with our interpretation that this case is not
diffusion-limited. Substituting this result into (3.17), we have

α2
∂C

∂z
= 0,

so C is independent of z. Then using (3.18), we have that C = 1 everywhere, which is
consistent with a reaction which isn’t fast enough to absorb the sulfur before it transits
out of the bed.

For completeness, we make these substitutions in (3.1) to obtain the following:

∂a

∂t
= −k(z)a

a(zp, t) = e−k(z)t, (4.9)

where we have used (3.8).
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Section 5: The “Quasisteady” Case
In order to try to get a handle on the problem analytically, we consider the case when

a evolves on a different time scale from Cp. This is motivated by the discussion in [2,
§12.3.1]. In that work, a serves merely as a catalytic reaction site; it isn’t actually used up
by the reaction. Hence a ≡ 1 and equation (3.4) is replaced by

∂2Cp

∂z2p
= h2Tk(z)Cp.

If a evolves on a much different time scale from Cp, we can separate the scales and
treat t [and hence a(t)] as a parameter in the evolution equation, as follows:

d2Cp

dz2p
= h2Tk(z)Ca(t). (5.1)

Note that we use a total derivative to indicate the separation of scales. Note also that we
are assuming that a is independent of z. Solving (5.1) subject to (3.2) and (3.7), we obtain

Cp(zp; t) = C(z, t)
cosh[hT(1− zp)

√
k(z)a(t)]

cosh[hT
√
k(z)a(t)]

. (5.2)

Note that Cp may also depend on t parametrically through C(z, t).
This solution can then be used to find an explicit solution for the right-hand side of

(3.17): the effective reaction rate within the entire pore, which must balance the flux of
sulfur into the pore:

dCp

dzp
(0) = −C(z, t)hT

√
k(z)a(t) tanh[hT

√
k(z)a(t)]. (5.3)

This expression can be related to the effectiveness factor described in the literature
(cf. [1, §3.6.1]), which is just (in our notation)

tanhhT
√
k(z)a(t)

hT
√
k(z)a(t)

. (5.4)

We can examine our expression (5.3) in two asymptotic limits, though for physical inter-
pretation it is more useful to consider the reaction rate times the cross-sectional area of the
pore, which we call the flux sink per pore. Writing this quantity in dimensional variables,
we obtain the following:

flux sink

pore
= πR2

p

DC0

Lp

dCp

dzp
(0), (5.5)
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where we have used (2.4a).
If diffusion is infinitely fast (the well-mixed case) or amax is small, hT → 0 and we

may use the linear approximation for the tanh to obtain

flux sink

pore
= πR2

p

DC0

Lp
[−C(z, t)h2Tk(z)a(t)] = −πR2

p

D

Lp

(
2k0amaxL

2
p

DRp

)
C̃(z̃, t̃)k(z)a(t)

= −(2πRpLp)C̃(z̃, t̃)k̃(z̃)ã(t̃), (5.6a)

where we have used (3.4). Note that in this case, the flux is just the integrated sink over
the surface area of the pore.

However, if diffusion is very slow or amax is very large (the case we expect experimen-
tally), hT → ∞, and we may use the constant approximation for the tanh to obtain the
following:

flux sink

pore
=
πR2

pDC0

Lp

[
−C(z, t)hT

√
k(z)a(t)

]
= −

πR2
pD

Lp
C̃(z̃, t̃)

√
2k0amaxL2

p

DRp

√
k(z)a(t)

= −πC̃(z̃, t̃)
√

2DR3
pk̃(z̃)ã(t̃). (5.6b)

Note that in this case the length of the pore drops out, since diffusion is so slow that only
the part of the pore near the opening contributes.

We now want to interpret this flux sink differently. The sulfur molecules removed at
the open pore end must be used to decrease a, which is embedded on the surface of the
pore. Hence if we treat the pore surface as uniform, we have

πR2
p

DC0

Lp

dCp

dzp
(0) = 2πRpLp

∂ã

∂t̃
.

Substituting our scales from before yields

dCp

dzp
(0) =

2L2
p

DC0Rp
amaxkC0

∂a

∂t
= h2T

∂a

∂t
, (5.7)

where we have used (3.4). Substituting (5.7) into (3.17), we obtain

α2
∂C

∂z
= h2T

∂a

∂t
. (5.8)

Substituting (5.7) into (5.3), we have the following:

h2T
∂a

∂t
= −C(z, t)hT

√
ka tanh(hT

√
ka)

C(z, t) = −hT
coth(hT

√
ka)√

ka

∂a

∂t
. (5.9)
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Equation (5.9) may be simplified as follows:

−2

k

hT
2

√
k

a
coth(hT

√
ka)

∂a

∂t
= −2

k

∂

∂t

(
log(sinh(hT

√
ka))

)
= C

−∂f
∂t

= C, f =
2

k
log(sinh(hT

√
ka)). (5.10)

Initially, there is no sulfur in the system and all the binding sites are free:

C(z, 0) = 0, a(z, 0) = 1, (5.11)

where in deriving the second condition we recall the scaling on ã. Note also that even
though we have assumed that a doesn’t depend on zp, it will depend on z through the
coupling to the bulk. Using (5.11), we have that

f(z, 0) =
2

k
log(sinh(hT

√
k)). (5.12a)

We note from (3.18) and (5.10) that

−df
dt

(0, t) = C(0, t) = 1

f(0, t) =
2

k(0)
log(sinh(hT

√
k(0)))− t, (5.12b)

where we have used (5.12a) to force continuity at the origin.
Continuing to simplify, we have

− ∂2f

∂z∂t
=
∂C

∂z
=
h2T
α2

∂a

∂t

−∂f
∂z

=
h2T
α2
a+ g(z),

where we have used (5.8).
At this point, we note that k varies only when the species of porous medium changes.

Hence in large portions of the vessel, we can consider it to be a constant. Therefore, for
simplicity we now take k̃(z̃) = k0, or k = 1.

Then using (5.12a), we obtain

− df

dz
(z, 0) = 0 =

h2T
α2
a(z, 0) + g(z) =

h2T
α2

+ g(z)

−∂f
∂z

=
h2T(a− 1)

α2

coth(hT
√
a)

hT
√
a

da

dz
=

1− a
α2

, (5.13a)
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where in the final line we have made explicit the fact that t appears only as a parameter
from the boundary condition, which we may obtain from (5.12b):

2 log(sinh(hT
√
a(0, t))) = 2 log(sinh(hT))− t

log(sinh(hT
√
a(0, t))) = log(sinh(hT))− t

2

sinh(hT
√
a(0, t)) = sinh(hT) exp (−t/2)

hT
√
a(0, t) = sinh−1

(
e−t/2 sinhhT

)
a(0, t) =

1

h2T

[
sinh−1

(
e−t/2 sinhhT

)]2
. (5.13b)

Unfortunately, (5.13) can’t be solved explicitly, so we have to do the final step numer-
ically. Then the steps are as follows:

1. Find a(z, t) numerically.
2. Find f(z, t) and C(z, t) using (5.10).
3. Find C(1, t) to find the breakout time where C(1, tB) = CB. However, this is really

just a constant; what we really need to figure out is the dependence on the underlying
material and experimental parameters.
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Section 6: Asymptotics for Quasisteady Case
We now examine the quasisteady problem analytically in the limits of small and large

hT. In this section, we will take k(z) = 1.
We begin with the case of small hT. In that case, (5.13b) becomes

a(0, t) ∼ 1

h2T

[
sinh−1

(
e−t/2hT

)]2
∼ 1

h2T

[
e−t/2hT

]2
= e−t, (6.1)

and (5.13a) becomes

1

(hT
√
a)2

da

dz
=

1− a
α2

1

a(1− a)

da

dz
=
h2T
α2(

1

a
− 1

a− 1

)
da

dz
=
h2T
α2

log |a| − log |a− 1| = h2Tz

α2
+ b

a

1− a
=

e−t

1− e−t
exp

(
h2Tz

α2

)
, (6.2)

where we have used (6.1). Continuing to simplify, we obtain

a

[
1 +

e−t

1− e−t
exp

(
h2Tz

α2

)]
=

e−t

1− e−t
exp

(
h2Tz

α2

)
a(z, t) =

e−t

1− e−t
exp

(
h2Tz

α2

)[
1 +

e−t

1− e−t
exp

(
h2Tz

α2

)]−1

.

=

[
1− e−t

e−t
exp

(
−h

2
Tz

α2

)
+ 1

]−1

=

[
(et − 1) exp

(
−h

2
Tz

α2

)
+ 1

]−1

. (6.3)

Note that a is nearly uniform in z in this instance.
Now rewriting (5.10) in this limit, we have

f = 2 log(hT
√
a)

−∂f
∂t

= −1

a

∂a

∂t
= C
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C(z, t) = −
[
(et − 1) exp

(
−h

2
Tz

α2

)
+ 1

]
×{

−
[
(et − 1) exp

(
−h

2
Tz

α2

)
+ 1

]−2

et exp

(
−h

2
Tz

α2

)}

= et exp

(
−h

2
Tz

α2

)[
(et − 1) exp

(
−h

2
Tz

α2

)
+ 1

]−1

=

{
1 + e−t

[
exp

(
h2Tz

α2

)
− 1

]}−1

. (6.4)

Then using this expression to find tB, we have

[C(1, tB)]−1 = C−1
B = 1 + e−tB

[
exp

(
h2T
α2

)
− 1

]
[
exp

(
h2T
α2

)
− 1

]−1

(C−1
B − 1) = e−tB

tB = − log

(
(C−1

B − 1)

[
exp

(
h2T
α2

)
− 1

]−1
)

= log

(
1

C−1
B − 1

[
exp

(
h2T
α2

)
− 1

])
. (6.5)

In the case which we expect (hT → ∞), it is easiest to begin with (5.9). For any
a = O(1), we have an unacceptably large C. Therefore, shifting to the τ time scale, we
have the following:

Ĉ = −coth(hT
√
â)√

â

∂â

∂τ
.

We must be careful about expanding this term for large hT, because the behavior as â→ 0
(which is the fouling we are interested in) is much different from the case where â = O(1).
Continuing, we see that the analog of (5.10) is

−∂f̂
∂τ

= Ĉ, f̂ =
2

hT
log(sinh(hT

√
â)). (6.6)

Note that f̂ ≈ 2
√
â if â = O(1), since the hT terms will cancel.

On the other hand, as â decreases to zero as the fouling occurs, we would then intro-
duce the variable ā as defined in (4.5), yielding

f̂ =
2

hT
log(sinh(

√
ā)). (6.7)

The boundary conditions are given by

f̂(z, 0) =
2

hT
log(sinh(hT)) ≈ 2, (6.8a)
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where we use the fact that hT isn’t multiplying anything. We note from (3.18) and (6.6)
that

−df̂
dτ

(0, τ) = Ĉ(0, τ) = 1

f̂(0, τ) =
2

hT
log(sinh(hT))− τ ≈ 2− τ, (6.8b)

where we have used (6.8a) to force continuity at the origin.
Continuing to simplify, we have

− ∂2f̂

∂z∂τ
=
∂Ĉ

∂z
=
hT
α2

∂â

∂τ

−∂f̂
∂z

=
hT
α2
â+ g(z),

where we have used the analog of (5.8) in the τ variable. Then using (6.8a) yields

− df

dz
(z, 0) = 0 =

hT
α2
â(z, 0) + g(z) =

h2T
α2

+ g(z)

−∂f̂
∂z

=
hT(â− 1)

α2

coth(hT
√
â)

hT
√
â

dâ

dz
=

1− â
α2

, (6.9a)

which is exactly analogous to (5.13a). In the final line we have made explicit the fact that
t appears only as a parameter from the boundary condition, which we may obtain from
(6.8b):

2

hT
log(sinh(hT

√
â(0, τ))) = 2− τ

log(sinh(hT
√
â(0, t))) = hT −

τhT
2

sinh(hT
√
â(0, t)) = exp (hT − t/2)

hT
√
â(0, t) = sinh−1

(
ehT−t/2

)
â(0, t) =

1

h2T

[
sinh−1

(
ehT−t/2

)]2
. (6.9b)

Now if â = O(1), (6.9a) becomes

1

hT
√
â

dâ

dz
=

1− â
α2

dâ√
â(1− â)

=
hT dz

α2

2 tanh−1
√
â =

hTz

α2
+A

√
â = tanh

(
hTz

2α2
+ tanh−1

(
1

h2T

[
sinh−1

(
ehT−t/2

)]2))
, (6.10)
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where we have used (6.9b). Continuing to simplify, we have

â = tanh2

(
hTz

2α2
+ tanh−1

(
1

h2T

[
sinh−1

(
ehT−t/2

)]2))
, (6.11)

which has the behavior of a very steep front between â(0, t) and 1 due to the hTz term.
Again, we should be able to calculate f (tediously), then Ĉ.

We conclude with some remarks about the scalings. Even though we didn’t always
write it down explictly, from (6.10) there is a typical length scale of 2α2/hT in the large-hT
limit, and from (6.4) there is a typical length scale of α2/h

2
T in the small-hT limit. These

should be investigated further.
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Section 7: Conclusions and Further Research
In order to increase the efficiency and lifespan of fuel cells, the feedstock of hydrogen

gas much be free of sulfur impurities. Therefore, Bloom Energy has been experimenting
with different filtering beds and techniques in order to reduce those impurities. Currently,
laboratory results on the efficacy of a particular filtering bed mixture can differ from those
in the field. In particular, a mixture that looks promising in the lab can be found in real-
world testing to be less effective than current mixtures. However, this real-world testing
is expensive and lengthy.

By understanding the underlying physical dynamics, experimentalists can design labo-
ratory protocols that more faithfully replicate real-world conditions. In this work, we have
derived and analyzed a model for the desulfurization process in fuel-cell assemblies. We
discovered several different time scales on which physical processes occur, and identified
the two most important: the tk time scale given by (2.12), on which individual pores fail,
and the τ time scale [in the limit of large Thiele modulus, described in (4.7)], on which
the entire device fails.

We found that the underlying dynamics are given by two equations in the pore [(3.1)
and (3.4)], which are coupled to the dynamics in the entire bed via (3.17). In order for
results from the lab and the field to be comparable, the constraint (3.19) must be satisfied.
[Interestingly, this constraint involves the convective time scale (2.6), which can also be
interpreted as the space velocity.]

In the systems under consideration, there seems to be a distinct separation of scales
between the time needed to clog a single pore and the time needed to foul the entire
device. This corresponds to the case of large Thiele modulus, and we examined that case
in §4. The analysis shows a slowly moving front effecting a sharp transition between a
region where the pores are nearly totally fouled, and one where they are nearly totally
empty, as shown in Fig. 4.1. These results are borne out by numerical simulations. For
completeness, we also discussed the vastly simpler case of small Thiele modulus, which
linearizes the system.

We also examined the “quasisteady” case where the number of active sites in the pore
is considered to be spatially uniform. In that case, the system can be simplified somewhat,
leading to the nonlinear ODE system (5.13), which is easier to solve than the full coupled
PDE system. Asymptotics on this case did provide explicit solutions.

In summary, Bloom Energy should ensure that the constraint (3.19) is satisfied when
performing their laboratory experiments. (This does not seem to be the case currently.)
This should ensure consistency between the laboratory and experimental results.

In the future, a numerical code could be implemented for the PDE system. With
good estimates of the relevant parameters for various types of beads, one should be able to
perform numerical simulations first. These could then inform the types of bead mixtures
to try, thus directing the laboratory experiments to greater effect.

One other facet of the problem we discussed was the placement of the inlet and outlet
ports. Currently the inlet port is centered in the bed, while the outlet port is set to one
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inlet
port

sample
port

outlet port

Figure 7.1. Representation of bed reactor with ports.

side, since there is a secondary sampling port at that end (see Figure 7.1). Thus, as the gas
is diverted to the side of the outlet port, some portion of the filter media under the sample
port is underutilized. This could be remedied my moving the outlet port as close to the
center as possible, and moving the sample port to the edges of the device. Alternatively,
another sampling mechanism (perhaps involving a valve system) could be devised.
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Nomenclature

Units are listed in terms of mass (M), moles (N), length (L), time (T ), and temper-
ature (θ). If a symbol appears both with and without tildes, the symbol with tildes has
units, while the one without is dimensionless. Equation numbers where a variable is first
defined is listed, if appropriate.

ã: concentration of active reacting sites, units N/L2 (2.2).
b: arbitrary constant, variously defined.
C̃: concentration of sulfur, units N/L3 (1.1).
D: diffusion coefficient of sulfur in natural gas, units L2/T (2.1).

Da: Damköhler number (2.13).
f : hyperbolic function used for simplification (5.10).
g: arbitrary function, variously defined.
H: height of channel, units L.
hT: Thiele modulus (3.4).
k̃(z̃): association constant, units L3/(NT ) (2.3).
L: length of channel, units L (1.1).
M : molecular mass, units M (A.12).
P : pressure head (A.3).

Pe: Péclet number (2.8).
Q: volumetric flow rate, units L3/T .
R: radius in pore model.
r̃: radial coordinate in pore model (2.1).
T : temperature, units θ (A.7).
t̃: time, units T .
U : gas velocity, units L/T (2.1).
V : volume, units L3 (3.12).
W : width of channel, units L.
x̃: transverse distance, units L.
ỹ: transverse distance, units L.
z̃: distance along the channel, units L.
α: dimensionless constant in vessel evolution equation (3.16).
ζ: layer variable (4.1).
µ: bulk viscosity of natural gas, units M/(LT ) (A.9).
ρ: density of natural gas, units M/L3 (A.8).
τ : slow time variable (4.3).
φ: void fraction (3.12).

Other Notation
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B: as a subscript, used to indicate the breakout ratio (1.1).
b: as a subscript, used to refer to the porous bead (3.5).
c: as a subscript, used to indicate convection (2.6).
d: as a subscript, used to indicate diffusion (2.7).
f: as a subscript, used to indicate a bed used in the field (3.19).
k: as a subscript, used to indicate reaction (2.12).
l: as a subscript, used to indicate a bed used in the lab (3.19).

max: as a subscript on a, used to indicate the maximum number of binding sites avail-
able (2.4a).

p: as a subscript, used to indicate the pore (3.1).
0: as a subscript, used to indicate an input value (1.1).
*: as a subscript, used to indicate a characteristic scale (2.4a) or a front position

(4.3).
¯ : used to indicate a boundary-layer variable (4.5).
ˆ : used to indicate a boundary-layer variable (4.1).
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Appendix: Parameter Values

For our purposes, the field beds may be thought of as having the following dimensions:

Hf = 1.15× 10−1 m, Wf = 2.30× 10−1 m, Lf = 2 m. (A.1)

A typical flow rate in the field is given by

Qf = 600
L

min
= 10

10−3 m3

s
= 10−2 m3

s
, (A.2)

which is created by a pressure head of

Pf = 15 psi

(
6, 895

N/m2

psi

)
= 1.03× 105

kg

m · s2
. (A.3)

This flow rate yields a flow velocity of

Uf =
Qf

cross-sectional area
=

10−2 m3/s

(1.15× 10−1 m)(2.30× 10−1 m)
= 3.78× 10−1 m

s
. (A.4)

If we wish to idealize the vessel in the field as a cylinder, we would need

πR2
f = HfWf

R2
f =

(1.15× 10−1 m)(2.30× 10−1 m)

3.14
= 0.842× 10−2 m2

Rf = 9.18× 10−2 m. (A.5)

In the lab, the bed is cylindrical, so we have

0.75 in ≤ Rl ≤ 1 in

1.9× 10−2 m ≤ Rl ≤ 2.54× 10−2 m, (A.6a)

5 in ≤ Ll ≤ 21 in

1.27× 10−1 m ≤ Ll ≤ 5.33× 10−1 m. (A.6b)

The temperature of the experiment is room temperature, which we take to be

T = (273 + 25) K = 298 K. (A.7)

To calculate the Reynolds number, we first write down the density of methane (natural
gas) [4] at 298 K:

ρ = 1.316
kg

m3
. (A.8)
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We also need the viscosity [3]:

µ = 2× 10−4 poise = 2× 10−5 Pa · s = 2× 10−5 kg

m · s
. (A.9)

With these measurements, we may calculate a typical Reynolds number for the system:

Re =
ρUfRf

µ
=

(
1.316

kg

m3

)(
3.78× 10−1 m

s

)
(9.18× 10−2 m)

(
2× 10−5 kg

m · s

)−1

= 2.28× 103. (A.10)

The Knudsen diffusivity for a gas is given by [2, (12.2.4)]:

D = 9.7× 103Rp

√
T

M

cm · g1/2

s ·K1/2 ·mol1/2
, (A.11)

where T is the temperature and M is the molecular weight of the gas. The molecular
weight of two of the sulfur-carrying gases we are interested in (THT and TBM) are

M = 90
g

mol
. (A.12)

A typical radius of the pore is given by

1× 10−9 m ≤ Rp ≤ 3× 10−8 m. (A.13)

Using the low end of this range, we have

D = 9.7× 103(10−9 m)

√
298 K

90 g/mol

10−2 m · g1/2

s ·K1/2 ·mol1/2
= 9.7× 10−8

√
3.31

m2

s

= 1.77× 10−7 m2

s
. (A.14)

A typical void fraction of the beads is

φb =
3

8
, (A.15a)

while a typical void fraction of the pores is

φp = 0.4. (A.15b)

A typical radius of the bead is given by

Rb = 0.8 mm = 8× 10−4 m. (A.16)

With these values, we may now compute α2:

α2 =
(3.78× 10−1 m/s)(8× 10−4 m)2

4(1.77× 10−7 m2/s)(0.4)(5/8)(2 m)
=

242× 10−9

3.54× 10−7
= 6.83× 10−1. (A.17)

Hence we may now calculate the Péclet number from (2.8), which we do with the
midpoint of the range:

Pef =
(3.78× 10−1 m/s)/(2 m)

(5× 10−5 m2/s)/(9.18× 10−2 m)2
=

1.89× 10−1 s−1

(5.93× 10−2)(10−1 s−1)
= 31.9. (A.18)

A typical amount of surface area on a porous bead (expressed in area per mass of
bead) is on the order of 1000 m2/g.
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1 Introduction

Let c̃ = c̃(z̃, Z̃, t̃) be the dimensional concentration of sulfur inside a cylindrical pore at
position z̃ at level Z̃ within the tank at time t̃. Let c̃0(Z̃, t̃) = c̃(0, Z̃, t̃) be the concentration
of sulfur at the opening of a pellet’s pore at level Z̃ within the tank at time t̃. Finally, let
ã(z̃, Z̃, t̃) be the number of free binding sites inside a pore at position z̃ at level Z̃ inside the
tank at time t̃. It is apparent that there are three timescales associated with the problem:

• The pore timescale (0.1 seconds) is associated with t̃p = L2
p/D, where Lp is the

length of the pore and D is the Knudsen diffusivity of the gas. Dimensions: [Lp] = L,
[D] = L2T−1.

• The gas timescale (10 seconds) is associated with t̃g = Lt/u, where Lt is the length of
the tank and u is the speed at which the gas is flowing through the tank. Dimensions:
[Lt] = L, [u] = LT−1.

• The fouling timescale (months) is associated with the timescale t̃f = 1/kci, where
k is the rate of binding per unit area and ci is the initial inlet concentration of sulfur.
Dimensions: [k] = L3M−1T−1, [ci] = L−3M .

We simplify the governing equations by taking advantage of the fact that t̃p � t̃g � t̃f
as well as making reasonable assumptions about the pore scale. Below, we consider the
dynamics at each level of the problem in dimensional form.

2 Governing Equations

The problem can be broken down into three components: pore-level dynamics, the dynamics
of the gas passing through the tank, and the absorption dynamics related to the fouling of
filter material.

28
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Pore-Level Dynamics

Let Z̃ and t̃ be fixed and let z̃ vary along the length of the cylindrical hole in the pore,
0 < z̃ < Lp. The sulfur concentration inside the pore evolves according to the following
reaction-diffusion equation:

∂c̃

∂t̃
= D

∂2c̃

∂z̃2
− 2k

r
ãc̃

subject to the conditions

c̃(z̃, Z̃, 0) = 0, and c̃(0, Z̃, t̃) = c̃0,
∂c̃

∂z̃
(Lp, Z̃, t̃) = 0.

Here, D is the diffusivity of the sulfur compound in the gas, k is the rate at which the sulfur
clings to free binding sites within the pore per unit area, ã = ã(z̃, Z̃, t̃) is the number of free
binding sites within the pores at level Z̃, and r is the radius of the cylindrical shape of the
hole in the pellet. The factor 2/r is the surface area per unit volume of the cylindrical pore.
The boundary condition at the entrance to the pore is prescribed as an initial concentration
c̃0 and there is no change in sulfur concentration at the end of the pore. (Note: the boundary
condition maintains a “∼” notation as this is a dimensional variable along Z̃ and will be
scaled in the next section.) Dimensions:

[D] = L2T−1, [k] = L3M−1T−1, [r] = L, [c̃0] = L−3M, [a0] = L−2M.

We nondimensionalize this equation using the following scalings:

c =
c̃

ci
, a =

ã

a0
, z =

z̃

Lp

, tp =
t̃

t̃p
=
D

L2
p

t̃.

Here, a0 is the maximum number of binding sites per pore. Substituting, we obtain the
following:

∂c

∂tp
=
∂2c

∂z2
− φ2ac (1)

subject to

c(z, Z, 0) = 0, and c(0, Z̃, tp) =
c̃0
ci
,

∂c

∂z
(1, Z̃, tp) = 0.

Here, the single nondimensional term φ is given by

φ = Lp

√
2ka0
rD

.

φ is known as the Thiele Modulus. φ2 is the ratio of the characteristic rates of reaction to
diffusion in the pore. We note that the number of free binding sites, a, evolves over the
longest timescale.
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Fouling Dynamics

We now consider the number of free binding sites within a pore of a single pellet. This is
given by the function ã(z̃, Z̃, t̃) and is governed by the following differential equation,

∂ã

∂t̃
= −kac,

subject to the following initial condition

ã(z̃, Z̃, 0) = a0.

All variables and parameters are defined with dimensions given above. We nondimensionalize
these equations according to the following scalings:

a =
ã

a0
, c =

c̃

ci
, z =

z̃

Lp

, tf =
t̃

t̃f
= kcit̃.

Substituting these scalings into our equation gives the following dimensionless equation:

∂a

∂tf
= −ac (2)

with the initial condition given as
a(z, Z, 0) = 1.

Gas-Level Dynamics

Finally we consider the concentration of sulfur that is available to every pore in the system
within the entire tank. In this sense, we consider the evolution of c̃(0, Z̃, t̃), which we will
denote by c̃0(Z̃, t̃). The variable Z̃ varies over the length of the tank, 0 < Z̃ < Lt. This sulfur
concentration is advected with the gas velocity that passes through the tank but is taken
up by the pellets within the tank whose pores become saturated according to the pore-level
dynamics above. Therefore, we have the following transport equation for c̃0:

∂c̃0

∂t̃
+ u

∂c̃0

∂Z̃
=

[
D
∂c̃

∂z̃

∣∣∣∣
z̃=0

]
πr2

2πrL
A = −kA

∫ Lp

0

ãc̃ dz̃ −
∫ Lp

0

∂c̃

∂t̃
dz̃,

where the second equals sign substitutes the integral of the pore-level equation. This equation
is subject to the condition

c̃0(0, t̃) = ci.

Here, u is the gas velocity through the tank (assumed to be constant), k is the binding
reaction rate constant inside the pore, A is the reactive surface area per unit volume of the
tank, the integral on the right gives the homogenized total rate of reaction within a single
pore, and ci is the initial inlet concentration of sulfur into the tank. Dimensions:

[u] = LT−1, [A ] = L−1, [k] = L3M−1T−1, [ci] = L−3M.
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We nondimensionalize this equation with the following scalings:

c =
c̃

ci
, c0 =

c̃0
ci
, a =

ã

a0
, z =

z̃

Lp

, Z =
Z̃

Lt

, tg =
t̃

t̃g
=

u

Lt

t̃.

Substituting, we obtain the following dimensionless equation

∂c0
∂tg

+
∂c0
∂Z

= −κ
∫ 1

0

ac dz −
∫ 1

0

∂c

∂tg
dz (3)

subject to the following condition
c0(0, tg) = 1.

Here, the nondimensional parameter, κ, is given by

κ =
kA a0Lt

u
=

A a0
ci

t̃g

t̃f
.

Summary

Equations (1) – (3), given below in their respective timescales, describe the entire system:

∂c

∂tp
=
∂2c

∂z2
− φ2ac,

∂c0
∂tg

+
∂c0
∂Z

= −κ
∫ 1

0

ac dz −
∫ 1

0

∂c

∂tg
dz,

∂a

∂tf
= −ac.

Asymptotic Simplification

We assemble Equations (1) – (3) and write every equation on the long timescale, tf , to obtain
the following:

t̃p

t̃f

∂c

∂tf
=
∂2c

∂z2
− φ2ac,

t̃g

t̃f

∂c0
∂tf

+
∂c0
∂Z

= −κ
∫ 1

0

ac dz − t̃g

t̃f

∫ 1

0

∂c

∂tf
dz,

∂a

∂tf
= −ac.

As noted in the introduction, we know from the characteristics of the system that t̃p � t̃g �
t̃f , which means

t̃p

t̃f
� 1,

t̃g

t̃f
� 1.
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For the equation describing the evolution of sulfur concentration inside the local pore, c,
we can eliminate the time derivative. Likewise, we can eliminate the time derivative in the
equation for c0. This gives the concentration of sulfur within the pore and along the tank
as a quasi-steady state. Our equations can be updated to the following system on the long
timescale:

∂2c

∂z2
= φ2ac, (4)

∂c0
∂Z

= −κ
∫ 1

0

ac dz, (5)

∂a

∂tf
= −ac. (6)

3 Simplified Special Case

Since the length scale of a pore (z̃) inside a pellet is on the order of millimeters and that
of the reactor (Z̃), the scale of interest for sulfur adsorption, is meters, we simplify the
problem by neglecting the variation of the number of free receptors along the pore. This
leaves a simpler, time-dependent, pore-average (uniform, i.e., averaged, with respect to z̃)
concentration of free binding sites, ã(Z̃, t̃).

With this assumption, we can update Equations (4) – (6) in the following manner. Since
a is no longer a function of z, we can find an explicit solution for c in Equation (4) as

c(z, Z, tf ) =
c0
ci

cosh
[
φ
√
a(1− z)

]
cosh

[
φ
√
a
] ,

where we have applied the appropriate boundary conditions. For Equation (6), we can
integrate over the z dimension to obtain the following equation

∂a

∂tf
= −a

∫ 1

0

c dz.

To further simplify our equations, we can introduce the effectiveness factor, which is the
ratio of the true total reaction rate in the pore to that which would hold if diffusion were
fast, i.e., if the gas concentration were equal to c̃0 everywhere in the pore. This is easily
found to be

η = η(a) =
tanh

(
φ
√
a
)

φ
√
a

,

in the case for a cylindrical-shaped pore with uniform a. This factor allows us to replace the
integrated rate of loss of free sites average value (by the accumulation of sulfur compounds
on them) over the entire pore with ac0η(a) at every point along the tank, i.e.,∫ 1

0

ac dz = aη(a)c0.
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This follows from the definition of the effectiveness factor. With these assumptions, our
equations can be updated to the following:

∂2c

∂z2
= φ2ac, (7)

∂c0
∂Z

= −κaη(a)c0, (8)

∂a

∂tf
= −aη(a)c0. (9)

As mentioned previously, an explicit solution for c exists and we can find an expression for
c0 as

c0(Z, tf ) = exp

[
−κ
∫ Z

0

a(ξ, tf )η
(
a(ξ, tf )

)
dξ

]
.

The system now collapses to the following single differential equation in the free binding
sites, a, which evolves over the longest timescale:

∂a

∂tf
= −aη(a) exp

[
−κ
∫ Z

0

a(ξ, tf )η
(
a(ξ, tf )

)
dξ

]
(10)

with the initial condition a(Z, 0) = 1.
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1 Pore equations

Within each pore, the volumetric concentration Cp(z, t) of sulfur molecules and surface con-
centration B(z, t) of reactive sites (both nondimensionalized) evolve according to

∂B

∂t
= Cp(1−B), (1)

∂2Cp
∂z2

= h2
TCp(1−B), (2)

with boundary conditions Cp(z, t) = C(x, t) (where x is simply a parameter for the purposes

of the pore equations), ∂Cp

∂z
(1, t) = 0 and initial condition B(z, 0) = 0. The objective is to

obtain ∂Cp

∂z
(0, t) as a function of C(x, t).

Letting u = ln(1−B), we note that ut = −Cp. Substituting and integrating in t produces

uzz = h2
T e

u + f(z), (3)

where f(z) is arbitrary. This is associated with initial condition u(z, 0) ≡ 0 and boundary
conditions

∂u

∂t
(0, t) = −C(x, t),

∂2u

∂z∂t
(1, t) = 0.

Application of the initial condition shows that f(z) ≡ −h2
T , and multiplying by uz allows a

first integral yielding
1

2
u2
z = h2

T (eu − u) + g(t) (4)

34
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where g(t) is arbitrary. Application of the boundary conditions then gives

1

2
(u2

z(1, t)− u2
z(0, t)) = h2

T (eu(1,t) − u(1, t)− eu(0,t) + u(0, t)). (5)

By combining the initial and boundary conditions we obtain additional conditions uz(1, t) =
0 and u(0, t) = −

∫ t
0
C(x, s) ds. This allows us to write

u2
z(0, t) = 2h2

T

[
eu(0,t) − eu(1,t) − u(0, t) + u(1, t)

]
. (6)

The objective is to obtain uzt(0, t), but we are confronted with the fact that u(1, t) is un-
known.

To understand this a little better it is informative to consider the limit of small u (i.e.,
B � 1). Then,

uzz = h2
T (eu − 1) ≈ h2

Tu, (7)

which solves to give

u(z, t) = a(t) coshhT (1− z) + b(t) sinhhT (1− z). (8)

Applying the initial condition gives a(0) = b(0) = 0. Applying the boundary conditions then
gives b(t) ≡ 0 and

a(t) = −
∫ t

0
C(x, s) ds

coshhT
, i.e., u(z, t) = −

∫ t

0

C(x, s) ds
coshhT (1− z)

coshhT
, (9)

providing the known limiting solution of

∂Cp
∂z
|z=0 = −hTC(x, t) tanhhT . (10)

The various terms in (6) are:

uz(0, t) = hT

∫ t

0

C(x, s) ds tanhhT ,

u(0, t) = −
∫ t

0

C(s) ds,

u(1, t) =
−
∫ t

0
C(x, s) ds

coshhT
.

Note in particular that in the limit hT � 1, u(1, t) is negligible.
Motivated by this limit, we return to Eqn. (6) and set u(1, t) ≈ 0. Then, noting that we

expect uz(0, t) > 0, we have

uz(0, t) ≈
√

2hT

√
e−

∫ t
0 C(x,s) ds +

∫ t

0

C(x, s) ds− 1. (11)
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The radicand is positive definite. Finally, differentiating this with respect to t gives a
Dirichlet-to-Neumann flux mapping of

∂Cp
∂z

(0, t) = −uzt(0, t) ≈ −
hT√

2

(
1− e−

∫ t
0 C(x,s) ds

)
C(x, t)√

e−
∫ t
0 C(x,s) ds +

∫ t
0
C(x, s) ds− 1

. (12)

This quantity obviates the need to compute the microscopic pore model, formally in the
limit of large Thiele modulus hT .

As a final comparison, we note that in the limit C � 1 (and therefore |u| � 1), this
expression collapses to

∂Cp
∂z

(0, t) = −hTC(x, t), (13)

which agrees with Eqn. (10) in the appropriate limit of large hT .

2 Channel equations

We now couple Eqn. (12) to convection in the channel by posing the aggregate flux into
pores at each value of x and t as a sink, i.e.,

∂C

∂t
+ U

∂C

∂x
= −βhT√

2

(
1− e−

∫ t
0 C(x,s) ds

)
C(x, t)√

e−
∫ t
0 C(x,s) ds +

∫ t
0
C(x, s) ds− 1

, (14)

where U is the average fluid velocity in the channel and β is a scaling constant accounting
for the volumetric pore density. This equation is accompanied by conditions C(x, 0) = 0 and
C(0, t) = C0.

We assume that temporal variations of C on the scale of the channel length are small (i.e.,
dimensionless u is large). Making this assumption and converting the integro-differential
equation into a coupled system through C = ∂Γ/∂t, we have

Γt = C,

Cx = −α (1− e−Γ)C√
e−Γ + Γ− 1

,

accompanied by initial/boundary conditions Γ(x, 0) = 0 and C(0, t) = 1, where

α =
βhT√

2U
(15)

is a dimensionless parameter characterizing the (inverse) length of the “mass-transfer zone”
in the channel.
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These equations are combined to give

Γtx = −α (1− e−Γ)Γt√
e−Γ + Γ− 1

, (16)

which can be integrated in time and combined with Γ(x, 0) = 0 to give

Γx = −2α
√
e−Γ + Γ− 1. (17)

Thus, the dynamics of pore and channel are effectively reduced to a single ordinary differ-
ential equation, parameterized by time, with boundary condition

Γ(0, t) = t. (18)

Once Γ(x, t) is computed, the concentration is recovered through

C(x, t) = Γt. (19)

3 Computations and limits

Let φ(ξ) be the unique solution of

φ′(ξ) = −
√
e−φ + φ− 1, φ(0) = 1, (20)

plotted in Fig. 3. Since φ is monotonic, its inverse is well-defined on R+. All solutions of (17)
can be expressed using a lookup table for φ, i.e.,

Γ(x, t) = φ(φ−1(t) + 2αx). (21)

The concentration is then expressed by
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C(x, t) =
φ′(φ−1(t) + 2αx)

φ′(φ−1(t))
. (22)

The limiting cases of large and small Γ are clear from Eqn. 20. If φ� 1, we have

φ′ ≈ − φ√
2
, (23)

so that φ decays exponentially,

φ = φ0e
−ξ/
√

2. (24)

At the other extreme of φ� 1, we have

φ′ ≈ −
√
φ, (25)

so that φ decays algebraically,

φ = (
√
φ0 −

1

2
ξ)2. (26)

4 Consistency

As a final note, we recall that the above analysis was motivated by letting hT � 1 in the
linear limit. It would be nice to have this analysis hold regardless of the size of B; however,
setting hT = 0 in Eqns. 2 forces Cp(z, t) ≡ C(x, t), so that u is approximately uniform in
z. This invalidates the assumption that we can neglect u(1, t) in Eqn. (6) relative to u(0, t)
and suggests that more careful asymptotics in terms of the order of B should be considered.
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1 DWS Notes

The purpose of these notes is to describe the numerical approach and simulation results
for a mathematical model of gas desulfurization in a packed bed. The description of the
mathematical model is brief as details of its derivation are given elsewhere.

1.1 Model

Let us consider a one-dimensional gas flow in a packed bed of length L and cross-sectional
area A. The concentration of sulfur in the gas is taken to be S(x, t), where x measures
distance down the bed and t is time. It is assumed that the pellets packing the bed are
porous and that the sulfur in the gas may diffuse into the pores where it is absorbed onto
the surface of the pores. Let C(x, z, t) denote the concentration of sulfur in the pores of the
pellets (assumed to be a densely packed continuum), where z measures distance down the
pores from the outer surface of the pellets at z = 0. Assuming a quasi-steady flow in the
bed with constant volume flow rate Q, conservation of mass of the sulfur gives

Q
∂S

∂x
= −ANσJ(x, z, t)

∣∣
z=0

, 0 < x < L, t > 0, (1)

where N is number of pellets per unit volume, σ is the surface area of holes per pellet, and
J is the flux of sulfur in the pores of the pellets. Ficks law of diffusion gives

J = −D∂C
∂z

, (2)

where D is the diffusivity.

The transport of sulfur in the pores of the pellets (at any position x along the bed) is
assumed to be a balance of diffusion along the length of the pores and reaction to the surface
of the pores. Modeling the pores as cylindrical tubes of radius R gives

πR2∂J

∂z
= −2πRK, 0 < x < L, 0 < z < a, t > 0, (3)

39
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where K is the surface reaction rate and a is the length of the cylindrical pore. Using a
simple first-order law of mass action, we have

K = kC(B∞ −B), (4)

where k is a rate constant, B(x, z, t) is the concentration of sulfur on the surface of the pore,
and B∞ is the saturation concentration. The concentration of sulfur on the surface of the
pore is governed by

∂B

∂t
= K, 0 < x < L, 0 < z < a, t > 0. (5)

The set of model equations given by (1), (3) and (5) require initial conditions and bound-
ary conditions. We assume that the sulfur concentration is known at the inlet of the bed,
and take

S(0, t) = Sin, t > 0,

where Sin is the inlet concentration. (The inlet concentration can be a function of time, but
we assume that it is constant.) The equation for the transport of the sulfur in the pores
requires boundary conditions at z = 0 and z = a. We assume that the sulfur concentration
is continuous at z = 0 and no-flux at z = a, i.e.

C(x, 0, t) = S(x, t), J(x, a, t) = 0, 0 < x < L, t > 0.

Finally, the equation for the surface reaction requires an initial condition. We assume that
pellets are free of sulfur initially so that

B(x, z, 0) = 0, 0 < x < L, 0 < z < a.

The model equations can be made dimensionless by choosing suitable reference scales for
the various independent and dependent variables. We set

x′ =
x

L
, z′ =

z

a
, t′ =

t

tref

,

where the primes denote dimensionless quantities and the reference time scale is taken to be

tref = trxn =
1

kSin

, (6)

which is the time scale for reaction to the surface of the pores. Dimensionless concentrations
are defined by

S ′ =
S

Sin

, C ′ =
C

Sin

, B′ =
B

B∞
.

Substituting the dimensionless quantities into the set of model equations, simplifying and
dropping primes, gives

∂S

∂x
= α

∂C

∂z

∣∣∣∣
z=0

, 0 < x < 1, t > 0, (7)
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along the bed, and

∂2C

∂z2
= βC(1−B)

∂B

∂t
= C(1−B)

 , 0 < x < 1, 0 < z < 1, t > 0, (8)

in the pores. The dimensionless parameters, α and β, are given by

α =
ALNσD

aQ
, β =

2ka2B∞
RD

, (9)

and the initial and boundary conditions become

S(0, t) = 1, C(x, 0, t) = S(x, t),
∂C

∂z
(x, 1, t) = 0, B(x, z, 0) = 0. (10)

The two dimensionless parameters can be interpreted in terms of ratios of time scales, and
the ratios of certain volumes and masses. Define

tbed =
AL

Q
= resident time for the gas in the bed,

tdiff =
a2

D
= time scale for diffusion in the pores,

and let

θ = Nσa = ratio of the volume of pores to that of the bed,

φ =
2πaRB∞
πaR2Sin

= ratio of the mass of sulfur on the surface of the pores

to that in the pore volume.

With these definitions, we have

α = θ

(
tbed

tdiff

)
, β = φ

(
tdiff

trxn

)
.

This is one interpretation of the parameters, but others could be considered by grouping the
parameters differently. Estimates for these parameters will be given later.

1.2 Numerical approach

The model equations in (7) and (8), along with initial and boundary conditions in (10),
are readily solved using a straightforward numerical approach based on finite differences.
Consider a Cartesian mesh in the x and z directions with mesh spacings ∆x = 1/N and
∆z = 1/M , respectively, for chosen positive integers N and M . On the mesh, define

S̃j(t) ≈ S(xj, t), C̃j,k(t) ≈ C(xj, zk, t), B̃j,k(t) ≈ B(xj, zk, t),
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where xj = j∆x and zk = (k − 1/2)∆z, and we let t remains continuous for now. It is
convenient to define the grid lines in z so that they straddle the boundaries at z = 0 and
z = 1. At a time t, approximate the equations in the bed and the pore using standard
second-order finite differences, namely,

S̃j − S̃j−1

∆x
=
α

2

(
C̃j,1 − C̃j,0

∆z
+
C̃j−1,1 − C̃j−1,0

∆z

)
, j = 1, 2, . . . , N, (11)

with inlet condition S̃0 = 1, and

C̃j,k+1 − 2C̃j,k + C̃j,k−1

∆z2
= βC̃j,k

(
1− B̃j,k

)
, j = 0, 1, . . . , N, k = 0, 1, . . . ,M, (12)

with boundary conditions

C̃j,1 + C̃j,0

2
= S̃j,

C̃j,M − C̃j,M−1

∆z
= 0, j = 0, 1, . . . , N.

Assuming B̃j,k(t) is known on the grid at time t, the discrete equations in (11) and (12),
along with the inlet condition and boundary conditions, can be solved to obtain S̃j(t) and
C̃j,k(t). (These grid functions are easily found by marching in j from j = 0 to j = N , and
solving the linear tridiagonal system implied by (12) and its boundary conditions at each
step.) Given C̃j,k(t), the equation to advance the surface concentration in time is

d

dt
B̃j,k = C̃j,k

(
1− B̃j,k

)
.

This equation may be integrated from a given time t to a new time t+ ∆t in a many ways.
For example, an explicit second-order accurate Runge-Kutta method involves a two-stage
integration. The first stage is

B̃j,k(t+ ∆t/2) = B̃j,k(t) +
∆t

2
C̃j,k(t)

(
1− B̃j,k(t)

)
, j = 0, 1, . . . , N, k = 0, 1, . . . ,M,

which gives B̃j,k(t + ∆t/2) on the grid, and then S̃j(t + ∆t/2) and C̃j,k(t + ∆t/2) can be
obtained from (11) and (12) as before. The second stage is

B̃j,k(t+ ∆t) = B̃j,k(t) + ∆tC̃j,k(t+ ∆t/2)
(
1− B̃j,k(t+ ∆t/2)

)
,

j = 0, 1, . . . , N, k = 0, 1, . . . ,M,

which results in B̃j,k at the new time level t + ∆t. The process can now be repeated to a
time t = tfinal given by

S̃N(tfinal) = Stiny,

where Stiny is a dimensionless threshold concentration indicating that an unacceptable level
of sulfur has broken-out from the end of the packed bed. We use Stiny = 0.001 in the
simulations presented in the next section.
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1.3 Numerical simulations

We begin with simulations of the behavior of the packed bed in the field. For these simula-
tions, we take

α = 5, β = 200.

These values were obtained by discussions with the representative from Bloom, and by fits to
observations of their packed beds in the field. The calculations use N = 1000 and M = 50 for
the number of mesh cells in the x and z directions, respectively, and a time step ∆t = 0.02.
The break-out time, tfinal, for the simulation was found to be 524.3 days in dimensional units.

Figure 1 shows the behavior of S(x, t) at five times with the final time equalling tfinal.
The graph on the left is the solution from the present similation using the values of α and
β fit to the packed beds in the field, while the graph on the right is the solution from the
similuation using parameters based on the lab conditions (to be discussed below). We note
an apparent traveling wave in S(x, t) with a near linear profile within the active layer of
pellets as this layer moves down the packed bed for both simulations.
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Figure 1: Behavior of S(x, t) for five intervals of time from t = 0 to t = tfinal. Left: field
simulation, tfinal = 524.3 days. Right: lab simulation, tfinal = 0.6854 days.

Figure 2 shows the sulfur concentrations in pore given by C(x, z, t) and on the pore
surface given by B(x, z, t) at two values of time. Upstream of the active layer of the packed
bed, both the pore and surface concentrations of the sulfur are saturated at a value equal to
one (approximately), while far downstream of the active layer their values are zero. Within
the active layer, the concentration of sulfur in the pore decreases with z for a fixed x and
t due to the transfer of sulfur to the surface of the pore. The surface concentration also
decreases with z for a fixed x and t as the reaction is generally strongest near the inlet to
the pore where there is more sulfur available.

To perform experiments in the lab that model conditions in the field, it is important to
keep the dimensionless parameters α and β the same, or at least approximately the same, in
the model. According to the definitions of these two parameters in (9), we first note that β
depends on quantities that pertain to the pellets alone. Thus, if the pellets used in the field
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Figure 2: Field simulation: Behavior of the concentration of sulfur in the pore C(x, z, t) (left)
and on the pore surface B(x, z, t) (right) at t = 316.8 days (top) and t = tfinal = 524.3 days
(bottom).

are the same as those used in the lab experiments, then the value of β would remain the
same. The definition of α, on the other hand, involves quantities that depend on the pellets
and quantities that involve the geometry and flow in the packed bed. In particular, we can
re-write α as

α =

(
AL

Q

)(
NσD

a

)
,

where the quantities in the first parentheses depend on the conditions of the bed, while
the quantities in the second depend on the pellets alone and would remain unchanged. In
the lab experiments, the length of the bed given by L is shorter, 0.15 m in the lab versus
1.7 m in the field, and the velocity of the flow given by Q/A is decreased, 0.05 m/s in the
lab versus 0.4 m/s in the field, according to the values supplied by Bloom. Thus, AL/Q is
approximately unchanged so that the value α = 3.59 used for the simulation of the conditions
in the lab is nearly equal to α = 5 used for the simulations of the field conditions. Also,
it desirable to obtain results of the lab experiments over a much shorter time than the
break-out time (approximately a year) in the field. This can be done by increasing the inlet
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concentration of sulfur so that the time scale given by trxn in (6) is decreased.
The graph on the right in Figure 1 shows the behavior of S(x, t) for α = 3.59 and β = 200

at five times with the final time being tfinal = 0.658 days. We observe that the qualitative
behavior of the sulfur concentration is similar for both the field and lab simulations, as
expected. Since the value for α is slightly smaller for the lab simulation, the width of the
active layer is larger. This observation is consistent with the equation in (7) describing the
balance between the flux of sulfur down the packed bed and the flux of sulfur into the pores
of the pellets. If α is smaller, then the flux into the pores is smaller, and thus the width of
the active layer becomes larger.

1.4 Concluding remarks

A relatively simple mathematical model has been considered that describes the desulfur-
ization of a one-dimensional gas flow through a packed bed. The model involves several
parameters, but these group into two dimensionless parameters upon rendering the model
dimensionless. The two parameters depend on the length, cross-sectional area, and the vol-
ume flow rate in the packed bed, and on the materials used to pack the bed (pellets). Once
these parameters are found for the conditions of the packed bed in field, they provide a guide
to scale the experimental set-up to study the behavior in the lab.

A straightforward numerical approach has been implemented in MATLAB to obtain
solutions of the model. These simulations determine the time-dependent concentration of
sulfur in the bed, and the sulfur concentration in the pores of the pellets. By computing
the sulfur concentration at the end of the bed, the break-out time when the concentration
rises above a specified threshold can be determined. Results of the simulations are in good
qualitative agreement with the observed behavior of the packed beds in the field.

Extensions of the model can be made. For example, a straightforward extension of the
model and numerical scheme would allow for the simulation of packed beds containing regions
with pellets of different properties. The two parameters, α and β would become functions
of x, the distance down the bed, in this case. The current model assumes a one-dimensional
flow of gas down the bed. This assumption could be lifted, but this would make the model,
and corresponding numerical approach, more difficult. It was generally agreed that this
extension would need to made in order to obtain higher fidelity in the predictive capabilities
of the model.


