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Abstract

Modeling how the returns of assets in a portfolio are correlated is crucial to properly
understand and price the risk in the portfolio. In this report we discuss methods for
approximating a full correlation matrix with a k-factor model. We then discuss methods
for efficiently simulating asset returns given such a model.

1 Introduction

A common approach to portfolio return modeling is to combine a process for change in
individual exposure returns with a dependence structure across exposures that captures the
joint evolution [1]. This dependence structure can be described by a correlation matrix, which
will be a symmetric positive definite matrix with ones along the diagonal. The large number
of assets in many portfolios of interest makes the size of the corresponding correlation matrix
large which in turn makes simulation difficult. Hence approximating the given correlation
matrix with a much lower dimensional factor model is suggested. This is equivalent to
approximating a correlation matrix with a lower rank matrix. In this case, each asset return
in the portfolio depends on a relatively small number of factors which remains fixed as the
size of the portfolio increases. There are several factor models provided in [1].
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To introduce factor models, suppose a portfolio has N assets and let us consider a factor
model with NF factors. The asset returns z = (z1, z2, · · · zN)T is what we wish to model.
Let ρi be the percentage of asset return variance associated with systematic risk and let
the column vector βi = (βi,1, βi,1 · · · βi,NF )T , be factor loading vector that is normalized so
that βTi βi = 1. Let εF = (εF,1, εF,2, · · · εF,NF )T represent the returns for the assets within
each factor. The εF,i are assumed to be identically distributed standard normal variables
represented by the orthogonalized factor returns. Let εI = (εI,1, εI,2, · · · εI,N)T represent the
idiosyncratic risk not explained by the factors and assumed independent of the factor returns;
generally they are assumed independent across all assets in the portfolio. The asset return
is given by

z = Γ1/2BεF + (I − Γ)1/2εI ,

where B is a N ×NF matrix called the loading matrix,

B =


βT1
βT2
...

βTN


and Γ is a N × N diagonal matrix with ρi on the diagonal. Since εF , εI ∼ N(0, 1) the
associated correlation matrix E(zzT ) can then be written as

P = Γ1/2BBTΓ1/2 + I − Γ.

This correlation matrix has NF factor correlation matrix structure. Authors in [1, 2] have
shown that there exists optimal Γ and hence optimal B in the sense of Frobenius norm. The
first part of this report will discuss the problem of determining the factor loadings βi. The
second part of this report will discuss ways of efficiently simulating the returns z given the
factor loadings.

2 Optimal k-Factor Approximations

One method of approximating a given correlation matrix with a k-factor model is to use the
largest k principal components. In this section we will discuss methods for obtaining this
approximation and the error involved.

2.1 Approximations Using Full Matrix

One method for determining the factor loadings of a k-factor model based on principal
components is iterative using the known full correlation matrix P . It is based on the equation

P = Γ1/2BBTΓ1/2 + I − Γ.

We start with an initial guess Γ0, then at each step perform an eigenvector decomposition
on P − (I − Γi) = QiDiQ

T
i where Qi is an orthogonal matrix and Di is diagonal . We then
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“clip” Di by replacing the smallest N − k diagonal entries of Di by 0, resulting in a clipped
matrix D

(k)
i . The gamma for the next iteration will then be Γi+1 = diag(QiD

(k)
i QT

i ). This is

known to converge to an optimal Γ
(k)
opt [1]. The optimal factor loadings can then be found by

constructing

B
(k)
opt =

(
Γ
(k)
opt

)− 1
2
Qopt

(
D

(k)
opt

) 1
2
.

2.2 Approximations Using Block Correlation Matrices

A direct method to solve for the factor loadings can be devised by assuming a block structure
of the correlation matrix. In a block correlation matrix with n groups, assets in the same
group have the same correlations.

The reduced form is an n× n matrix with one entry for each group of the block matrix.

The reduced correlation matrix with ones on the diagonal is Pg, and Γg has elements
ρi + (1− ρi)/Ni, where Ni is the number of assets in group i. We can write

Pg = Γ1/2
g BBTΓ1/2

g + I − Γg, (1)

where B is an n× n matrix whose rows are the factor loadings.
Using this reduced matrix we can formulate a direct method for calculating the factor

loadings.
We start by solving the following equation for BBT :

PB = BBT = Γ−1/2g (Pg − I + Γg)Γ
−1/2
g . (2)

Using an eigenvector decomposition we get PB = QDQT . A k-factor approximation is
obtained by keeping the largest k eigenvalues of D, and setting the rest to zero. As above,
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new “clipped” diagonal matrix is denoted by D(k), and the k-factor approximation of B is
given by

B(k) = V
√
D(k) (3)

We can write the k-factor approximation of Pg as P
(k)
g = B(k)(B(k))T .

2.3 Error Analysis for the k-Factor Approximations

To compare the k-factor approximation of our correlation matrix to the original correlation
matrix, we found an upper bound for the relative error:

Relative Error =
||P − P (k)||
||P ||

≤
√
λk+1√

λmax(P TP )
, (4)

where λk+1 is the largest eigenvalue of (D −D(k))T (D −D(k)). Similarly, for the block cor-
relation matrix Pg:

Relative Error =
||Pg − P (k)

g ||
||Pg||

≤
||Γ1/2

g ||2
√
λgk+1√

λmax(P T
g Pg)

, (5)

where λgk+1 is the largest eigenvalue of (D−D(k))T (D−D(k)). This means that the actual error
is bounded above by the largest eigenvalue that was set to zero in the k-factor approximation.

The error depends on the spread of eigenvalues. To see this, let Pg be a 20 × 20 matrix
with eigenvalues distributed as shown below

The largest eigenvalue is about 2.8, the next two are close to 0.4, and the remaining eigen-
values are clustered around 0.07. The following table shows the relative error we computed
for the specified approximations.

kth order approx. Relative error
19 .15
4 .16
3 .16
2 .22
1 .23

Notice from the table that the error does not change much as the smaller eigenvalues
are “clipped,” or set to zero. However, once the approximations start to clip off the larger
eigenvalues, we see a jump in the error.
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Figure 1: Asset returns of a companies in a one-factor model are affected by sector and global
factors.

3 Localized One Factor Model

If the assets can be divided into n sectors ( as in the terminology of [1]), and each asset weigh
on one common factor shared by all assets (called the global factor), and only on one other
factor drawn from a group of n factors, then the above factor model species that the asset
return is influenced by a global factor, a sector-specific factor and its idiosyncratic risk. The
resulting factor model is called a localized one factor (because one factor is chosen from each
sector) model.

3.1 Portfolio Pricing in a Localized 1-Factor Model

Assume that there are ni companies in sector i. Assume there are N sectors altogether. The
asset return of the jth company in sector i is given by

zij =
√
ρi(βGεG + βiεi) +

√
1− ρiφij, i = 1, . . . , N, j = 1, . . . , ni. (6)

where β2
G + β2

i = 1. In eq. (6), ρi is the percentage of asset return variance associated with
systemic risk, βG and βi are global and sector factor loadings and εG, εi and φij are standard
normal random variables. εG and εi are represent uncertainty within the global economy
and individual sectors while φij is the idiosyncratic factor that characterizes an individual
company’s performance.
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The value of the portfolio is

Rπ =
N∑
i=1

n∑
j=1

ŵijRi(zij), (7)

where
∑N

i=1

∑n
j=1 ŵij = 1. The company defaults if the stock price zij drops below a value

θi which depends on the sector. At default, the loss incurred in the portfolio is LGD (Loss
Given Default):

Ri(zij) =

{
0 if zij > θi,

−LGD if zij < θi.
(8)

In this report, the LGD can take one of two forms. Either LGD = c corresponding to a
constant percentage loss (0 < c ≤ 1) or LGD can be drawn from a uniform distribution
LGD ∼ U(0, 1).

Our goal is to find the probability distribution of the random variable Rπ. Specifically,
given a (small) probability α, we wish to find the threshold price R∗ for which

P (Rπ < R∗) = α, (9)

which amounts to computing the tail probability of the pdf (probability density function) of
Rπ, which we call fRπ(R∗).

3.2 Conditioning to obtain independence

The losses for each company Ri(zij) in eq. (7) are not statistically independent since all
companies in sector i are affected by a single sector factor εi. Therefore the losses for these
companies are correlated at the sector level. Furthermore, all companies are affected by
a single global factor εG; therefore the losses for all companies in the global economy are
correlated.

Our strategy is to condition on the sector and global factors, in effect holding εi and εG
constant for all i. Then, the uncertainty in the stock price of all companies only arises from
the idiosyncratic portion of eq. (6) and are therefore independent. This allows the use of the
Central Limit Theorem in order to find the conditional pdf of Rπ, fRπ |~ε,εG(R∗;~ε, εG). The full
pdf of Rπ is then found by performing a N + 1 dimensional integral over each of the sector
factors and the global factor:

fRπ(R∗) =

∫ ∞
−∞

. . .

∫ ∞
−∞

fRπ |~ε,εG(R∗;~ε, εG)g(~ε)d~εdεG. (10)

where

~ε = (ε1, ε2, . . . , εN)T , (11)

d~ε = dε1dε2 . . . dεN , (12)

g(~ε) =
1

(2π)N/2

N∏
i=1

e−ε
2
i /2 (13)
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3.3 Probability of Default

For every sector i, there is a default threshold θi so that if the asset return for a company in
that sector drops below θi, the company defaults. The probability of default for a company
in sector i is

pi(εi, εG; θi, βi, ρi) = P (zij < θi) = Φ

[
θi −
√
ρi(βGεG + βiεi)√

1− ρi

]
. (14)

where Φ(z) = 1
2

[
1 + erf

(
z√
2

)]
.

3.4 Application of Laplace’s Method

We make the following assumptions to simplify the calculation:

• The number of companies in each sector is the same, so ni = n for all i.

• The weight put on all companies in a given sector is the same so that ŵij = ŵi for all
j = 1, . . . , n.

• The number of companies in each sector is large: n� 1.

• Loss Given Default is a constant: LGD = c.

Under these assumptions, the value of our portfolio is

Rπ =
N∑
i=1

Xi, Xi =
wi
N

(
Ri(zi1) + . . .+Ri(zin)

n

)
. (15)

where we have renormalized the weights so that ŵi = wi
nN

and
∑N

i=1wi = N . Note that
wi = O(1) for all i.

For constant LGD = c, it is clear that Ri(zij) ∼ −c × Bernoulli(pi) are proportional to
Bernoulli random variables (RVs) and (15) implies that Xi is proportional to the mean of n
such RVs. Since n� 1, we can use the Central Limit Theorem to deduce that

wi
N

(
Ri(zi1) + . . .+Ri(zin)

n

)
∼ N

(
−cwipi
N

,
c2w2

i pi(1− pi)
nN2

)
. (16)

Therefore

Rπ|~ε,εG ∼ N (µ̂, σ̂2)⇒ fπ|~ε,εG(R∗) =
1√

2πσ̂2
exp

[
−(R∗ − µ̂)2

2σ̂2

]
, (17)

µ̂[~ε, εG] = − c

N

N∑
j=1

wjpj[εj, εG], (18)

σ̂2[~ε, εG] =
δ2c2

N2

N∑
j=1

w2
jpj[εj, εG] (1− pj[εj, εG]) , δ = 1/

√
n (19)

≡ δ2σ̃2[~ε, εG]. (20)
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The number of sectors N does not have to be large. From (10), we have

fRπ(R∗) =

∫ ∞
−∞

. . .

∫ ∞
−∞

1√
2πσ̂2

exp

[
−(R∗ − µ̂)2

2σ̂2

]
× exp

[
−1

2

(
ε2G +

N∑
j=1

ε2j

)]
d~ε dεG

(2π)
N+1

2

, (21)

=
1

(2π)
N
2
+1

∫ ∞
−∞

dεG exp

(
−ε

2
G

2

)∫ ∞
−∞

. . .

∫ ∞
−∞

exp

[
−χ(R∗)

2δ2

]
exp

[
−~ε · ~ε

2

]
d~ε

σ̂(~ε, εG)
, (22)

where

χ(R∗;~ε, εG) =
(R∗/c+ 1

N

∑N
j=1wjpj)

2

1
N2

∑N
j=1w

2
jpj(1− pj)

. (23)

and ~ε = (ε1, . . . , εN)T . Since n � 1, δ � 1 and we can apply Laplace’s Method. The
goal is to reduce the (N + 1) dimensional integral in (22) into a single integral in dεG by
approximating the d~ε integral.

The dominant contribution to (21) comes from points ~ε∗ where ∇~εχ = 0, in which case

fRπ(R∗) ≈ 1

δ(2π)N/2+1

∫ ∞
−∞

dεG
σ̃(~ε∗, εG)

exp

[
−χ(R∗;~ε∗, εG)

2δ2

]
exp

(
−~ε
∗ · ~ε∗ + ε2G

2

)
×∫ ∞

−∞
. . .

∫ ∞
−∞

d~ε exp
[
−(~ε− ~ε∗)T (∇2

~εχ)(~ε− ~ε∗)/(4δ2)
]
,

(24)

⇒ fRπ(R∗) ≈ 1

δ(2π)N/2+1

∫ ∞
−∞

dεG
σ̃(~ε∗, εG)

exp

[
−χ(R∗)

2δ2

]
exp

(
−~ε
∗ · ~ε∗ + ε2G

2

)
× (2δ)NπN/2

(det Λ)1/2
,

=
2N/2δN−1

2π

∫ ∞
−∞

exp

[
−χ(R∗)

2δ2

]
exp

(
−~ε
∗ · ~ε∗ + ε2G

2

)
dεG

σ̃(~ε∗, εG)
∏N

j=1 λ
1/2
j (~ε∗, εG)

,

where Λ = diag(λ1, λ2, . . . , λN) is the diagonal matrix of eigenvalues of the Hessian matrix
∇2
~εχ

3.5 Determination of ~ε∗

Note: The calculation of ~ε∗ below (and the subsequent derivation for the portfolio’s value) is
incorrect. ~ε∗ should actually satisfies R∗/c+ (1/N)

∑N
j=1wjpj = 0 in (23) (this was assumed

to be non-zero and divided out). Nevertheless, the calculations performed at the workshop are
reproduced below. An alternative method using the law of large numbers, instead of Laplace’s
method “Analysis of credit portfolio risk in a localized one-factor model” can be found at
http://udel.edu/∼pakwing/publications.

The stationary point ~ε∗ satisfies ∇~εχ = 0 where χ is defined in (23). Therefore we find(
2

N

N∑
j=1

w2
jpj(1− pj)

)(
N∑
j=1

wj∇~εpj

)
=

(
R∗

c
+

1

N

N∑
j=1

wjpj

)(
N∑
j=1

w2
j (1− 2pj)∇~εpj

)
,

(25)
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which can be rewritten as
ν1A~w = ν2A~u, (26)

where

ν1 =
2

N

N∑
j=1

w2
jpj(1− pj), (27)

ν2 =
R∗

c
+

1

N

N∑
j=1

wjpj, (28)

Aki =
∂pi
∂εk

= − 1√
2π

exp

[
−1

2

(
θi −
√
ρi(βGεG + βiεi)√

1− ρi

)] √
ρi√

1− ρi
βiδik, (29)

(~w)j = wj, (30)

(~u)j = w2
j (1− 2pj). (31)

Another way of representing A is A = diag(~β) diag(~v) where ~β = (β1, β2, . . . , βN)T and

(~v)i = − 1√
2π

exp

[
−1

2

(
θi −
√
ρi(βGεG + βiεi)√

1− ρi

)] √
ρi√

1− ρi
. (32)

Since A is non-singular, eq. (26) implies ν1 ~w − ν2~u = 0 or

2wi
N

N∑
j=1

w2
jpj(1− pj)− w2

i (1− 2pi)

(
R∗

c
+

1

N

N∑
j=1

wjpj

)
= 0, (33)

for i = 1, . . . , N .
Now specialize to the case wj = 1 for 1 ≤ j ≤ N . Then it is clear from rearranging (33)

that pj = p for 1 ≤ j ≤ N (all the pj are identical and independent of j) so that p is given
by

p =
R∗

c+ 2R∗
. (34)

This gives

ε∗i = −βGεG
βi

+
θi

βi
√
ρi
−
√

1− ρi
βi
√
ρi

Φ−1
(

R∗

c+ 2R∗

)
. (35)

3.6 Summary of Solution

fRπ(R∗) ∼
(

2

n

)N
2
√
n

2π

∫ ∞
−∞

exp

[
−nχ(R∗;~ε∗, εG)

2

]
exp (−[ε2G + ~ε∗ · ~ε∗]/2)

σ̃(~ε∗, εG)
× dεG∏N

j=1 λ
1/2
j (~ε∗, εG)

,

(36)
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where

ε∗i (εG) = −βG εG
βi

+
θi

βi
√
ρi
−
√

1− ρi
βi
√
ρi

Φ−1
(

R∗

c+ 2R∗

)
(37)

σ̃ =
c

N

√√√√ N∑
j=1

w2
jpj[εj, εG] (1− pj[εj, εG]), (38)

χ(R∗;~ε, εG) =
(R∗/c+ 1

N

∑N
j=1wjpj)

2

1
N2

∑N
j=1w

2
jpj(1− pj)

. (39)

as the number of companies in each sector n→∞. The λj are the eigenvalues of ∇~εχ.

4 Saddle Point Method

Consider a portfolio with assets distributed in N sectors, with Ni assets in the i-th sector.
Let’s denote the return of theportfolio as Rπ, a random variable. The problem we are
interested is to find, for a given cumulative probability α , the the threshold R∗ such that

P (Rπ < R?) = α. (40)

The portfolio return is a weighted sum of the individual returns :

Rπ =
N∑
i=1

Ni∑
j=1

ŵijRi(zij)

where the ŵij are normalized weights for each company in the portfolio, ω̂i,j ≥ 0 and∑
i,j ω̂i,j = 1. Ri is the potential return of assets in sector i, defined by

Ri(z) =

{
0, if z > θi

−LGD, z ≤ θi

θi is the default threshold, a known parameter. LGD, loss give default, is a random variable
which is assumed to follow a uniform distribution on [0, 1] for simplicity. This is to say, if the
return z is greater than θi, the loss is zero, if it’s less than θi, the loss is a random variable
LGD.

By the localized one-factor model, each zij is a latent variable associated to the jth company
in section i, and is decomposed into global risk factor εG, the sector risk factor εi and the
idiosyncratic risk factor εI :

zij =
√
ρiβ

G
ij ε

G +
√
ρiβijεi +

√
1− ρiεI,i,j

εG, εi, εI,i,j are all assumed to follow standard normal distribution. ρi, βij ∈ [0, 1] are weight
parameters, and (βGij )

2 + β2
ij = 1.
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(a)

(b)

Figure 2: Results from Monte Carlo simulations. Parameter values were N = 20 sectors,
n = 1000 companies in each sector, c = 0.6 and sector independent θi = θ for i = 1, . . . , N .
(a) Threshold loss R∗ as a function of α with θ = 0.1, 0.5, 0.9: see eq. (9). (b) Frequency
distribution of portfolio value with θ = 0.5.
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The problem is equivalent to solving a nonlinear equation f(R∗) = 0 for unknown R∗, where
f(R∗) = P (Rπ < R?) − α and α is given. We can obviously use , e.g., bisection method
to solve it, as long as we know how to evaluate the function f , that is, how to compute
P (Rπ < R?) for a given R∗. One way to find P (Rπ < R?) is to use the ”Saddlepoint Approx-
imation” method. Saddlepoint approximation is well known to provide good approximations
to very small tail probabilities, which makes it a very suitable technique in the context of
portfolio credit loss.

Since saddlepoint approximation method utilizes moment generation functions, it can only
deal with sum of independent random variables. However, Rπ is a sum of DEPENDENT
random variables Ri, so we cannot apply saddlepoint approximation method directly. We can
get around this problem by consider Rπ conditioned on εG and εi’s instead. This is because
assets zij and zkl are dependent with each other through the global factor εG, and also εi if
i = k, i.e., these assets are both within section i. In other words, zij|εG, ε1, ..., εN ’s are inde-
pendent. Therefore, we can apply the saddlepoint approximation to R̃π := Rπ|εG, ε1, ..., εN :

R̃π =
N∑
i=1

Ni∑
j=1

ŵijR̃ij, where R̃ij := Ri(zij|εG, ε1, ..., εN) (41)

and the tail probability is then computed as

P (Rπ < R?) =

∫
R
P (R̃π < R?)g(εG)g(ε1)...g(εN)dεGdε1...dεN

where g is the probability density function of a standard normal random variable. This in-
tegral can be done using normal quadratures without too much difficulty, since the number
of sectors N is a lot smaller than the number if assets

∑N
i=1Ni.

According to the saddle point approximation methods, the conditional tail probability can
be approximated by

P (R̃π < R∗) =


1− a, if R∗ > E(R̃π)

1/2, if R∗ = E(R̃π)

a, if R∗ < E(R̃π)

(42)

where

a = exp(K(t̃)− t̃R∗ +
1

2
t̃2K ′′(t̃))Φ

(
−
√
t̃2K ′′(t̃)

)
,

the cumulant generating function of R̃π : K(t) = logM(t),

the moment generation function of R̃π : M(t) = E(etR̃π) =
N∏
i=1

Ni∏
j=1

MŵijR̃ij
(t),

t̃ is the saddle point, which is the unique solution of the equation K
′
(t) = R∗,

Φ is the cumulative probability of standard normal distribution ,
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The saddlepoint approximation formula given by (3) is proved to have error O(n−1) if in-
dependent random variables ω̂ijR̃ij are identically distributed. There are also higher order
saddle point approximation of the tail probability if one look for better accuracy. Note that
saddle point approximation method can be readily applied to more general Bernoulli mixture
models (possibly multi-factor models).

In the following numerical experiment, the parameters ρi, βij, β
G and θi are artificially picked,

and for simplicity the normalized weights ω̂ij are equal, so as θI ’s. We also take the LDG as
uniform distribution on [0,1], so that the function K can be computed explicitly. Note that
there the parameter E(R̃π) can be computed without difficulty, since zij|εG, ε1, ..., εN ’s in (2)
are independent normal random variables. The saddle point t̃ is computed numerically by
K

′
(t) = R∗. The first plot is a histogram of the probability density function of Rπ using

Monte Carlo simulation. Recall that the distribution if Rπ is the hard to find analytically
since it’s a sum of dependent random variables. The second plot shows the dependence of tail
probability α on loss percentageR∗, for different choice of θ, using saddle point approximation
method. For a fixed tail probability α, the larger θ is, more possible it is to default, and thus
the smaller R∗ should be. Also it’s obvious that R∗ should be nondecreasing in α. In the last
plot ,we use both full Monte Carlo simulation and the saddle point approximation method
to plot the dependence of tail probability α on loss percentageR∗ . For the conventionally
chosen tail probability value α = 0.001, the saddle point approximation method gives R∗

value 0.24.
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Figure 3: Tail probabilities are calculated using the saddlepoint method.
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