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Ovoids and Spreads

Consider a bipartite graph representing incidences between
points and blocks.

A spread is a set of blocks partitioning the points.
Dually, an ovoid is a set of points partitioning the blocks.
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Ovoids in O+
4 (q)

The O+
4 (q) quadric (hyperbolic quadric in projective 3-space) is

a (q + 1)× (q + 1) grid.

•

•

q+1 lines

q+1 lines (q + 1)2 points;

2(q + 1) lines

It has (q + 1)! ovoids (and 2 spreads). Each ovoid is a
‘transversal’ of the grid, having q + 1 points.
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Ovoids in O+
6 (q) (Klein Quadric)

The O+
6 (q) quadric (Klein quadric) has

•

•

•

(q2+q+1)(q2+1)
points

(q2+1)(q+1)
type I planes

(q2+1)(q+1)
type II planes

Each ovoid has size |O| = q2 + 1 (same as a set of q2 + 1
points of the quadric, no two perpendicular).

Ovoids in O+
6 (q) are known to exist in great abundance.
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Some ovoids in the Klein quadric O+
6 (p)

Consider a prime p ≡ 1 mod 4. Let S be the set of all
x = (x1, . . . , x6) ∈ Z6 such that

1 xi ≡ 1 mod 4; and
2
∑

i x2
i = 6p.

Then |S| = p2 + 1; and for all x 6= y in S, x · y 6≡ 0 mod p.

Example (p = 5, |S| = 52 + 1 = 26)

S contains 6 vectors of shape (5,1,1,1,1,1);
20 vectors of shape (−3,−3,−3,1,1,1).

Example (p = 13, |S| = 132 + 1 = 170)

S contains 20 vectors of shape (5,5,5,1,1,1);
30 vectors of shape (−7,−5,1,1,1,1);
60 vectors of shape (5,5,−3,−3,−3,1);
60 vectors of shape (−7,−3,−3,−3,1,1).
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Ovoids in O+
8 (q) (the Triality Quadric)

The O+
8 (q) quadric (triality quadric) has

• •

•

•

(q3+1)(q2+1)(q+1)
points

(q3+1)(q2+1)(q+1)
type I solids

(q3+1)(q2+1)(q+1)
type II solids

lines

Each ovoid has size |O| = q3 + 1 (same as a set of q3 + 1
points of the quadric, no two perpendicular).

Ovoids are equivalent to spreads (via triality).

When do they exist?
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The E8 Root Lattice

Let E be the set of all vectors 1
2(x1, x2, . . . , x8) ∈ Q8 such that

xi ∈ Z, x1≡x2≡ · · ·≡x8 mod 2, and
∑

i
xi ≡ 0 mod 4.

This is the E8 root lattice. It is
a lattice (i.e. discrete additive subgroup of R8);
integral (x · y ∈ Z for all x , y ∈ E);
unimodular (its density is 1, i.e. it has one point per unit
volume on average);
it has minimum distance

√
2 (so for any x 6= y in E ,

||y − x || >
√

2); and
it is unique with these properties. Any subset of R8 of
density 1 has minimum distance at most

√
2; and up to

isometry, E is the unique subset attaining this optimum.
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The E8 Root Lattice

E is the set of all vectors 1
2(x1, x2, . . . , x8) ∈ Q8 such that

xi ∈ Z, x1≡x2≡ · · ·≡x8 mod 2, and
∑

i
xi ≡ 0 mod 4.

E has 240 shortest vectors (e ∈ E , ||e||2 = e · e = 2) called root
vectors:

(±1,±1,0,0,0,0,0,0) and permutations thereof (112
vectors of this shape); and
1
2(±1,±1, . . . ,±1) with an even number of ‘−’ signs (128
vectors of this shape).

For an odd prime p, there are 240(p3+1) vectors x ∈ E with
||x ||2 = 2p.
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Ovoids of Conway, Kleidman and Wilson (1988)

Theorem (Conway et al., 1988)

For every prime p, there is an ovoid in the O+
8 (p) triality quadric.

John H. Conway

Take p to be an odd prime (the case p = 2
was previously solved). Fix a root vector
e ∈ E . Let S be the set of all v ∈ E such
that ||v ||2 = 2p and v ∈ e + 2E . We easily
conclude that |S| = 2(p3+1) and S
consists of p3+1 pairs ±v which reduce
(mod p) to give an ovoid in the triality
quadric.
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More E8-type ovoids in O+
8 (p)

We generalized Conway’s construction (M., 1993) to a larger
class of ovoids in O+

8 (p), denoted

Or ,p(u)

where r 6= p are primes, u ∈ E such that
(
−p||u||2/2

r

)
= +1.

(The cases r = 2,3 are in the original Conway paper.)

Or ,p(u) is formed using vectors x ∈ Zu + rE ⊂ E of norm
||x ||2 = 2k(r − k)p, 1 6 k 6 b r−1

2 c.
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How many E8-type ovoids are there?

Denote by np the number of equivalence types of ovoids (up to
isometry and similarity) arising from our construction.

We conjectured that np →∞ as p →∞:

p 2 3 5 7 11 13 17 19 23

np 1 1 2 2 4 4 7 6 10
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Counting Ovoids

So instead we count the total number of ovoids

Np =

np∑
i=1

[G : GOi ]

where Oi are representatives of the np equivalence types under
G, the full group of isometries and similarities.

Conjecture

For p > 3, Np = [G : W ]p4−1
2 .

Here |G| = 2p12(p6−1)(p4−1)2(p2−1), W = W (E8)/{±I},
|W | = 348,364,800. This formula may be rewritten in the more
convenient form

np∑
i=1

|W |
|GOi |

=

np∑
i=1

[W : WOi ]

[GOi : WOi ]
=

p4 − 1
2

which we refer to as the Conjectured Mass Formula.
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Counting Ovoids

The conjectured mass formula
np∑

i=1

|W |
|GOi |

=

np∑
i=1

[W : WOi ]

[GOi : WOi ]
=

p4 − 1
2

is strongly supported by the following table of values:

p np Mass Formula

5 2 120+192 = 312 = 54−1
2

7 2 120+1080 = 1200 = 74−1
2

11 4 120+240+1920+5040 = 7320 = 114−1
2

13 4 120+2160+3360+8640 = 14280 = 134−1
2

17 7 120+240+1080+1920+6720+8640+23040 = 41760 = 174−1
2

19 6 120+240+2160+15120+17280+30240 = 65160 = 194−1
2

23 10
120+240+240+1080+1920+5040+6720

+15120+40320+69120 = 139920 = 234−1
2
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The exceptional case p = 3

Our conjectured mass formula fails when p = 3 since in this
case alone, the ovoids lie in an O7(p) hyperplane.

See Ball, Govaerts and Storme (2006).
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Lower bounds for np

If the Conjectured Mass Formula holds, then trivially

[G : W ]p4−1
2 = Np =

np∑
i=1

[G : GOi ] 6 np|G| ⇒ np > Cp4

as p →∞. This estimate is conservative since most of the
E8-type ovoids have |GO| << |G|.

Exercise: Find an ovoid with GO = 1.

Show that GO = 1 for most E8-type ovoids.

What are reasonable upper bounds for |GO|?
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The problem for general q

This construction fails for q = pr , r > 1. Why?

It is natural to extend Z ⊂ A, the ring of integers in a number
field, such that A/pA ∼= Fq.

Also E ⊂ Ê = E ⊗ZA, Ê/pÊ ∼= F8
q .

However, counting vectors of fixed norm in Ê does not produce
the necessary numbers for ovoids in O+

8 (q).

Bigger problem: ovoids with the right automorphism groups
apparently do not exist unless q = p. Why is this?

Compare: Our S6-invariant ovoids in O+
6 (q) apparently do not

exist unless q = p. Why is this?
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Adding Structure to (F8
p ,Q)

(F8
p ,Q)

E

Cp

O

orthogonal
space

E8 root
lattice

ring of integral
octaves

Cayley
algebra

forget
multiplication

forget
multiplication

mod p mod p

There are are essentially [G : W ] = O(p28) choices of ‘E8
structure’ that can be imposed on the orthogonal space (F8

p ,Q),
but p6(p4 − 1)2 = O(p14) choices of Cayley algebra structure.
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Triality automorphisms via the Cayley algebra Cq

• •

•

•

points

type I solids

type II solids

τ〈x〉

τ

τ

〈x〉τ = Cqx
= {y ∈ Cq : yx∗ = 0}

〈x〉τ2
= xCq

= {y ∈ Cq : x∗y = 0}
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The role of nonassociative algebra

An alternative description of Conway’s ‘binary’ ovoids
O = O2,p(u), p > 2, u ∈ O× = {roots of E}:

In the ring O of integral octaves, the element p ∈ O has
240(p3 + 1) factorizations into irreducibles as p = x∗x , x ∈ O.

If we restrict x ∈ e + 2O then there are p3 + 1 pairs {±x} of
irreducibles. These give an ovoid in O/pO ' F8

p .

This is Conway’s binary ovoid (O = O2,p(e) in my notation).
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Other ovoid constructions from E8

In our 1993 construction, the sublattice rE ⊂ E can be replaced
by wO ⊂ O where w ∈ O.

Unfortunately (?) the resulting ovoids are not new.

The sublattice wO ⊂ O is not an ideal of O due to
nonassociativity (i.e. wO it is not a right O-module). Indeed,
every right or left ideal of O is a two-sided ideal rO where r ∈ Z.
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Bijections between ovoids

Let q be an arbitrary prime power, and Cq the Cayley algebra of
order q.
So Cq is a (nonassociative) alternative algebra of dimension 8
over Fq. The units of Cq form a Moufang loop C×q of order
q3(q4 − 1)(q − 1).

Fix your favourite ovoid O in O+
8 (q). We view O as a set of

q3 + 1 zero divisors in Cq, no two perpendicular.

Every ovoid O′ is naturally in one-to-one correspondence
with O. This bijection is unique, given the Cayley algebra
structure: O′ = {f (x)x : x ∈ O}
for some map f : O → Cq.

These bijections appear (but perhaps not so explicitly) in my
ovoid construction. But . . .
What does this say about ovoids for general q?
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Connections to the Cayley plane

It is possible to make some sense of the E8-type construction
by embedding these ovoids as objects in the Cayley plane:
vectors in O of norm k(r − k) are factorizable as xy where
x∗x = r and y∗y = r − k . Such pairs (x , y) ∈ O2 arise naturally
in the rational Cayley plane from intersections of lines with
certain ‘conics’. Details?

This suggests a bigger (possibly related) question:

We know that there cannot be quadrics in O+
24(q), at least for

any reasonably small q.
But what are the right geometric objects of interest in L/pL
where L is the Leech lattice?
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Ovoids over other rings

There exist ovoids in quadrics (including Klein and triality
quadrics) over other rings such as Z/mZ. Some are
constructible from E8.

What do we make of these?

How about ovoids over Galois rings?
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Thank You!

Questions?
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