Low Degree Boolean Functions in Finite Geometry

Ferdinand Ihringer

Ghent University, Belgium

21 August 2019, University of Delaware Finite Geometry and Extremal Combinatorics

The Hypercube	Low Degree Functions	Subsets	Subspaces	More Domains
Esmilias	in the Hypercube			

Families in the Hypercube

Goal: Investigate families in $\{0, 1\}^n$. Alternative model: $\{-1, 1\}^n$.

Here n = 4.

The Hypercube	Low Degree Functions	Subsets	Subspaces	More Domains
Esmilies in	a tha Hyparcuba			

Families in the Hypercube

Goal: Investigate families in $\{0, 1\}^n$. Here n = 4. Alternative model: $\{-1, 1\}^n$.

Methods:

- Write as polynomial $\{0,1\}^n \to \{0,1\}$ over \mathbb{R} , Variables: coordinates.
- Look at spectrum, Eigenspaces: adjacency matrix of graph.
- Approximate with nice families.

Nice families: **dictators**/juntas.

The Hypercube	Low Degree Functions	Subsets	Subspaces	More Domains
Dictator				

Polynomial $f: x_1^+$.

Here $x_i^+(v) = 1$ iff $v_i = 1$.

The Hypercube	Low Degree Functions	Subsets	Subspaces	More Domains
Dictator				

Polynomial $f: x_1^+$.

Here $x_i^+(v) = 1$ iff $v_i = 1$.

Spectrum: $(\frac{4}{5}, \frac{1}{5}, 0, 0, 0)$. (Eigenspaces: V_0, V_1, V_2, V_3, V_4 .) Part in V_i divided by dim (V_i) . $V_0 = \langle 1 \rangle, V_0 + V_1 = \langle x_i^+ \rangle, V_0 + V_1 + V_2 = \langle x_i^+ x_i^+ \rangle$.

The Hypercube	Low Degree Functions	Subsets	Subspaces	More Domains
Dictator				

Polynomial $f: x_1^+$.

Here $x_i^+(v) = 1$ iff $v_i = 1$.

Spectrum: $(\frac{4}{5}, \frac{1}{5}, 0, 0, 0)$. (Eigenspaces: V_0, V_1, V_2, V_3, V_4 .) Part in V_i divided by dim (V_i) . $V_0 = \langle 1 \rangle, V_0 + V_1 = \langle x_i^+ \rangle, V_0 + V_1 + V_2 = \langle x_i^+ x_j^+ \rangle$. **Approximation** g: x_1^+ .

Closeness: $Pr(f \neq g) = 0$.

The Hypercube	Low Degree Functions	Subsets	Subspaces	More Domains
Almost Dicta	tor			

Polynomial $f: x_1^+ - x_1^+ x_2^+ x_3^+ x_4^+$.

Here $x_i^+(v) = 1$ iff $v_i = 1$.

Spectrum: $(\frac{49}{65}, \frac{1}{5}, \frac{1}{65}, \frac{1}{65})$. (Eigenspaces: V_0, V_1, V_2, V_3, V_4 .) Part in V_i divided by dim (V_i) . $V_0 = \langle 1 \rangle, V_0 + V_1 = \langle x_i^+ \rangle, V_0 + V_1 + V_2 = \langle x_i^+ x_j^+ \rangle$. **Approximation** g: x_1^+ .

Closeness: $\Pr(f \neq g) = \frac{1}{16}$.

The Hypercube	Low Degree Functions	Subsets	Subspaces	More Domains
Junta				

Polynomial $f: x_1^+ x_2^+$.

Spectrum: $(\frac{3}{5}, \frac{3}{10}, \frac{1}{10}, 0, 0)$.

Degree 1 **Approximation** $g: x_1^+$.

Closeness: $\Pr(f \neq g) = \frac{1}{4}$.

Here $x_i^+(v) = 1$ iff $v_i = 1$.

(Eigenspaces: V₀, V₁, V₂, V₃, V₄.)

The Hypercube	Low Degree Functions	Subsets	Subspaces	More Domains
Junta				

Polynomial $f: x_1^+ x_2^+$.

Here $x_i^+(v) = 1$ iff $v_i = 1$.

Spectrum: $(\frac{3}{5}, \frac{3}{10}, \frac{1}{10}, 0, 0)$.

(Eigenspaces: V₀, V₁, V₂, V₃, V₄.)

Degree 2 **Approximation** $g: x_1^+ x_2^+$.

Closeness: $Pr(f \neq g) = 0$.

Polynomial $f: x_1^+ x_2^+ + x_3^+ x_4^+ - 2x_1^+ x_2^+ x_3^+ x_4^+$. Over \mathbb{F}_2 , $f = x_1 x_2 + x_3 x_4$.

Spectrum: $\left(\frac{9}{13}, \frac{1}{13}, \frac{1}{13}, \frac{1}{13}, \frac{1}{13}\right)$.

The Hypercube	Low Degree Functions	Subsets	Subspaces	More Domains
Parity Code				

Polynomial *f*: too long.

Spectrum: $(\frac{1}{2}, 0, 0, 0, \frac{1}{2})$.

Over
$$\mathbb{F}_2$$
, $f = 1 + x_1^+ + x_2^+ + x_3^+ + x_4^+$.

Theorem

A Boolean degree 1 function $f = c + \sum c_i x_i^+$ is a dictator.

The Hypercube	Low Degree Functions	Subsets	Subspaces	More Domains
Classifying [Degree 1			

Theorem

A Boolean degree 1 function $f = c + \sum c_i x_i^+$ is a dictator.

Proof.

• WLOG
$$f(00...0) = 0$$
, so $c = 0$.

• WLOG
$$f(10...0) = 1$$
, so $c_1 = 1$.

The Hypercube	Low Degree Functions	Subsets	Subspaces	More Domains
Classifying	Almost Degree 1			

Definition

Two functions f and g are ϵ -close if $\mathbb{E}(|f - g|^2) = ||f - g||^2 \le \epsilon$. If f and g Boolean, then $||f - g||^2 = \Pr(f \ne g)$.

The Hypercube	Low Degree Functions	Subsets	Subspaces	More Domains
Classifying	Almost Degree 1			

Classifying Almost Degree 1

Definition

Two functions f and g are ϵ -close if $\mathbb{E}(|f - g|^2) = ||f - g||^2 \le \epsilon$. If f and g Boolean, then $||f - g||^2 = \Pr(f \ne g)$.

Theorem (Friedgut-Kalai-Naor Theorem (2002))

If f is Boolean and ϵ -close to degree 1, then f is $O(\epsilon)$ -close to a dictator.

The Hypercube	Low Degree Functions	Subsets	Subspaces	More Domains
Higher Degre	ee			

Trivial: Boolean degree $1 \longrightarrow \text{dictator}$.

FKN Theorem (2002): Boolean almost degree $1 \rightarrow$ almost dictator.

What about higher degrees?

The Hypercube	Low Degree Functions	Subsets	Subspaces	More Domains
Higher De	egree			

Trivial: Boolean degree $1 \rightarrow \text{dictator.}$

FKN Theorem (2002): Boolean almost degree $1 \rightarrow$ almost dictator.

What about higher degrees?

Theorem (Nisan and Szegedy (1994))

Boolean degree $d \longrightarrow d2^{d-1}$ -junta.^{ab}

^aThat is it depends on at most $d2^{d-1}$ coordinates. ^bThey also give an example which requires a $\Theta(2^d)$ -junta.

Chiarelli, Hatami and Saks (2018): Tight bound of $O(2^d)$. Current best by Wellens (2019): $\leq 4.416 \cdot 2^d$.

The Hypercube	Low Degree Functions	Subsets	Subspaces	More Domains
Higher De	egree			

Trivial: Boolean degree $1 \rightarrow \text{dictator.}$

FKN Theorem (2002): Boolean almost degree $1 \rightarrow$ almost dictator.

What about higher degrees?

Theorem (Nisan and Szegedy (1994))

Boolean degree $d \longrightarrow d2^{d-1}$ -junta.^{ab}

^aThat is it depends on at most $d2^{d-1}$ coordinates. ^bThey also give an example which requires a $\Theta(2^d)$ -junta.

Chiarelli, Hatami and Saks (2018): Tight bound of $O(2^d)$. Current best by Wellens (2019): $\leq 4.416 \cdot 2^d$.

Theorem (Kindler-Safra Theorem (2002))

Boolean almost degree $d \longrightarrow Almost O(2^d)$ -junta.

In the hypercube: Good understanding of low degree functions.

What about other domains?

For instance:

- A slice of the hypercube: all k-sets of $\{1, \ldots, n\}$.
- The q-analog of the slice: all k-spaces of \mathbb{F}_q^n .

In the hypercube: Good understanding of low degree functions.

What about other domains?

For instance:

- A slice of the hypercube: all k-sets of $\{1, \ldots, n\}$.
- The q-analog of the slice: all k-spaces of \mathbb{F}_q^n .
- The symmetric group S_n .
- The rank *n* bilinear forms.

We will look at k-sets and k-spaces.

Theorem

Boolean degree 1 functions on k-sets of $\{1, ..., n\}$ are trivial. *I.e.* they are dictators $(0, 1, x_i^+ \text{ or } 1 - x_i^+)$.

Various proofs: Meyerowitz (1992, see Martin (2004)), Filmus (2016), De Boeck, Storme, Svob (2017), Filmus and I. (2019).

тпе нурегсире	Low Degree Functions	Subsets	Subspaces	wore Domains
FKN Theore	m			
Recall for h	ypercube: Boolean	almost degree	$1 \longrightarrow almost dict$	ator.
For <i>k</i> -sets of	$\{1,\ldots,n\}$:			
	(

Theorem (Filmus (2016))

Boolean almost degree $1 \rightarrow$ almost sum of dictators (or complement).

The Hypercube	Low Degree Functions	Subsets	Subspaces	More Domains
FKN Theore	m			
Recall for h	y <mark>percube:</mark> Boolean alm	ost degree 1 —	ightarrow almost dictato	r.

For k-sets of $\{1, \ldots, n\}$:

Theorem (Filmus (2016))

Boolean almost degree $1 \longrightarrow$ almost sum of dictators (or complement).

Recall for hypercube:

- Boolean degree $d \longrightarrow O(2^d)$ -junta.
- Boolean almost degree $d \longrightarrow \text{Almost } O(2^d)$ -junta.

For k-sets of $\{1, \ldots, n\}$:

Theorem (Filmus (2016))

Boolean almost degree $1 \longrightarrow$ almost sum of dictators (or complement).

Recall for hypercube:

- Boolean degree $d \longrightarrow O(2^d)$ -junta.
- Boolean almost degree $d \longrightarrow \text{Almost } O(2^d)$ -junta.

For *k*-sets:

Filmus, I. (2019): Boolean degree $d \longrightarrow O(2^d)$ -junta.¹

Keller, Klein (2019): Boolean almost degree $d \longrightarrow \text{Almost } O(2^d)$ -junta.

¹If max(k, n - k) large enough! Not tight!

The subspace lattice of \mathbb{F}_2^4 .

We consider *k*-spaces of a finite vector space!

Degree 1: $f = \sum_{p} c_{p} p^{+}$, p's are 1-spaces. Here $p^+(S) = 1$ if $p \subseteq S$ and $p^+(S) = 0$ otherwise.

Example (Trivial Example 1)

Take all k-spaces through a fixed 1-space p: p^+ .

Or the complement: $1 - p^+$. (This is always possible.)

The subspace lattice of \mathbb{F}_2^4 .

Example (Trivial Example 2)

Take all k-spaces in a fixed hyperplane π : π^+ .

Proof: Write $\pi^+ = \alpha \sum_{p \in \pi} p^+ + \beta \sum_{p \notin \pi} p^+$.

All through 1-space *p* or in hyperplane π : $p^+ + \pi^+$.

Or the complement: $1 - (p^+ + \pi^+)$.

Degree 1 Functions on 2-spaces in \mathbb{F}_{a}^{n}

Cameron, Liebler (1982): Investigate action of subgroups of $P\Gamma L(4, q)$ on 1- and 2-spaces of \mathbb{F}_q^4 .

Same number of orbits: Boolean degree 1 function.

Degree 1 Functions on 2-spaces in \mathbb{F}_q^n

Cameron, Liebler (1982): Investigate action of subgroups of $P\Gamma L(4, q)$ on 1- and 2-spaces of \mathbb{F}_q^4 .

Same number of orbits: Boolean degree 1 function.

Conjecture (Cameron, Liebler (1982, very simplified))

If Boolean degree 1 function f on 2-spaces, then f or 1 - f is ...

- 1,
- p⁺ for a 1-space p,
- π^+ for a hyperplane π , or
- $p^+ + \pi^+$ for a 1-space p and a hyperplane π , $p \notin \pi$.

Degree 1 Functions on 2-spaces in \mathbb{F}_q^n

Cameron, Liebler (1982): Investigate action of subgroups of $P\Gamma L(4, q)$ on 1- and 2-spaces of \mathbb{F}_q^4 .

Same number of orbits: Boolean degree 1 function.

Conjecture (Cameron, Liebler (1982, very simplified))

If Boolean degree 1 function f on 2-spaces, then f or 1 - f is ...

- 1,
- p⁺ for a 1-space p,
- π^+ for a hyperplane π , or
- $p^+ + \pi^+$ for a 1-space p and a hyperplane π , $p \notin \pi$.
- Conjecture very natural: true for subsets.
- **True** for 2-spaces of \mathbb{F}_2^n .
- False for 2-spaces of \mathbb{F}_q^4 : First counterexample for q = 3 by Drudge (1998), later many more.

For 2-spaces in \mathbb{F}_q^4 :

- Many counterexamples: Bruen, Cossidente, De Beule, Demeyer, Drudge, Feng, Gavrilyuk, Matkin, Metsch, Momihara, Pavese, Penttila, Rodgers, Xiang.
- Existence conditions: Metsch (2014), Gavrilyuk and Metsch (2014).

For 2-spaces in \mathbb{F}_q^4 :

- Many counterexamples: Bruen, Cossidente, De Beule, Demeyer, Drudge, Feng, Gavrilyuk, Matkin, Metsch, Momihara, Pavese, Penttila, Rodgers, Xiang.
- Existence conditions: Metsch (2014), Gavrilyuk and Metsch (2014).

Boolean degree 1 functions f on k-spaces for n > 4:

Theorem (Drudge (1998), Gavrilyuk and Mogilnykh (2014), Gavrilyuk and Matkin (2018), Matkin (2018))

All trivial for k = 2 and $q \le 5$.

Theorem (Filmus, I. (2019))

```
All trivial for k \ge 2 and q \le 5.
```

Also several existence conditions on the size of f by Blokhuis, De Boeck, D'haeseleer, Metsch, Rodgers, Storme, Vansweevelt (all recent).

The Hypercube	Low Degree Functions	Subsets	Subspaces	More Domains
Almost Degr	ee 1			

Definition

If $\|f - g\|^2 \leq \epsilon$ for a degree 1 function g, then f ϵ -close to degree 1.

The Hypercube	Low Degree Functions	Subsets	Subspaces	More Domains
Almost Degr	ee 1			

Definition

If $\|f - g\|^2 \le \epsilon$ for a degree 1 function g, then f ϵ -close to degree 1.

Recall FKN for *k*-sets: Boolean almost degree $1 \rightarrow$ almost sum of dictators (or complement).

FKN theorem: Structure of almost degree 1 function. **Strong** version: Almost degree $1 \rightarrow$ sum of trivial examples.

The Hypercube	Low Degree Functions	Subsets	Subspaces	More Domains
Almost Degre	ee 1			

Definition

If $||f - g||^2 \le \epsilon$ for a degree 1 function g, then f ϵ -close to degree 1.

Recall FKN for *k*-sets: Boolean almost degree $1 \rightarrow$ almost sum of dictators (or complement).

FKN theorem: Structure of almost degree 1 function. **Strong** version: Almost degree $1 \rightarrow$ sum of trivial examples.

Example (Bruen, Drudge for general n and k)

There exists non-trivial degree 1 function f of size $\sim \frac{1}{2}$.

Good News: This shows no **strong** FKN for $q \rightarrow \infty$, *n* fixed.

The Hypercube	Low Degree Functions	Subsets	Subspaces	More Domains
Almost D	Degree 1			

Definition

If $||f - g||^2 \le \epsilon$ for a degree 1 function g, then f ϵ -close to degree 1.

Recall FKN for *k*-sets: Boolean almost degree $1 \rightarrow$ almost sum of dictators (or complement).

FKN theorem: Structure of almost degree 1 function. **Strong** version: Almost degree $1 \rightarrow$ sum of trivial examples.

Example (Bruen, Drudge for general n and k)

There exists non-trivial degree 1 function f of size $\sim \frac{1}{2}$.

Good News: This shows no **strong** FKN for $q \rightarrow \infty$, *n* fixed.

More natural: Fix *q* and *k*, and let $n \to \infty$. No idea!

The Hypercube	Low Degree Functions	Subsets	Subspaces	More Domains
Problems				

Conjecture (Updated)

Show that all Boolean degree 1 functions on k-spaces of \mathbb{F}_q^n are trivial except for (n, k) = (4, 2).

The Hypercube	Low Degree Functions	Subsets	Subspaces	More Domains
Problems				

Conjecture (Updated)

Show that all Boolean degree 1 functions on k-spaces of \mathbb{F}_q^n are trivial except for (n, k) = (4, 2).

Problem (FKN I)

Exists a non-trivial Boolean almost degree 1 function for $n \to \infty$?

Problem (FKN II)

What is the general structure of (almost) Boolean degree 1 functions?

The Hypercube	Low Degree Functions	Subsets	Subspaces	More Domains
Problems				

Conjecture (Updated)

Show that all Boolean degree 1 functions on k-spaces of \mathbb{F}_q^n are trivial except for (n, k) = (4, 2).

Problem (FKN I)

Exists a non-trivial Boolean almost degree 1 function for $n \to \infty$?

Problem (FKN II)

What is the general structure of (almost) Boolean degree 1 functions?

Problem (Nisan-Szegedy)

Classification results for Boolean degree d functions in geometric settings for d > 1.

See De Winter-Metsch (2018) for a related problem on intriguing sets.

Recent Breakthrough in Complexity Theory

The **Unique Games Conjecture** claims that it is impossible to approximate many **NP-hard** problems in polynomial time.

Theorem (Khot, Minzer, Safra (2018))

Proof of the 2-to-2 Games Conjecture.^a

^aA slightly weakend Unique Games Conjecture.

Recent Breakthrough in Complexity Theory

The **Unique Games Conjecture** claims that it is impossible to approximate many **NP-hard** problems in polynomial time.

Theorem (Khot, Minzer, Safra (2018))

Proof of the 2-to-2 Games Conjecture.^a

^aA slightly weakend Unique Games Conjecture.

What they had to show:

Theorem (Khot, Minzer, Safra (2018))

Let $\alpha \in (0,1)$. There ex. $\epsilon > 0$ s.t. for sufficiently large k and sufficiently large n: If f on k-spaces in \mathbb{F}_2^n significant mass on low degree (measured by α), then there ex. A of const. dim. and B of const. codim. with

 $|\{x \in f : A \subseteq x \subseteq B\}| \ge \epsilon |\{x \text{ } k\text{-space} : A \subseteq x \subseteq B\}|.$

Think of dim(A) = 1 and dim(B) = n. Then $f = A^+$ is example.

The subspace lattice of \mathbb{F}_2^4 .

We consider *k*-spaces of a finite vector space!

Degree 1: $f = \sum_{p} c_{p} p^{+}$, p's are 1-spaces. Here $p^+(S) = 1$ if $p \subseteq S$ and $p^+(S) = 0$ otherwise.

The bilinear forms lattice of $\mathbb{F}_2^2 \times \mathbb{F}_2^2$.

We consider only subspaces disjoint to fixed subspace!

Degree 1 on \mathbb{F}_{a}^{a+b} gives degree 1 on bilinear forms on $\mathbb{F}_{a}^{a} \times \mathbb{F}_{a}^{b}$. Obvious Conjecture in Filmus, I. (2019).

We consider only subspaces outside of fixed hyperplane!

Affine degree 1 on \mathbb{F}_{q}^{n} gives degree 1 on \mathbb{F}_{q}^{n} .

The dual affine subspace lattice of \mathbb{F}_2^4 .

We consider only subspaces outside of fixed 1-space!

Degree 1 on \mathbb{F}_a^n gives dual affine degree 1 on \mathbb{F}_a^n .

Consider subspaces vanishing on a reflexive sesquilinear form! For instance: $x_1y_2 - x_2y_1 + x_3y_4 - x_4y_3$.

Degree 1 on \mathbb{F}_q^n gives degree 1 on polar space of \mathbb{F}_q^n . For small dim called tight set.

Symmetric Group

- Degree 1 classified (Ellis, Friedgut, Pilpel (2011)).
- For degree > 1, many non-trivial examples (Filmus (2018)).

Symmetric Group

- Degree 1 classified (Ellis, Friedgut, Pilpel (2011)).
- For degree > 1, many non-trivial examples (Filmus (2018)).

More domains:

- Permutation groups (see int. fam., Meagher),
- Finite classical buildings (see int. fam., I., Metsch, Mühlherr (2018) and Metsch (2018, 2019)),
- Signed sets (see int. fam., Bollobás, Leader (1997)),
- Polar spaces (Filmus, I. (2019), D'haeseleer, De Boeck (2019)),

The Hypercube	Low Degree Functions	Subsets	Subspaces	More Domains

Thank you for your attention!