A large family of strongly regular Cayley graphs from three-valued Gauss periods

Koji Momihara (Kumamoto University)

momihara@educ.kumamoto-u.ac.jp

22-Aug-2019

there exists an infinite family of strongly regular Cayley graphs on $(\mathbb{F}_q^6, +)$ with either of the following parameters

$$(q^6, r(q^3 + 1), -q^3 + r^2 + 3r, r^2 + r)$$

or

$$(q^6, r(q^3 - 1), q^3 + r^2 - 3r, r^2 - r),$$
 where $r = (q^2 - 1)M/2.$

The family includes geometrically important classes of SRGs.

J. Bamberg T. Feng M. Lee Q. Xiang

Strongly regular graphs and geometric substructures

Definition: strongly regular graph

A (v, k, λ, μ) strongly regular graph (SRG) is a *k*-regular graph (V, E) with *v* vertices satisfying

- for $\forall x, y \in V$ s.t. $xy \in E$, $|\{z \mid xz \in E; yz \in E\}| = \lambda$;
- for $\forall x, y \in V$ s.t. $xy \notin E$, $|\{z \mid xz \in E; yz \in E\}| = \mu$.

The Petersen graph is a (10, 3, 0, 1) SRG.

Definition: strongly regular graph

A (v, k, λ, μ) strongly regular graph (SRG) is a *k*-regular graph (V, E) with *v* vertices satisfying

- for $\forall x, y \in V$ s.t. $xy \in E$, $|\{z \mid xz \in E; yz \in E\}| = \lambda$;
- for $\forall x, y \in V$ s.t. $xy \notin E$, $|\{z \mid xz \in E; yz \in E\}| = \mu$.

The Petersen graph is a (10, 3, 0, 1) SRG.

A connected SRG, not complete or edgeless, is a regular graph having precisely two distinct eigenvalues different from k.

Definition

A (v, k, λ, μ)-SRG is called

• Latin square type (+; u, r) if

$$(v,k,\lambda,\mu)=(u^2,r(u-1),u+r^2-3r,r^2-r);$$

• negative Latin square type
$$(-; u, r)$$
 if
 $(v, k, \lambda, \mu) = (u^2, r(u + 1), -u + r^2 + 3r, r^2 + r).$

Definition

A (v, k, λ, μ)-SRG is called

• Latin square type (+; u, r) if

$$(v,k,\lambda,\mu) = (u^2,r(u-1),u+r^2-3r,r^2-r);$$

• negative Latin square type
$$(-; u, r)$$
 if
 $(v, k, \lambda, \mu) = (u^2, r(u + 1), -u + r^2 + 3r, r^2 + r).$

Typical examples of SRGs of + type or - type come from hyperbolic or elliptic quadrics of PG(2n - 1, q), respectively.

A SRG of type (+; u, r) and a SRG of type (-; u, r) sometimes act like a twin.

Definition: Cayley graph

- G: an (additively written) abelian group
- D: a subset of G satisfying $0_G \notin D$ and D = -D

A Cayley graph Cay(G, D) is a graph $\Gamma = (G, E)$ s.t. $xy \in E$ iff $x - y \in D$. The set *D* is called the *connection set* of Γ .

Definition: Cayley graph

- G: an (additively written) abelian group
- D: a subset of G satisfying $0_G \notin D$ and D = -D

A Cayley graph Cay(G, D) is a graph $\Gamma = (G, E)$ s.t. $xy \in E$ iff $x - y \in D$. The set *D* is called the *connection* set of Γ .

We treat $\operatorname{Cay}(\mathbb{F}_q^6, D)$ s.t. D is \mathbb{F}_q^* -invariant. $\Rightarrow D/\mathbb{F}_q^*$ can be viewed as a set \mathcal{D} of projective points in $\operatorname{PG}(5, q)$. • f: a nondegenerate quadratic form on \mathbb{F}_q^{d+1}

An orthogonal polar space S w.r.t. f is the geometry consisting of totally singular subspaces, which are the subspaces of PG(d, q) contained in the associated quadric.

• f: a nondegenerate quadratic form on \mathbb{F}_q^{d+1}

An orthogonal polar space S w.r.t. f is the geometry consisting of totally singular subspaces, which are the subspaces of PG(d, q) contained in the associated quadric.

- Maximals: subspaces in ${\mathcal S}$ of maximal dimension
- Rank: the vector space dimension of maximals
- P^{\perp} : the intersection of the tangent hyperplane at P with S

We consider orthogonal polar spaces in PG(5, q): a hyperbolic quadric $Q^+(5, q)$ and an elliptic quadric $Q^-(5, q)$.

Quadric	rank	#points	quadratic form
Q ⁺ (5, <i>q</i>)	3	$(q^2 + 1)(q^2 + q + 1)$	$x_1x_2 + x_3x_4 + x_5x_6$
Q ⁻ (5, <i>q</i>)	2	$(q^3 + 1)(q + 1)$	$f(x_0, x_1) + x_3 x_4 + x_5 x_6$

m-ovoids

S: a finite (orthogonal) polar space of rank r in PG(d, q)

Definition: *m*-ovoid

An *m*-ovoid is a set O of points s.t. every maximal of S meets O in exactly *m* points.

i-tight sets

Definition: *i*-tight set

A *i*-tight set is a set \mathcal{T} of points s.t.

$$|P^{\perp} \cap \mathcal{T}| = \begin{cases} i \frac{q^{r-1}-1}{q-1} + q^{r-1}(=:t_1) & \text{if } P \in \mathcal{T} \\ i \frac{q^{r-1}-1}{q-1}(=:t_2) & \text{if } P \notin \mathcal{T}. \end{cases}$$

• \mathcal{D} : either a *m*-ovoid in $\mathbf{Q}^{-}(5, q)$ or *i*-tight set in $\mathbf{Q}^{+}(5, q)$

•
$$D := \{xy : \langle x \rangle \in \mathcal{D}, y \in \mathbb{F}_q^*\} \subseteq \mathbb{F}_q^6$$

J. Bamberg, S. Kelly, M. Law, T. Penttila, Tight sets and *m*-ovoids of finite polar spaces, **JCTA**, (2007).

• \mathcal{D} : either a *m*-ovoid in $\mathbf{Q}^{-}(5, q)$ or *i*-tight set in $\mathbf{Q}^{+}(5, q)$

•
$$D := \{xy : \langle x \rangle \in \mathcal{D}, y \in \mathbb{F}_q^*\} \subseteq \mathbb{F}_q^6$$

Proposition: *m*-ovoid, *i*-tight set \Rightarrow Cay(\mathbb{F}_{a}^{6} , *D*) is a SRG

- a *m*-ovoid in $\mathbf{Q}^{-}(5, q) \Rightarrow$ a SRG of type $(-; q^3, m(q-1))$
- a *i*-tight set in $\mathbf{Q}^+(5,q) \Rightarrow$ a SRG of type $(+;q^3,i)$

J. Bamberg, S. Kelly, M. Law, T. Penttila, Tight sets and *m*-ovoids of finite polar spaces, **JCTA**, (2007).

Remark

A *i*-tight set in Q⁺(5, q) is mapped by the Klein correspondence to a set *L* of lines, called a *Cameron-Liebler line class*, in PG(3, q) s.t. every spread shares exactly *i* lines with *L*.

Remark

- A *i*-tight set in Q⁺(5, q) is mapped by the Klein correspondence to a set *L* of lines, called a *Cameron-Liebler line class*, in PG(3, q) s.t. every spread shares exactly *i* lines with *L*.
- A ^{q+1}/₂-ovoid in Q⁻(5, q) is mapped by the duality of generalized quadrangles to a set *L* of lines, called a *hemisystem*, in H(3, q²) containing exactly half of the lines on every point.

If a *m*-ovoid in $\mathbf{Q}^{-}(5, q)$ exists, then m = (q + 1)/2.

Strongly regular graphs of type $(\pm; q^3, \frac{q^2-1}{2})$

Theorem by FMX & DDMR

Let $q \equiv 5,9 \pmod{12}$. There exists a SRG on $(\mathbb{F}_q^6, +)$ of type $(+; q^3, \frac{q^2-1}{2})$, which gives rise to a $\frac{q^2-1}{2}$ -tight set in $\mathbf{Q}^+(5, q)$.

T. Feng, K. Momihara. Q. Xiang, Cameron-Liebler line classes with parameters $x = \frac{q^2-1}{2}$, **JCTA**, (2015).

J. De Beule, J. Demeyer, K. Metsch, M. Rodgers, A new family of tight sets in $Q^+(5, q)$, DCC, (2016).

J. Bamberg, M. Lee, K. Momihara, Q. Xiang, New hemisystems of the Hermitian surfaces, **Comb**, (2018).

Theorem by FMX & DDMR

Let $q \equiv 5,9 \pmod{12}$. There exists a SRG on $(\mathbb{F}_q^6, +)$ of type $(+; q^3, \frac{q^2-1}{2})$, which gives rise to a $\frac{q^2-1}{2}$ -tight set in $\mathbb{Q}^+(5, q)$.

Theorem by BLMX

Let $q \equiv 3 \pmod{4}$. There exists a SRG on $(\mathbb{F}_q^6, +)$ of type $(-; q^3, \frac{q^2-1}{2})$, which gives rise to a $\frac{q+1}{2}$ -ovoid in $\mathbb{Q}^-(5, q)$.

T. Feng, K. Momihara. Q. Xiang, Cameron-Liebler line classes with parameters $x = \frac{q^2-1}{2}$, **JCTA**, (2015).

J. De Beule, J. Demeyer, K. Metsch, M. Rodgers, A new family of tight sets in $Q^+(5, q)$, DCC, (2016).

J. Bamberg, M. Lee, K. Momihara, Q. Xiang, New hemisystems of the Hermitian surfaces, **Comb**, (2018).

A partition of a conic in PG(2, q) is behind both constructions.

- PG(2, q): We identify the point set with $\mathbb{F}_{q^3}^*/\mathbb{F}_q^*$ or \mathbb{Z}_{q^2+q+1} .
- *f*(*x*) := Tr_{q³/q}(*x*²) defines a nondegenerate quadratic form from 𝔽_{q³} to 𝔽_q.

- PG(2, q): We identify the point set with $\mathbb{F}_{q^3}^*/\mathbb{F}_q^*$ or \mathbb{Z}_{q^2+q+1} .
- *f*(*x*) := Tr_{q³/q}(*x*²) defines a nondegenerate quadratic form from 𝔽_{q³} to 𝔽_q.
- The set $C = \{\langle x \rangle \mid f(x) = 0\} \subseteq \mathbb{F}_{q^3}^* / \mathbb{F}_q^*$ defines a **conic** in **PG**(2, q), i.e., each line meets C in 0, 1 or 2 points.

$$I_C = \{i \,(\text{mod } q^2 + q + 1) \,|\, \text{Tr}_{q^3/q}(\omega^{2i}) = 0\}$$

Construction by Bamberg-Lee-M.-Xiang (2018)

Let $q \equiv 3 \pmod{4}$ and

$$\begin{aligned} X = \{ Ni + 4j \,(\mathrm{mod} \ 4(q^2 + q + 1)) : \\ (i, j) \in (\{0, 3\} \times 2^{-1}T_1) \cup (\{1, 2\} \times 2^{-1}T_2) \}. \end{aligned}$$

Define

$$D = \bigcup_{i \in X} \gamma^i \langle \gamma^{4(q^2+q+1)} \rangle \subseteq \mathbb{F}_{q^6}.$$

Then, $\operatorname{Cay}(\mathbb{F}_{q^6}, D)$ is a SRG of type $(-; q^3, \frac{q^2-1}{2})$.

Model of an elliptic QF: $f(x) = \text{Tr}_{q^3/q}(x^{q^3+1})$

Definition

For $d_0 \in I_C = \{d_i : i = 0, 1, ..., q\}$, we define

$$\mathcal{X} := \{ \omega^{d_i} \mathrm{Tr}_{q^3/q}(\omega^{d_0+d_i}) : \ 1 \le i \le q \} \cup \{ 2\omega^{d_0} \}$$

and

$$J_C := \{i \, (\text{mod } 2(q^2 + q + 1)) : \, \omega^i \in X\}.$$

Definition

For $d_0 \in I_C = \{d_i : i = 0, 1, ..., q\}$, we define

$$\mathcal{X} := \{ \omega^{d_i} \operatorname{Tr}_{q^3/q}(\omega^{d_0+d_i}) : \ 1 \le i \le q \} \cup \{ 2\omega^{d_0} \}$$

and

$$J_C := \{i \, (\text{mod } 2(q^2 + q + 1)) : \, \omega^i \in X\}.$$

We have $J_C \equiv I_C \pmod{q^2 + q + 1}$. The set X yields a four-class fission scheme of a three-class translation scheme on $(\mathbb{F}_{q^3}, +)$ related to the conic.

The partition of J_C into the even and odd parts induces the required partition T_1 and T_2 of I_C .

A new large family of SRGs from quotients of known SRGs

$$\Phi_{M,\pm} := \{q \mid \exists a \text{ SRG of type } (\pm; q^3, \frac{(q^2-1)M}{2})\} \Leftarrow \text{ infinite set??}$$

K. Momihara, Construction of strongly regular Cayley graphs based on three-valued Gauss periods, **EJC**, (2018).

Main result

$$\Phi_{M,\pm} := \{q \mid \exists a \text{ SRG of type } (\pm; q^3, \frac{(q^2-1)M}{2})\}$$

Main result

$$\Phi_{M,\pm} := \{q \mid \exists a \text{ SRG of type } (\pm; q^3, \frac{(q^2-1)M}{2})\}$$

Main Thm 1 by M.& Xiang (2019)

Assume that there is $1 \le h \le M - 1$ s.t. $M \mid h^2 + h + 1$.

- $\Phi_{M,+} \cup \Phi_{M,-}$ is an infinite set.
- ② If $-1 \notin \langle 2 \rangle \pmod{M'}$ for $\forall M' \mid M$, both $\Phi_{M,+}$ and $\Phi_{M,-}$ are infinite sets.

Main result

$$\Phi_{M,\pm} := \{q \mid \exists a \text{ SRG of type } (\pm; q^3, rac{(q^2-1)M}{2})\}$$

Main Thm 1 by M.& Xiang (2019)

Assume that there is $1 \le h \le M - 1$ s.t. $M \mid h^2 + h + 1$.

- $\Phi_{M,+} \cup \Phi_{M,-}$ is an infinite set.
- ② If $-1 \notin \langle 2 \rangle \pmod{M'}$ for $\forall M' \mid M$, both $\Phi_{M,+}$ and $\Phi_{M,-}$ are infinite sets.

Main Thm 2 by M.& Xiang (2019)

Assume that

- *M* is an odd prime power,
- the class number of $\mathbb{Q}(\zeta_M + \zeta_M^{-1})$ is odd.

Then, if $-1 \in \langle 2 \rangle \pmod{M}$, $\Phi_{M,+}$ is an infinite set. Furthermore, if $\operatorname{ord}_M(2) \equiv 2 \pmod{4}$, $\Phi_{M,-}$ is an infinite set.

- ω : a fixed primitive element of \mathbb{F}_q
- $\psi_{\mathbb{F}_q}$: a fixed nonprincipal additive character of \mathbb{F}_q
- N: a positive integer dividing q 1.

Definition: Gauss period

The *N*th Gauss periods of \mathbb{F}_q are the character values of $\omega^i \langle \omega^N \rangle$, $i = 0, 1, \dots, N - 1$:

$$\sum_{x \in \omega^i \langle \omega^N \rangle} \Psi_{\mathbb{F}_q}(x), \ 0 \le i \le N-1.$$

Problem

Problem

Let $N \mid q^2 + q + 1$. When do the *N*th Gauss periods in \mathbb{F}_{q^3} take exactly three values in an arithmetic progression?

T. Maruta, Cyclic and pseudo-cyclic MDS codes of dimension three, **ASMFUM**, (1995).

Koji Momihara (Kumamoto University) A large family of strongly regular graphs

Problem

Problem

Let $N \mid q^2 + q + 1$. When do the *N*th Gauss periods in \mathbb{F}_{q^3} take exactly three values in an arithmetic progression?

Equivalent Problem

Take the reduction (as a multiset) of the conic $I_C = \{i \pmod{q^2 + q + 1} \mid \operatorname{Tr}_{q^3/q}(\omega^{2i}) = 0\} \text{ modulo } N, \text{ i.e.,}$

 $S_N := \{i \pmod{N} \mid i \in I_C\}.$

Let c_x be the multiplicity of each $x \in \{0, 1, ..., N-1\}$ in S_N . For which N and q does $c_x \in \{0, 1, 2\}$ for every x?

T. Maruta, Cyclic and pseudo-cyclic MDS codes of dimension three, **ASMFUM**, (1995).

Theorem by Maruta (1995)

- $M \in \mathbb{N}$: $1 \leq \exists h \leq M 1$ s.t. $M \mid h^2 + h + 1$
- q: a power of a prime p s.t. $q \equiv h \pmod{M}$

•
$$N = (q^2 + q + 1)/M$$

If *p* is large enough, the *N*th Gauss periods in \mathbb{F}_{q^3} take exactly three values -M + 2q, -M + q, -M.

T. D. Duc, K. H. Leung, B. Schmidt, Upper bounds for cyclotomic numbers, arXiv: 1903.07314, (2019).

Theorem by Maruta (1995)

- $M \in \mathbb{N}$: $1 \leq \exists h \leq M 1$ s.t. $M \mid h^2 + h + 1$
- q: a power of a prime p s.t. $q \equiv h \pmod{M}$
- $N = (q^2 + q + 1)/M$

If *p* is large enough, the *N*th Gauss periods in \mathbb{F}_{q^3} take exactly three values -M + 2q, -M + q, -M.

Theorem by M.& Xiang (2019)

The claim above holds for any prime p satisfying

$$p > \left(\frac{12M}{\phi(M)}\right)^{\phi(M)/2\mathrm{ord}_M(p)}.$$

T. D. Duc, K. H. Leung, B. Schmidt, Upper bounds for cyclotomic numbers, arXiv: 1903.07314, (2019).

In this case, $N = (p^2 + p + 1)/M = 19$ and the Gauss periods take $\alpha_1 = 11, \alpha_2 = 4, \alpha_3 = -3$. Define $I_j := \{i \pmod{N} : \psi_{\mathbb{F}_{q^3}}(\omega^i \langle \omega^N \rangle) = \alpha_j\}, \quad j = 1, 2, 3$. Then,

 $I_1 = \{0\}, I_2 = \{8, 10, 12, 13, 15, 18\}, I_3 = \{1, 2, 3, 4, 5, 6, 7, 9, 11, 14, 16, 17\}.$

In this case, $N = (p^2 + p + 1)/M = 19$ and the Gauss periods take $\alpha_1 = 11, \alpha_2 = 4, \alpha_3 = -3$. Define $I_j := \{i \pmod{N} : \psi_{\mathbb{F}_{q^3}}(\omega^i \langle \omega^N \rangle) = \alpha_j\}, \quad j = 1, 2, 3$. Then,

$$I_1 = \{0\}, I_2 = \{8, 10, 12, 13, 15, 18\}, I_3 = \{1, 2, 3, 4, 5, 6, 7, 9, 11, 14, 16, 17\}.$$

On the other hand,

$$I_C = \{4, 19, 24, 25, 28, 36, 38, 54\} \subseteq \mathbb{Z}_{p^2 + p + 1}$$

and

$$S_N = \{0, 0, 4, 5, 6, 9, 16, 17\} = 2^{-1}(I_1 \cup I_1 \cup I_2).$$

Construction based on three-valued Gauss periods

Assume that the *N*th Gauss periods in
$$\mathbb{F}_{q^3}$$
 take three values
 $\alpha_1 = -M + 2q, \alpha_2 = -M + q, \alpha_3 = -M.$
• $I_j = \{i \pmod{N} : \psi_{\mathbb{F}_{q^3}}(\omega^i \langle \omega^N \rangle) = \alpha_j\}, j = 1, 2, 3$
• $T_i, i = 1, 2$: a good partition of I_2 .
• $S_i := 4^{-1}T_i \pmod{N}, i = 1, 2$

Construction based on three-valued Gauss periods

Assume that the Nth Gauss periods in \mathbb{F}_{q^3} take three values $\alpha_1 = -M + 2q, \alpha_2 = -M + q, \alpha_3 = -M.$ • $I_j = \{i \pmod{N} : \psi_{\mathbb{F}_{q^3}}(\omega^i \langle \omega^N \rangle) = \alpha_j\}, j = 1, 2, 3$ • $T_i, i = 1, 2$: a good partition of I_2 . • $S_i := 4^{-1}T_i \pmod{N}, i = 1, 2$

Construction by M. (2018)

Let $q \equiv 3 \pmod{4}$. Define

 $Y = \{Ni + 4j \pmod{4N} : (i, j) \in (\{0, 3\} \times S_1) \cup (\{1, 2\} \times S_2)\}$ $\cup \{Ni + 4j \pmod{4N} : i = 0, 1, 2, 3, j \in 4^{-1}I_1 \pmod{N}\}$

and

$$D = \bigcup_{i \in Y} \gamma^i \langle \gamma^{4N} \rangle \subseteq \mathbb{F}_{q^6}.$$

Then, $\operatorname{Cay}(\mathbb{F}_{q^6}, D)$ is a SRG of type $(-; q^3, \frac{(q-1)M}{2})$.

Proposition

If the multiplicity of each element in S_N is either 0 or 1, we have a suitable partition of I_2 .

Equivalent condition

•
$$M = (q^2 + q + 1)/N$$

- η : the quadratic character of \mathbb{F}_{q^3}
- ϵ_M : a primitive *M*th root of unity in \mathbb{F}_{q^3}

Proposition

The multiplicity of each $x \in \{0, 1, ..., 2N - 1\}$ in the multiset S_N is either 0 or 1 iff $\eta(2) \neq \eta(1 + \epsilon_M^\ell)$ for $\forall \ell \in \{1, 2, ..., M - 1\}$.

Equivalent condition

•
$$M = (q^2 + q + 1)/N$$

- η : the quadratic character of \mathbb{F}_{q^3}
- ϵ_M : a primitive *M*th root of unity in \mathbb{F}_{q^3}

Proposition

The multiplicity of each $x \in \{0, 1, ..., 2N - 1\}$ in the multiset S_N is either 0 or 1 iff $\eta(2) \neq \eta(1 + \epsilon_M^\ell)$ for $\forall \ell \in \{1, 2, ..., M - 1\}$.

We can use Chebotarëv's density theorem to prove the following.

Theorem by M.& Xiang (2019)

For each odd integer M s.t. $1 \leq \exists h \leq M - 1$ with $M \mid h^2 + h + 1$, there are infinitely many primes p s.t. $\eta(2) \neq \eta(1 + \epsilon_M^\ell)$ for $\forall \ell \in \{1, 2, \dots, M - 1\}$ in \mathbb{F}_{p^3} .

 $\Rightarrow \Phi_{M,+} \cup \Phi_{M,-} \text{ is an infinite set.}$ $(\Phi_{M,\pm} := \{q \mid \exists a \text{ SRG of type } (\pm; q^3, \frac{(q^2-1)M}{2})\})$

In order to study whether each $\Phi_{M,+}$ and $\Phi_{M,-}$ is an infinite set, we need to determine

$$G = \operatorname{Gal}(\mathbb{Q}(\zeta_4, \sqrt{2}, \sqrt{1+\zeta_M}, \dots, \sqrt{1+\zeta_M^{M-1}})/\mathbb{Q}).$$

In order to study whether each $\Phi_{M,+}$ and $\Phi_{M,-}$ is an infinite set, we need to determine

$$G = \operatorname{Gal}(\mathbb{Q}(\zeta_4, \sqrt{2}, \sqrt{1+\zeta_M}, \dots, \sqrt{1+\zeta_M^{M-1}})/\mathbb{Q}).$$

Theorem by M.& Xiang (2019)

Let *M* be an odd prime power s.t. the class number of $\mathbb{Q}(\zeta_M + \zeta_M^{-1})$ is odd. If $\operatorname{ord}_M(2) \equiv 1 \pmod{2}$ or $\operatorname{ord}_M(2) \equiv 2 \pmod{4}$, both $\Phi_{M,+}$ and $\Phi_{M,-}$ are infinite sets.

In order to study whether each $\Phi_{M,+}$ and $\Phi_{M,-}$ is an infinite set, we need to determine

$$G = \operatorname{Gal}(\mathbb{Q}(\zeta_4, \sqrt{2}, \sqrt{1+\zeta_M}, \dots, \sqrt{1+\zeta_M^{M-1}})/\mathbb{Q}).$$

Theorem by M.& Xiang (2019)

Let *M* be an odd prime power s.t. the class number of $\mathbb{Q}(\zeta_M + \zeta_M^{-1})$ is odd. If $\operatorname{ord}_M(2) \equiv 1 \pmod{2}$ or $\operatorname{ord}_M(2) \equiv 2 \pmod{4}$, both $\Phi_{M,+}$ and $\Phi_{M,-}$ are infinite sets.

Problem

Determine *G* in the case where *M* is not a prime power.

Problem

- J. Bamberg, S. Kelly, M. Law, T. Penttila, Tight sets and *m*-ovoids of finite polar spaces, **JCTA**, (2007).
- A. Cossidente, F. Pavese, Intriguing sets of quadrics in PG(5, *q*), AG, (2017).
- A. Cossidente, F. Pavese, On intriguing sets of finite symplectic spaces, DCC, (2018).
- G. Korchmáros, G. P. Nagy, P. Speziali, Hemisystems of the Hermitian surface, arXiv:1710.06335.
- M. Rodgers, On some new examples of Cameron-Liebler line classes, Ph.D Thesis (2012).

Problem

Can you obtain SRG with new parameters from known SRGs by using our "quotient" method?

Details

Consider a two-character set \mathcal{D} in PG(d, q). \mathcal{D} can be viewed as a subset $I_{\mathcal{D}}$ of $\mathbb{Z}_{\frac{q^{d+1}-1}{q-1}}$.

Let $N \mid \frac{q^{d+1}-1}{q-1}$. Define $S_N = \{x \pmod{N} \mid x \in I_{\mathcal{D}}\}.$

Assume that the multiplicity of each element $x \in \{0, 1, ..., N-1\}$ in S_N is a_1 or a_2 .

Define

 $I_1 = \{x \pmod{N} \mid \text{the multiplicity of } x \text{ in } S_N \text{ is } a_1\}.$

Problem Let $E = \bigcup_{x \in I_1} \gamma^x \langle \gamma^N \rangle \subseteq \mathbb{F}_{q^{d+1}}$. Does $Cay(\mathbb{F}_{q^{d+1}}, E)$ form a SRG?

Thank you very much for your attention!