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Polar spaces

∆ = (P,L): non-degenerate polar space of finite rank n > 2.
p ⊥ q if p and q are collinear in ∆.

X⊥ := {x ∈ P : x ⊥ y , ∀y ∈ X}, X ⊆ P

∗ X ⊆ P is a subspace of ∆ if every line containing at least two
points of X is entirely contained in X .
↪→ All subspaces of ∆ are (possibly degenerate) polar spaces.

∗ X ⊆ P is a singular subspace of ∆ if X ⊆ X⊥.
↪→ All singular subspaces of ∆ are projective spaces.

X The rank of ∆ (rank (∆)) is the vector dimension of the
maximal singular subspaces of ∆.
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Polar spaces - intrinsic parameter: the anisotropic defect

X ⊆ P is a nice subspace of ∆ if X is a subspace of ∆ and ∆
induces on it a non-degenerate polar space of the same rank.

l
X contains two mutually disjoint maximal singular subspaces of ∆.

N(∆) := {Xi : Xi nice subspace of ∆}.

X0 ⊂ X1 ⊂ · · · ⊂ ∆

Definition

The anisotropic defect of ∆ (def(∆)) is the least upper bound of
the lengths of the well ordered chains of N(∆) w.r.t. inclusion.
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Polar grassmannians

∆: non-degenerate polar space of rank n

• • ..... • ..... • •
1 2 ki n − 1 n

1 ≤ k ≤ n

∆k = (Pk ,Lk) : k–polar grassmannian associated to ∆

* Points of ∆k : k–dim. singular subspaces.

* Lines of ∆k :
k < n: sets `X ,Y := {Z : X < Z < Y }, with

dim(X ) = k − 1, dim(Y ) = k +1 and Y singular subspace.

k = n: sets `X := {Z : X < Z} with
dim(X ) = n − 1 and Z singular subspace.

∆1 : polar space; ∆n : dual polar space.
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Generation

∆k = (Pk ,Lk) : k–polar grassmannian

S ⊆ Pk
Span of S : 〈S〉∆k

:= ∩{X : X ⊇ S ,X subspace of ∆k}

Definition

1 S ⊆ Pk is a generating set of ∆k if 〈S〉∆k
= Pk .

2 The generating rank of ∆k is
gr(∆k) := min{|S | : S is a generating set of ∆k}.
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Projective Embeddings

∆k = (Pk ,Lk) polar grassmannian.

ε : Pk → PG(V ): projective embedding of ∆k with dim(ε) := dim(V ) if

(E1) ε is injective; (E2)〈ε(Pk)〉 = PG(V ); (E3) ε(`) is a line ∀` ∈ Lk .

ε1 : ∆k → PG(V1), ε2 : ∆k → PG(V2)

ε1 covers ε2 (ε2 ≤ ε1) if ∃f : V1 → V2 semilinear such that ε2 ' f ◦ ε1.

εuniv : universal embedding of ∆k if ε ≤ εuniv , ∀ proj. embed. ε of ∆k .

Theorem [A. Kasikova, E.E. Shult 2001]

Polar grassmannians* admit the universal embedding.

Definition

The embedding rank of ∆k is er(∆k) := dim(εuniv ).
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ε : ∆k → PG(V ): projective embedding of ∆k

S : generating set of ∆k

↓

ε(〈S〉∆k
) ⊆ 〈ε(S)〉PG(V )

↓
dim(ε) ≤ gr(∆k).

↓
er(∆k) ≤ gr(∆k)

* If ε is a projective embedding of ∆k with dim(ε) = gr(∆k) then
ε is the universal embedding of ∆k .
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∆k = (Pk ,Lk) polar grassmannian

Generation of ∆k

—————————
* generating set ?
* generating rank ?

Embeddings of ∆k

—————————
* Dimension ?
* Universality ?
* Transparency ?
* Application: codes
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Polar spaces embedded

∆: non-degenerate polar space of rank (∆) = n and def(∆) = d .
ε : ∆→ PG(V ): universal embedding, V = V (N,F), N = er(∆).

∗ ε(∆) is associated to a non-degenerate
alternating, Hermitian or quadratic form f of V

∆ ↔ ∆(f )
singular subspaces of ∆ ↔ totally f -singular subspaces of V

rank(∆) = Witt index of f

* If char(F) = 2 then f cannot be alternating.

* If char(F) 6= 2 or f is Hermitian then ε is the unique embedding of ∆.

* If char(F) = 2 and f is quadratic then ε admits several proper quotients
associated to generalized quadratic forms.
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∆: non-degenerate polar space of rank (∆) = n and def(∆) = d .
ε : ∆→ PG(V ): universal embedding

∆ ↪→ ∆(f ), f : non-deg. Hermitian or quadratic form of V
of Witt index n

V = V1 ⊕ V2 ⊕ · · · ⊕ Vn︸ ︷︷ ︸ ⊕ V0

mutually orthogonal anisotropic space
hyperbolic 2-spaces orthogonal to Vi

Definition

The anisotropic defect of f (def(f )) is the dimension of V0.

Theorem [I.C., L. Giuzzi, A. Pasini, 2019]

def(∆) = def(f )(= dim(V )− 2n)
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V = V (N,F)
f : non-deg. Hermitian or quadratic form of Witt index n > 2.
∆(f ): non-degenerate polar space associated to f .

1 ≤ k ≤ n
∆k : polar k-Grassmannian associated to f .

f hermitian → Hk : Hermitian k-grassmannian
H: Hermitian polar space

f quadratic → Qk : Orthogonal k-grassmannian
Q: Orthogonal polar space

∗ The points of ∆k are points of the k-projective Grassmannian Gk
of PG(V ) and for k < n also the lines of ∆k are lines of Gk .
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Hermitian grassmannians- known results at 2018.

H: non-degenerate Hermitian polar space of rank n
Hk : Hermitian grassmannian of rank n

def (Hk) k F gr(Hk) er(Hk) References

d = 0, 1 1 any 2n + d 2n + d folklore

0 > 1 6= F4

(2n
k

) (2n
k

)
[1998-2012]

0 n F4 ? (4n + 2)/3 [2002]

1 n Fq ≤ 2n — [2001]
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Orthogonal grassmannians- known results at 2018. 1/2

Q: non-degenerate Orthogonal polar space of rank n
Qk : Orthogonal grassmannian of rank n

def (Qk) k F gr(Qk) er(Qk) References

0 ≤ d ≤ 2 1 any 2n + d 2n + d folklore

0 n any
∏n−1

i=0 (|F|i + 1) −−− [1983]

d = 1, 2 n char(F) 6= 2 2n 2n [1998-2011]

2 n char(F) = 2 2n 2n [2001],[2011]
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)
−
( 2n
n−2
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2
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2
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d = 0, 1 2 any ≤
(2n+d

2

)
+ g ? [2001]

d = 0, 1 2, 3 < n
perfect,

char(F) > 0
number field

?
(2n+d

k

)
[2013]
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New results - Extremal cases: k = 1 and k = n

∆: non-degenerate polar space of rank (∆) = n and def(∆) = d .
H: hyperplane of ∆

(i.e. H is a proper subspace s.t. |H ∩ `| = 1 or ` ⊆ H, ∀` line of ∆)

Theorem [I.C., L. Giuzzi, A. Pasini, 2019]

1 If d > 0 the set Hn of n-singular subspaces contained in H is a
generating set of the dual polar space ∆n.

2 gr(∆n) ≤ gr(Hn).

Theorem [I.C., L. Giuzzi, A. Pasini, 2019]

If there exists at least one maximal well ordered chain of nice subspaces
of ∆ and ∆ admits an embedding of dimension 2n + d , then
gr(∆) = er(∆) = 2n + d .
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Constructions for 2 ≤ k < n

∆: non-degenerate polar space of rank (∆) = n and def(∆) = d .
H: hyperplane of ∆, p0: point of ∆ \ H.

Sk(H) := {Xk : Xk ⊆ H}, Sk(p0) := {Xk : p0 ∈ Xk},
GH,p0 := {Z k : Zk−2 ∈ GH,p0} where GH,p0 is a generating set of (H ∩ p⊥0 )k−2.

p
0

H

Z
k-2

Z
k

¿̂

Z
k
∩H = Z

k
∩p

0

┴

Sk(H, p0,GH,p0 ) := Sk(H) ∪ Sk(p0) ∪ GH,p0

Theorem [I.C, L.Giuzzi, A. Pasini, 2019]

The set Sk(H, p0,GH,p0 ) spans ∆k for any k = 2, 3, ..., n − 1.
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Constructions for 2 ≤ k < n

∆: non-degenerate polar space of rank (∆) = n and def(∆) = d .
H = q⊥: singular hyperplane, p0: point of ∆ \ H s.t. p0 6⊥ q

Sk(q) := {Xk : p0 ∈ Xk}, Sk({q, p0}⊥) := {Xk : Xk ⊆ {q, p0}⊥},
G q,p0 := {Z k : Zk−2 ∈ Gq,p0} where Gq,p0 is a generating set of ({q, p0}⊥)k−2.

p
0

 q

Z
k-2 Z

k Z
k
∩{p

0
,q}┴ = Z

k-2

Sk(q, p0,G q,p0 ) := Sk(q) ∪ Sk({q, p0}⊥) ∪ Sk(p0) ∪ G q,p0

Corollary [I.C, L.Giuzzi, A. Pasini, 2019]

The set Sk(q, p0, Ĝq,p0 ) spans ∆k for any k = 2, 3, ..., n − 1.
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Generation of Hermitian Grassmannians

H: non-deg. Hermitian polar space of rank n and def (H) = d .
Hk : k-Grassmannian of H, for 1 ≤ k ≤ n.
F: underlying field of H.

Theorem [I.C., L.Giuzzi, A. Pasini, 2019]

1 If d <∞, k < n (and F 6= F4 when k > 1) then gr(Hk) =
(

2n+d
k

)
.

2 If d > 0 and k = n then gr(Hn) ≤ 2n.

Corollary [I.C., L.Giuzzi, A. Pasini, 2019]

If d <∞, k < n (and F 6= F4 when k > 1) then the Plücker embedding
of Hk is universal.
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Generation of Orthogonal Grassmannians

Q: non-deg. orthogonal polar space of rank n and def (Q) = d .
Qn: dual polar space of orthogonal type, F: underlying field of Q.

Theorem [I.C, L.Giuzzi, A. Pasini, 2019]

If d > 0 and char(F) 6= 2 then gr(Qn) ≤ 2n.

When 0 < d ≤ 2 and char(F) 6= 2 the inequality gr(Qn) ≤ 2n is in fact
an equality. Perhaps the same is true when d > 2 but, since Qn is not
(projectively) embeddable when d > 2, there is no easy way to prove it.
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Generation over subfields

Q(F): non-degenerate orthogonal polar space in PG(V ), V = V (N,F)
F0 : proper subfield of F

Q(F0): non-degenerate orthogonal polar space in PG(V0), V0 = V (N,F0)

PG(V0) subgeometry of PG(V )
↓

Q(F0) subgeometry of Q(F)
↓

Qk(F0) subgeometry of Qk(F)

Definition

If 〈Qk(F0)〉Qk (F) = Qk(F) then Qk(F) is F0-generated.

Application: if Qk(F) is F0-generated then gr(Qk(F)) ≤ gr(Qk(F0)).

Problem: When is Qk(F) F0-generated?

* If def (Q(Fp)) = 0, 1, 2 then gr(Q2(Fp)) =
(

2n+d
2

)
, [Cooperstein, 1998].

* If def(Q(F))= 0, 1 and [F :F0]=g then gr(Q2(F)) ≤
(

2n+d
2

)
+ g , [Blok,Pasini, 2001].
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↓

Qk(F0) subgeometry of Qk(F)

Definition

If 〈Qk(F0)〉Qk (F) = Qk(F) then Qk(F) is F0-generated.

Application: if Qk(F) is F0-generated then gr(Qk(F)) ≤ gr(Qk(F0)).

Problem: When is Qk(F) F0-generated?

* If def (Q(Fp)) = 0, 1, 2 then gr(Q2(Fp)) =
(

2n+d
2

)
, [Cooperstein, 1998].

* If def(Q(F))= 0, 1 and [F :F0]=g then gr(Q2(F)) ≤
(

2n+d
2

)
+ g , [Blok,Pasini, 2001].
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Q(F): non-deg. orthogonal polar space of rank n and def (Q(F)) = d .
Q2(F): line-Grassmannian of Q(F), F: underlying field.

Theorem [I.C, L.Giuzzi, A. Pasini, 2019]

Let Q(F) be a non-degenerate orthogonal polar space of rank n > 2 in
PG(2n + d − 1,F). Put F = Fq with q ∈ {4, 8, 9}.

1 If

 d = 0 and n > 3
or

d = 1, 2 and n ≥ 3

 then gr(Q2(F)) = er(Q2(F)) =
(

2n+d
2

)
.

2 If moreover d ≤ 1 then Q2(F) is generated over the prime subfield
of F.

Theorem [I.C, L.Giuzzi, A. Pasini, 2019]

If Q(F) is a non-degenerate hyperbolic polar space of rank 3 in PG(5,F)
then Q2(F) is never F0-generated, for any proper subfield F0 of F.
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Hermitian grassmannians- known results till now.

H: non-degenerate Hermitian polar space of rank n
Hk : Hermitian grassmannian of rank n

def (Hk) k F gr(Hk) er(Hk) References

0 1 any 2n 2n folklore

0 > 1 6= F4

(2n
k

) (2n
k

)
[1998-2012]

0 n F4 ? (4n + 2)/3 [2002]

1 n Fq ≤ 2n — [2001]

any 6= n 6= F4 if k > 1
(2n+d

k

) (2n+d
k

)
[2019]

d > 0 n 6= F4 if k > 1 ≤ 2n [2019]
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Orthogonal grassmannians- known results till now.

def (Qk) k F gr(Qk) er(Qk) Ref.

1 n 6= F2

(
2n
n

)
−
(

2n
n−2

) (
2n
n

)
−
(

2n
n−2

)
[2007]

1 n F2 ? (2n+1)(2n−1+1)
2 [2001]

d = 0, 1, 2 2 < n Fp

(
2n+d

2

) (
2n+d

2

)
[1998]

d = 0, 1 2 any ≤
(

2n+d
2

)
+ g ? [2001]

d = 0, 1 2, 3 < n
perfect,

char(F) > 0
number field

?
(

2n+d
k

)
[2013]

d = 0 and n > 3
d = 1, 2 and n > 2

2 < n F4,F8,F9

(
2n+d

2

) (
2n+d

2

)
[2019]

d > 0 n char(F) 6= 2 ≤ 2n [2019]
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Open problems

Generating rank of line orthogonal grassmannians Q2(F) for
F 6= Fq, q 6= 4, 8, 9.

Generating rank of k-orthogonal grassmannians for k > 2.

If n > 3, is Q+
n−1(2n − 1,F) generated over subfields?
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Projective codes

Ω: set of N points of PG(V ), V = V (K ,Fq).

l

C(Ω): projective [N,K , dmin]q-code associated to Ω

* The columns of a generator matrix of C(Ω) are coordinates of
the points of Ω.

Theorem

Any semilinear collineation of PΓL(K , q) stabilizing Ω induces
automorphisms of C(Ω).
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Ω ⊂ PG(K − 1,Fq)
C(Ω) : projective [N,K , dmin]q-code associated to Ω

Parameters of C(Ω):

N = |Ω|;
K = dim(〈Ω〉);

dmin = N −maxΠ≤PG(K−1,Fq)
codimΠ=1

|Π ∩ Ω|.

 

 Ω 

Π 

The study of the weights of C(Ω) is equivalent to the study of the
hyperplane sections of Ω.
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Projective codes
C(Ω)
associated to
Ω = ε(Θ).

↪→ Embeddings of Θ:
universal embedding
and its quotient.

↪→ Generating
set of Θ
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Grasmmann embedding of proj. and polar Grassmannians

Gk : k–Grassmannian of PG(V ),V := V (m,Fq), 1 ≤ k < m

Grassmann or Plücker embedding of Gk
ek : Gk → PG(

∧k V )
〈v1, . . . , vk〉 → 〈v1 ∧ v2 ∧ · · · ∧ vk〉

* dim(ek) =
(m
k

)
∆k = (Pk ,Lk): k–polar grassmannian of rank n, 1 ≤ k ≤ n

Grassmann or Plücker embedding of ∆k

εk := ek |Pk
: Pk → Σ ≤ PG(

∧k V )
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Grassmann Codes

Gk : Grassmannian of the k-subspaces of V (m, q).

C(Gk) := C(ek(Gk)): Grassmann code, determined by ek(Gk) ⊆ PG(
∧k V ).

* The parameters of a Grassmann code are known, [Nogin, 1996]:

N = (qm−1)(qm−q)···(qm−qk−1)
(qk−1)(qk−q)···(qk−qk−1)

, K =
(m
k

)
, dmin = q(m−k)k .

k–multilinear
alternating forms on V

↔ Hyperplanes of
∧k V

Remark

Minimum weight codewords in a Grassmann code correspond
to non-null k–multilinear alternating forms with a maximum
number of totally isotropic spaces.

When k = 2 these are non–null alternating forms with
maximum radical.
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∆̄k : Symplectic Grassmannian of rank n
ε̄k : Grassmann embedding of ∆̄k .

Theorem [A.A. Premet, I.D. Suprunenko 1983; B. De Bruyn 2009]

dim(ε̄k) =
(

2n
k

)
−
(

2n
k−2

)
for 1 ≤ k ≤ n.

Qk : Orthogonal Grassmannian of rank n and defect 1
εk : Grassmann embedding of Qk .

Theorem [I.C., A. Pasini, JACo 2013]

If q is odd then dim(εk) =
(

2n+1
k

)
for 1 ≤ k ≤ n.

If q is even then dim(εk) =
(

2n+1
k

)
−
(

2n+1
k−2

)
for 1 ≤ k ≤ n.

Hk : Hermitian Grassmannian of rank n and defect d = 0, 1
εk : Grassmann embedding of Hk .

Theorem [Blok, Cooperstein, 2012; I.C., L. Giuzzi, A. Pasini, 2018]

dim(εk) =
(

2n+d
k

)
for 1 ≤ k ≤ n.
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Definition

∆k : Orthogonal/Hermitian/Symplectic grassmannian

C(∆k) := C(εk(∆k)):

Orthogonal/Hermitian/Symplectic Grassmann code.

X if k = n→ Symplectic Grassmann codes are also called
Lagrangian Grassmann code.

* I.C., Luca Giuzzi, FFA 24 (2013), 148-169.

* J. Carrillo-Pacheco, F. Zaldivar, DCC 60 (2011), 291-298.

* I.C., L. Giuzzi, K. V. Kaipa and A. Pasini, JPAA 220 (2016), 1924-1934.

* I.C., Luca Giuzzi, LAA 488 (2016), 124-134

* I.C., Luca Giuzzi, FFA 46 (2017), 107-138.

* I.C., Luca Giuzzi, FFA 51 (2018), 407-432.

* I.C., Luca Giuzzi, LAA 580 (2019), 96-120.
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Orthogonal Grassmann Codes

Theorem (I.C., L. Giuzzi, K.V. Kaipa, A. Pasini 2013–2017)

The known parameters of an Orthogonal Grassmann Code are
(n, k) N K d

1 ≤ k < n

k−1∏
i=0

q2(n−i) − 1

qi+1 − 1

(
2n + 1

k

)
d ≥ d̃(q, n, k)

(3, 3) (q3 + 1)(q2 + 1)(q + 1) 35 q2(q − 1)(q3 − 1)

(n, 2)
(q2n−1)(q2n−2−1)

(q−1)(q2−1)
(2n + 1)n q4n−5 − q3n−4

q odd

(n, k) N K d

1 ≤ k < n

k−1∏
i=0

q2(n−i) − 1

qi+1 − 1

(
2n + 1

k

)
−
(

2n + 1

k − 2

)
d ≥ d̃(q, n, k)

(3, 3) (q3 + 1)(q2 + 1)(q + 1) 28 q5(q − 1)

(n, 2)
(q2n−1)(q2n−2−1)

(q−1)(q2−1)
(2n + 1)n − 1 q4n−5 − q3n−4

q even

d̃(q, n, k) := (q + 1)(qk(n−k) − 1) + 1
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Symplectic and Hermitian Grassmann codes

Theorem (I.C., L.Giuzzi 2013–2016)

The known parameters of a Symplectic Grassmann code are

(n, k) N K d

(n, 2) (q2n−1)(q2n−2−1)
(q−1)(q2−1) n(2n − 1)− 1 q4n−5 − q2n−3

(3, 3) (q3 + 1)(q2 + 1)(q + 1) 14 q6 − q4

Theorem (I.C., L.Giuzzi 2018)

The known parameters of a Hermitian Grassmann code are

(n, 2) N K d

n = 4, 6 (qn−1)(qn−1+1)(qn−2−1)(qn−3+1)
(q2−1)2(q2+1)

(
n
2

)
q4n−12 − q2n−6

n ≥ 8, even (qn−1)(qn−1+1)(qn−2−1)(qn−3+1)
(q2−1)2(q2+1)

(
n
2

)
q4n−12

n odd (qn+1)(qn−1−1)(qn−2+1)(qn−3−1)
(q2−1)2(q2+1)

(
n
2

)
q4n−12 − q3n−9
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Theorem (I.C., L.Giuzzi 2018)

The known parameters of a Hermitian Grassmann code are

(n, 2) N K d

n = 4, 6 (qn−1)(qn−1+1)(qn−2−1)(qn−3+1)
(q2−1)2(q2+1)
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n
2

)
q4n−12 − q2n−6

n ≥ 8, even (qn−1)(qn−1+1)(qn−2−1)(qn−3+1)
(q2−1)2(q2+1)
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n
2
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(q2−1)2(q2+1)

(
n
2

)
q4n−12 − q3n−9
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Future Developments

Minimum distance of C(∆k) with k > 2

Higher weights

Dual code of C(∆k)

Implementation of C(∆k), k > 2.
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