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Connections

Algebraic Combinatorics

Extremal Combinatorics
Analysis of Boolean Functions
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This Talk:
Low Degree Boolean Functions,
Cameron-Liebler Line Classes,
Completely Regular Codes.
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Families in the Hypercube

00000001

00100011

01000101

01100111

10001001

10101011

11001101

11101111

Goal: Investigate families in {0, 1}n. Here n = 4.

Alternative model: {−1, 1}n.

Methods:

Write as polynomial {0, 1}n → {0, 1} over R, Variables: coordinates.

Look at spectrum, Eigenspaces: adjacency matrix of graph.

Approximate with nice families. Nice families: dictators/juntas.
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Dictator

00000001

00100011

01000101

01100111

10001001

10101011

11001101

11101111

Polynomial f : x+
1 . Here x+

i (v) = 1 iff vi = 1.

Spectrum: ( 4
5 ,

1
5 , 0, 0, 0). (Eigenspaces: V0,V1,V2,V3,V4.)

Part in Vi divided by dim(Vi ). V0 = 〈1〉,V0 + V1 = 〈x+
i 〉,V0 + V1 + V2 = 〈x+

i x+
j 〉.

Approximation g : x+
1 .

Closeness: Pr(f 6= g) = 0.
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Almost Dictator
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01000101

01100111

10001001

10101011

11001101

11101111

Polynomial f : x+
1 − x+

1 x+
2 x+

3 x+
4 . Here x+

i (v) = 1 iff vi = 1.

Spectrum: ( 49
65 ,

1
5 ,

1
65 ,

1
65 ,

1
65 ). (Eigenspaces: V0,V1,V2,V3,V4.)

Part in Vi divided by dim(Vi ). V0 = 〈1〉,V0 + V1 = 〈x+
i 〉,V0 + V1 + V2 = 〈x+

i x+
j 〉.

Approximation g : x+
1 .

Closeness: Pr(f 6= g) = 1
16 .
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Junta

00000001

00100011

01000101

01100111

10001001

10101011

11001101

11101111

Polynomial f : x+
1 x+

2 . Here x+
i (v) = 1 iff vi = 1.

Spectrum: ( 3
5 ,

3
10 ,

1
10 , 0, 0). (Eigenspaces: V0,V1,V2,V3,V4.)

Degree 1 Approximation g : x+
1 .

Closeness: Pr(f 6= g) = 1
4 .
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Junta

00000001

00100011

01000101

01100111

10001001

10101011

11001101

11101111

Polynomial f : x+
1 x+

2 . Here x+
i (v) = 1 iff vi = 1.

Spectrum: ( 3
5 ,

3
10 ,

1
10 , 0, 0). (Eigenspaces: V0,V1,V2,V3,V4.)

Degree 2 Approximation g : x+
1 x+

2 .

Closeness: Pr(f 6= g) = 0.
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Bent Function

00000001

00100011

01000101

01100111

10001001

10101011

11001101

11101111

Polynomial f : x+
1 x+

2 + x+
3 x+

4 − 2x+
1 x+

2 x+
3 x+

4 . Over F2, f = x1x2 + x3x4.

Spectrum: ( 9
13 ,

1
13 ,

1
13 ,

1
13 ,

1
13 ).
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Parity Code

00000001

00100011

01000101

01100111

10001001

10101011

11001101

11101111

Polynomial f : too long. Over F2, f = 1 + x+
1 + x+

2 + x+
3 + x+

4 .

Spectrum: ( 1
2 , 0, 0, 0,

1
2 ).
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Classifying Degree 1

00000001

00100011

01000101

01100111

10001001

10101011

11001101

11101111

Theorem

A Boolean degree 1 function f = c +
∑

cix
+
i is a dictator.

Proof.

WLOG f (00 . . . 0) = 0, so c = 0.

WLOG f (10 . . . 0) = 1, so c1 = 1.
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Classifying Almost Degree 1

00000001

00100011

01000101

01100111

10001001

10101011

11001101

11101111

Definition

Two functions f and g are ε-close if E(|f − g |2) = ‖f − g‖2 ≤ ε.
If f and g Boolean, then ‖f − g‖2 = Pr(f 6= g).

Theorem (Friedgut-Kalai-Naor Theorem (2002))

If f is Boolean and ε-close to degree 1, then f is O(ε)-close to a dictator.
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Higher Degree

Trivial: Boolean degree 1 −→ dictator.

FKN Theorem (2002): Boolean almost degree 1 −→ almost dictator.

What about higher degrees?

Theorem (Nisan and Szegedy (1994))

Boolean degree d −→ d2d−1-junta.

Chiarelli, Hatami and Saks (2018): Tight bound of O(2d).
Current best by Wellens (2019): ≤ 4.416 · 2d .

Theorem (Kindler-Safra Theorem (2002))

Boolean almost degree d −→ Almost O(2d)-junta.
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aThat is it depends on at most d2d−1 coordinates.
bThey also give an example which requires a Θ(2d )-junta.
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“What then should we do?” Luke 3:10

In the hypercube: Good understanding of low degree functions.

What about other domains?

For instance:

A slice of the hypercube: all k-sets of {1, . . . , n}.
The q-analog of the slice: all k-spaces of Fn

q.

The symmetric group Sn.

The rank n bilinear forms.

We will look at k-sets and k-spaces.
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Subsets

0000

0001 0010 0100 1000

0011 0101 0110
1001 1010 1100

0111 1011 1101 1110

1111

Theorem

Boolean degree 1 functions on k-sets of {1, . . . , n} are trivial.
I.e. they are dictators (0, 1, x+

i or 1− x+
i ).

Various proofs: Meyerowitz (1992, see Martin (2004)), Filmus (2016),
De Boeck, Storme, Svob (2017), Filmus and I. (2019).
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FKN Theorem

Recall for hypercube: Boolean almost degree 1 −→ almost dictator.

For k-sets of {1, . . . , n}:

Theorem (Filmus (2016))

Boolean almost degree 1 −→ almost sum of dictators (or complement).

Recall for hypercube:

Boolean degree d −→ O(2d)-junta.

Boolean almost degree d −→ Almost O(2d)-junta.

For k-sets:

Filmus, I. (2019): Boolean degree d −→ O(2d)-junta.1

Keller, Klein (2019): Boolean almost degree d −→ Almost O(2d)-junta.

1
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FKN Theorem

Recall for hypercube: Boolean almost degree 1 −→ almost dictator.

For k-sets of {1, . . . , n}:

Theorem (Filmus (2016))

Boolean almost degree 1 −→ almost sum of dictators (or complement).

Recall for hypercube:

Boolean degree d −→ O(2d)-junta.

Boolean almost degree d −→ Almost O(2d)-junta.

For k-sets:

Filmus, I. (2019): Boolean degree d −→ O(2d)-junta.1

Keller, Klein (2019): Boolean almost degree d −→ Almost O(2d)-junta.

1If max(k, n − k) large enough! Not tight!
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Vector Spaces

1-spaces

2-spaces

3-spaces

The subspace lattice of F4
2.

We consider k-spaces of a finite vector space!

Degree 1: f =
∑

p cpp+, p’s are 1-spaces.
Here p+(S) = 1 if p ⊆ S and p+(S) = 0 otherwise.
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Trivial Degree 1 in Vector Spaces (I)

1-spaces

2-spaces

3-spaces

The subspace lattice of F4
2.

Example (Trivial Example 1)

Take all k-spaces through a fixed 1-space p: p+.

Or the complement: 1− p+. (This is always possible.)
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Trivial Degree 1 in Vector Spaces (II)

1-spaces

2-spaces

3-spaces

The subspace lattice of F4
2.

Example (Trivial Example 2)

Take all k-spaces in a fixed hyperplane π: π+.

Proof: Write π+ = α
∑

p∈π p+ + β
∑

p 6∈π p+.
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Trivial Degree 1 in Vector Spaces (III)

1-spaces

2-spaces

3-spaces

The subspace lattice of F4
2.

Example (Trivial Example 3)

All through 1-space p or in hyperplane π: p+ + π+.

Or the complement: 1− (p+ + π+).
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Degree 1 Functions on 2-spaces in Fn
q

Cameron, Liebler (1982): Investigate action of subgroups of PΓL(4, q)
on 1- and 2-spaces of F4

q.

Same number of orbits: Boolean degree 1 function.

Conjecture (Cameron, Liebler (1982, very simplified))

If Boolean degree 1 function f on 2-spaces, then f or 1− f is . . .

1,

p+ for a 1-space p,

π+ for a hyperplane π, or

p+ + π+ for a 1-space p and a hyperplane π, p /∈ π.

Conjecture very natural: true for subsets.

True for 2-spaces of Fn
2.

False for 2-spaces of F4
q: First counterexample for q = 3 by Drudge

(1998), later many more.
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State of the Art

For 2-spaces in F4
q:

Many counterexamples: Bruen, Cossidente, De Beule, Demeyer,
Drudge, Feng, Gavrilyuk, Matkin, Metsch, Momihara, Pavese,
Penttila, Rodgers, Xiang.

Existence conditions: Metsch (2014), Gavrilyuk and Metsch
(2014).

Boolean degree 1 functions f on k-spaces for n > 4:

Theorem (Drudge (1998), Gavrilyuk and Mogilnykh (2014), Gavrilyuk
and Matkin (2018), Matkin (2018))

All trivial for k = 2 and q ≤ 5.

Theorem (Filmus, I. (2019))

All trivial for k ≥ 2 and q ≤ 5.

Also several existence conditions on the size of f by Blokhuis, De Boeck, D’haeseleer,

Metsch, Rodgers, Storme, Vansweevelt (all recent).
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Almost Degree 1

Maybe we find non-trivial almost degree 1?

Definition

If ‖f − g‖2 ≤ ε for a degree 1 function g , then f ε-close to degree 1.

Recall FKN for k-sets:
Boolean almost degree 1 −→ almost sum of dictators (or complement).

FKN theorem: Structure of almost degree 1 function.
Strong version: Almost degree 1 −→ sum of trivial examples.

Example (Bruen, Drudge for general n and k)

There exists non-trivial degree 1 function f of size ∼ 1
2 .

Good News: This shows no strong FKN for q →∞, n fixed.

More natural: Fix q and k, and let n→∞. No idea!
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Problems

Conjecture (Updated)

Show that all Boolean degree 1 functions on k-spaces of Fn
q are trivial

except for (n, k) = (4, 2).

Problem (FKN I)

Exists a non-trivial Boolean almost degree 1 function for n→∞?

Problem (FKN II)

What is the general structure of (almost) Boolean degree 1 functions?

Problem (Nisan-Szegedy)

Classification results for Boolean degree d functions in geometric
settings for d > 1.

See De Winter-Metsch (2018) for a related problem on intriguing sets.
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Recent Breakthrough in Complexity Theory

The Unique Games Conjecture claims that it is impossible to
approximate many NP-hard problems in polynomial time.

Theorem (Khot, Minzer, Safra (2018))

Proof of the 2-to-2 Games Conjecture.a

aA slightly weakend Unique Games Conjecture.

What they had to show:

Theorem (Khot, Minzer, Safra (2018))

Let α ∈ (0, 1). There ex. ε > 0 s.t. for sufficiently large k and sufficiently
large n: If f on k-spaces in Fn

2 significant mass on low degree
(measured by α), then there ex. A of const. dim. and B of const.
codim. with

|{x ∈ f : A ⊆ x ⊆ B}| ≥ ε|{x k-space : A ⊆ x ⊆ B}|.

Think of dim(A) = 1 and dim(B) = n. Then f = A+ is example.
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Vector Spaces

1-spaces

2-spaces

3-spaces

The subspace lattice of F4
2.

We consider k-spaces of a finite vector space!

Degree 1: f =
∑

p cpp+, p’s are 1-spaces.
Here p+(S) = 1 if p ⊆ S and p+(S) = 0 otherwise.
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Bilinear Forms

1-spaces

2-spaces

3-spaces

The bilinear forms lattice of F2
2 × F2

2.

We consider only subspaces disjoint to fixed subspace!

Degree 1 on Fa+b
q gives degree 1 on bilinear forms on Fa

q × Fb
q.

Obvious Conjecture in Filmus, I. (2019).
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Affine Spaces

1-spaces

2-spaces

3-spaces

The affine subspace lattice of F4
2.

We consider only subspaces outside of fixed hyperplane!

Affine degree 1 on Fn
q gives degree 1 on Fn

q.
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Dual Affine Spaces

1-spaces

2-spaces

3-spaces

The dual affine subspace lattice of F4
2.

We consider only subspaces outside of fixed 1-space!

Degree 1 on Fn
q gives dual affine degree 1 on Fn

q.
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Polar Spaces

1-spaces

2-spaces

3-spaces

The subspace lattice of Sp(F4
2).

Consider subspaces vanishing on a reflexive sesquilinear form!
For instance: x1y2 − x2y1 + x3y4 − x4y3.

Degree 1 on Fn
q gives degree 1 on polar space of Fn

q.
For small dim called tight set.
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Other Domains

Symmetric Group

Degree 1 classified (Ellis, Friedgut, Pilpel (2011)).

For degree > 1, many non-trivial examples (Filmus (2018)).

More domains:

Permutation groups (see int. fam., Meagher),

Finite classical buildings (see int. fam., I., Metsch, Mühlherr (2018) and

Metsch (2018, 2019)),

Signed sets (see int. fam., Bollobás, Leader (1997)),

Polar spaces (Filmus, I. (2019), D’haeseleer, De Boeck (2019)),
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More domains:
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Finite classical buildings (see int. fam., I., Metsch, Mühlherr (2018) and
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Thank you for your attention!


	The Hypercube
	Low Degree Functions
	Subsets
	Subspaces
	More Domains

