Generating Sets of Polar Grassmannians

Ilaria Cardinali

University of Siena

University of Delaware - August 21-24, 2019

イロト イヨト イヨト イヨト

Outline

• Basics on polar grassmannians

< □ > < □ > < □ > < □ > < □ > .

æ

Outline

- Basics on polar grassmannians
- Generating sets and embeddings of polar grassmannians

イロト イヨト イヨト イヨト

Outline

- Basics on polar grassmannians
- Generating sets and embeddings of polar grassmannians
- Open problems

イロト イヨト イヨト イヨト

Polar spaces

$$\begin{split} \Delta &= (\mathcal{P}, \mathcal{L}): \text{ non-degenerate polar space of finite rank } n > 2.\\ p \perp q \text{ if } p \text{ and } q \text{ are collinear in } \Delta.\\ X^{\perp} &:= \{x \in \mathcal{P}: x \perp y, \ \forall y \in X\}, \ X \subseteq \mathcal{P} \end{split}$$

イロン イヨン イヨン イヨン

Polar spaces

$$\begin{split} \Delta &= (\mathcal{P}, \mathcal{L}): \text{ non-degenerate polar space of finite rank } n > 2.\\ p \perp q \text{ if } p \text{ and } q \text{ are collinear in } \Delta.\\ X^{\perp} &:= \{x \in \mathcal{P}: x \perp y, \ \forall y \in X\}, \ X \subseteq \mathcal{P} \end{split}$$

* $X \subseteq \mathcal{P}$ is a *subspace* of Δ if every line containing at least two points of X is entirely contained in X.

 \hookrightarrow All subspaces of Δ are (possibly degenerate) polar spaces.

Polar spaces

$$\begin{split} \Delta &= (\mathcal{P}, \mathcal{L}): \text{ non-degenerate polar space of finite rank } n > 2.\\ p \perp q \text{ if } p \text{ and } q \text{ are collinear in } \Delta.\\ X^{\perp} &:= \{x \in \mathcal{P}: x \perp y, \ \forall y \in X\}, \ X \subseteq \mathcal{P} \end{split}$$

- * X ⊆ P is a subspace of Δ if every line containing at least two points of X is entirely contained in X.
 → All subspaces of Δ are (possibly degenerate) polar spaces.
- * X ⊆ P is a singular subspace of Δ if X ⊆ X[⊥].
 → All singular subspaces of Δ are projective spaces.

イロト イポト イヨト イヨト

Polar spaces

$$\begin{split} \Delta &= (\mathcal{P}, \mathcal{L}): \text{ non-degenerate polar space of finite rank } n > 2.\\ p \perp q \text{ if } p \text{ and } q \text{ are collinear in } \Delta.\\ X^{\perp} &:= \{x \in \mathcal{P}: x \perp y, \ \forall y \in X\}, \ X \subseteq \mathcal{P} \end{split}$$

- * X ⊆ P is a subspace of Δ if every line containing at least two points of X is entirely contained in X.
 → All subspaces of Δ are (possibly degenerate) polar spaces.
- * X ⊆ P is a singular subspace of Δ if X ⊆ X[⊥].
 → All singular subspaces of Δ are projective spaces.
- ✓ The rank of Δ (rank (Δ)) is the vector dimension of the maximal singular subspaces of Δ .

 $X \subseteq \mathcal{P}$ is a *nice subspace* of Δ if X is a subspace of Δ and Δ induces on it a non-degenerate polar space of the same rank.

・ 同 ト ・ ヨ ト ・ ヨ ト

 $X \subseteq \mathcal{P}$ is a *nice subspace* of Δ if X is a subspace of Δ and Δ induces on it a non-degenerate polar space of the same rank. \uparrow X contains two mutually disjoint maximal singular subspaces of Δ .

 $X \subseteq \mathcal{P}$ is a *nice subspace* of Δ if X is a subspace of Δ and Δ induces on it a non-degenerate polar space of the same rank. \uparrow X contains two mutually disjoint maximal singular subspaces of Δ .

> $\mathfrak{N}(\Delta) := \{X_i \colon X_i \text{ nice subspace of } \Delta\}.$ $X_0 \subset X_1 \subset \cdots \subset \Delta$

・ 同 ト ・ ヨ ト ・ ヨ ト

 $X \subseteq \mathcal{P}$ is a *nice subspace* of Δ if X is a subspace of Δ and Δ induces on it a non-degenerate polar space of the same rank. \uparrow X contains two mutually disjoint maximal singular subspaces of Δ .

$$\mathfrak{N}(\Delta) := \{X_i \colon X_i ext{ nice subspace of } \Delta\}$$

 $X_0 \subset X_1 \subset \cdots \subset \Delta$

Definition

The anisotropic defect of Δ (def(Δ)) is the least upper bound of the lengths of the well ordered chains of $\mathfrak{N}(\Delta)$ w.r.t. inclusion.

- 4 同 2 4 日 2 4 日 2

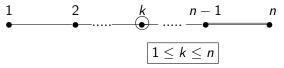
Polar grassmannians

 Δ : non-degenerate polar space of rank *n*

- 4 回 2 - 4 □ 2 - 4 □

Polar grassmannians

 Δ : non-degenerate polar space of rank *n*



 $\Delta_k = (\mathcal{P}_k, \mathcal{L}_k)$: *k*-polar grassmannian associated to Δ

・ロト ・回ト ・ヨト ・ヨト

æ

Polar grassmannians

 Δ : non-degenerate polar space of rank n

$$1 \qquad 2 \qquad k \qquad n-1 \qquad n$$

$$1 \leq k \leq n$$

 $\Delta_k = (\mathcal{P}_k, \mathcal{L}_k)$: *k*-polar grassmannian associated to Δ

* Points of Δ_k : *k*-dim. singular subspaces.

(本間) (本語) (本語)

Polar grassmannians

 Δ : non-degenerate polar space of rank n

$$1 \qquad 2 \qquad k \qquad n-1 \qquad n$$

$$1 \leq k \leq n$$

 $\Delta_k = (\mathcal{P}_k, \mathcal{L}_k)$: *k*-polar grassmannian associated to Δ

- * Points of Δ_k : *k*-dim. singular subspaces.
- * Lines of Δ_k : k < n: sets $\ell_{X,Y} := \{Z \colon X < Z < Y\}$, with $\dim(X) = k - 1$, $\dim(Y) = k + 1$ and Y singular subspace.

A (10) A (10) A (10) A

Polar grassmannians

 Δ : non-degenerate polar space of rank n

$$1 \qquad 2 \qquad k \qquad n-1 \qquad n$$

$$1 \leq k \leq n$$

 $\Delta_k = (\mathcal{P}_k, \mathcal{L}_k)$: *k*-polar grassmannian associated to Δ

* Points of Δ_k : *k*-dim. singular subspaces.

* Lines of
$$\Delta_k$$
:
 $k < n$: sets $\ell_{X,Y} := \{Z : X < Z < Y\}$, with
 $\dim(X) = k - 1$, $\dim(Y) = k + 1$ and Y singular subspace.
 $k = n$: sets $\ell_X := \{Z : X < Z\}$ with
 $\dim(X) = n - 1$ and Z singular subspace.
 Δ_1 : polar space; Δ_n : dual polar space.

Generation

 $\begin{array}{l} \Delta_k = (\mathcal{P}_k, \mathcal{L}_k) : k\text{-polar grassmannian} \\ S \subseteq \mathcal{P}_k \\ \text{Span of } S : \langle S \rangle_{\Delta_k} := \cap \{X \colon X \supseteq S, X \text{ subspace of } \Delta_k\} \end{array}$

・ロン ・回と ・ヨン ・ヨン

2

Generation

$$\Delta_k = (\mathcal{P}_k, \mathcal{L}_k) : k$$
-polar grassmannian
 $S \subseteq \mathcal{P}_k$
Span of S: $\langle S \rangle_{\Delta_k} := \cap \{X : X \supseteq S, X \text{ subspace of } \Delta_k\}$

Definition

- $S \subseteq \mathcal{P}_k$ is a generating set of Δ_k if $\langle S \rangle_{\Delta_k} = \mathcal{P}_k$.
- The generating rank of Δ_k is gr(Δ_k) := min{|S|: S is a generating set of Δ_k}.

イロン イヨン イヨン イヨン

Projective Embeddings

 $\Delta_k = (\mathcal{P}_k, \mathcal{L}_k)$ polar grassmannian.

・ロン ・回と ・ヨン・

æ

 $\Delta_k = (\mathcal{P}_k, \mathcal{L}_k)$ polar grassmannian.

 $\varepsilon : \mathcal{P}_k \to \mathrm{PG}(V)$: projective embedding of Δ_k with $\dim(\varepsilon) := \dim(V)$ if (E1) ε is injective; (E2) $\langle \varepsilon(\mathcal{P}_k) \rangle = \mathrm{PG}(V)$; (E3) $\varepsilon(\ell)$ is a line $\forall \ell \in \mathcal{L}_k$.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

 $\Delta_k = (\mathcal{P}_k, \mathcal{L}_k)$ polar grassmannian.

 $\varepsilon : \mathcal{P}_k \to \mathrm{PG}(V)$: projective embedding of Δ_k with $\dim(\varepsilon) := \dim(V)$ if (E1) ε is injective; (E2) $\langle \varepsilon(\mathcal{P}_k) \rangle = \mathrm{PG}(V)$; (E3) $\varepsilon(\ell)$ is a line $\forall \ell \in \mathcal{L}_k$.

 $\varepsilon_1 : \Delta_k \to \operatorname{PG}(V_1), \ \varepsilon_2 : \Delta_k \to \operatorname{PG}(V_2)$

・ロン ・回 と ・ ヨ と ・ ヨ と

 $\Delta_k = (\mathcal{P}_k, \mathcal{L}_k)$ polar grassmannian.

 $\varepsilon : \mathcal{P}_k \to \mathrm{PG}(V)$: projective embedding of Δ_k with $\dim(\varepsilon) := \dim(V)$ if (E1) ε is injective; (E2) $\langle \varepsilon(\mathcal{P}_k) \rangle = \mathrm{PG}(V)$; (E3) $\varepsilon(\ell)$ is a line $\forall \ell \in \mathcal{L}_k$.

$$\varepsilon_1: \Delta_k \to \mathrm{PG}(V_1), \ \varepsilon_2: \Delta_k \to \mathrm{PG}(V_2)$$

 $\varepsilon_1 \text{ covers } \varepsilon_2 \ (\varepsilon_2 \leq \varepsilon_1) \text{ if } \exists f \colon V_1 \to V_2 \text{ semilinear such that } \varepsilon_2 \simeq f \circ \varepsilon_1.$

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\Delta_k = (\mathcal{P}_k, \mathcal{L}_k)$ polar grassmannian.

 $\varepsilon : \mathcal{P}_k \to \mathrm{PG}(V)$: projective embedding of Δ_k with $\dim(\varepsilon) := \dim(V)$ if (E1) ε is injective; (E2) $\langle \varepsilon(\mathcal{P}_k) \rangle = \mathrm{PG}(V)$; (E3) $\varepsilon(\ell)$ is a line $\forall \ell \in \mathcal{L}_k$.

$$\varepsilon_1: \Delta_k \to \operatorname{PG}(V_1), \ \varepsilon_2: \Delta_k \to \operatorname{PG}(V_2)$$

 $\varepsilon_1 \text{ covers } \varepsilon_2 \ (\varepsilon_2 \leq \varepsilon_1) \text{ if } \exists f \colon V_1 \to V_2 \text{ semilinear such that } \varepsilon_2 \simeq f \circ \varepsilon_1.$

 ε^{univ} : universal embedding of Δ_k if $\varepsilon \leq \varepsilon^{univ}$, \forall proj. embed. ε of Δ_k .

 $\Delta_k = (\mathcal{P}_k, \mathcal{L}_k)$ polar grassmannian.

 $\varepsilon : \mathcal{P}_k \to \mathrm{PG}(V)$: projective embedding of Δ_k with $\dim(\varepsilon) := \dim(V)$ if (E1) ε is injective; (E2) $\langle \varepsilon(\mathcal{P}_k) \rangle = \mathrm{PG}(V)$; (E3) $\varepsilon(\ell)$ is a line $\forall \ell \in \mathcal{L}_k$.

$$\varepsilon_1: \Delta_k \to \operatorname{PG}(V_1), \ \varepsilon_2: \Delta_k \to \operatorname{PG}(V_2)$$

 $\varepsilon_1 \text{ covers } \varepsilon_2 \ (\varepsilon_2 \leq \varepsilon_1) \text{ if } \exists f \colon V_1 \to V_2 \text{ semilinear such that } \varepsilon_2 \simeq f \circ \varepsilon_1.$

 ε^{univ} : universal embedding of Δ_k if $\varepsilon \leq \varepsilon^{univ}$, \forall proj. embed. ε of Δ_k .

Theorem [A. Kasikova, E.E. Shult 2001]

Polar grassmannians* admit the universal embedding.

(ロ) (同) (E) (E) (E)

 $\Delta_k = (\mathcal{P}_k, \mathcal{L}_k)$ polar grassmannian.

 $\varepsilon : \mathcal{P}_k \to \mathrm{PG}(V)$: projective embedding of Δ_k with $\dim(\varepsilon) := \dim(V)$ if (E1) ε is injective; (E2) $\langle \varepsilon(\mathcal{P}_k) \rangle = \mathrm{PG}(V)$; (E3) $\varepsilon(\ell)$ is a line $\forall \ell \in \mathcal{L}_k$.

$$\varepsilon_1: \Delta_k \to \operatorname{PG}(V_1), \ \varepsilon_2: \Delta_k \to \operatorname{PG}(V_2)$$

 $\varepsilon_1 \text{ covers } \varepsilon_2 \ (\varepsilon_2 \leq \varepsilon_1) \text{ if } \exists f \colon V_1 \to V_2 \text{ semilinear such that } \varepsilon_2 \simeq f \circ \varepsilon_1.$

 ε^{univ} : universal embedding of Δ_k if $\varepsilon \leq \varepsilon^{univ}$, \forall proj. embed. ε of Δ_k .

Theorem [A. Kasikova, E.E. Shult 2001]

Polar grassmannians* admit the universal embedding.

Definition

The *embedding rank* of Δ_k is $er(\Delta_k) := dim(\varepsilon^{univ})$.

 $\begin{array}{l} \varepsilon: \Delta_k \to \operatorname{PG}(V): \text{ projective embedding of } \Delta_k\\ S: \text{ generating set of } \Delta_k \\ \downarrow \end{array}$

イロト イヨト イヨト イヨト

æ

$$\begin{split} \varepsilon : \Delta_k &\to \mathrm{PG}(V): \text{ projective embedding of } \Delta_k \\ S: \text{ generating set of } \Delta_k \\ & \downarrow \\ \varepsilon(\langle S \rangle_{\Delta_k}) \subseteq \langle \varepsilon(S) \rangle_{\mathrm{PG}(V)} \\ \downarrow \end{split}$$

・ロン ・四と ・ヨン ・ヨ

$$\begin{array}{c} \varepsilon: \Delta_k \to \operatorname{PG}(V): \text{ projective embedding of } \Delta_k \\ S: \text{ generating set of } \Delta_k \\ \downarrow \\ \varepsilon(\langle S \rangle_{\Delta_k}) \subseteq \langle \varepsilon(S) \rangle_{\operatorname{PG}(V)} \\ \downarrow \\ \dim(\varepsilon) \leq \operatorname{gr}(\Delta_k). \\ \downarrow \end{array}$$

< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

$$\varepsilon: \Delta_k \to \operatorname{PG}(V): \text{ projective embedding of } \Delta_k$$

$$S: \text{ generating set of } \Delta_k$$

$$\downarrow \\ \varepsilon(\langle S \rangle_{\Delta_k}) \subseteq \langle \varepsilon(S) \rangle_{\operatorname{PG}(V)}$$

$$\downarrow \\ \dim(\varepsilon) \leq \operatorname{gr}(\Delta_k).$$

$$\downarrow \\ er(\Delta_k) \leq \operatorname{gr}(\Delta_k)$$

* If ε is a projective embedding of Δ_k with dim $(\varepsilon) = \operatorname{gr}(\Delta_k)$ then ε is the universal embedding of Δ_k .

イロト イヨト イヨト イヨト

æ

 $\Delta_k = (\mathcal{P}_k, \mathcal{L}_k)$ polar grassmannian

Generation of Δ_k

- * generating set ?
- * generating rank ?

Embeddings of Δ_k

- * Dimension ?
- * Universality ?
- * Transparency ?
- * Application: codes

< **₩** ► < **⇒** ►

Polar spaces embedded

 Δ : non-degenerate polar space of rank (Δ) = *n* and def(Δ) = *d*. $\varepsilon : \Delta \rightarrow PG(V)$: universal embedding, $V = V(N, \mathbb{F})$, $N = er(\Delta)$.

・ 同・ ・ ヨ・ ・ ヨ・

Polar spaces embedded

 Δ : non-degenerate polar space of rank (Δ) = *n* and def(Δ) = *d*. $\varepsilon : \Delta \rightarrow PG(V)$: universal embedding, $V = V(N, \mathbb{F})$, $N = er(\Delta)$.

* $\varepsilon(\Delta)$ is associated to a non-degenerate alternating, Hermitian or quadratic form f of V

$$\begin{array}{rcl} \Delta & \leftrightarrow & \Delta(f) \\ \mbox{singular subspaces of } \Delta & \leftrightarrow & \mbox{totally } f\mbox{-singular subspaces of } V \\ \mbox{rank}(\Delta) & = & \mbox{Witt index of } f \end{array}$$

- 4 同 6 4 日 6 4 日 6

Polar spaces embedded

 Δ : non-degenerate polar space of rank (Δ) = *n* and def(Δ) = *d*. $\varepsilon : \Delta \to PG(V)$: universal embedding, $V = V(N, \mathbb{F})$, $N = er(\Delta)$.

> * $\varepsilon(\Delta)$ is associated to a non-degenerate alternating, Hermitian or quadratic form f of V

$$egin{array}{cccc} \Delta & \leftrightarrow & \Delta(f) \ {
m singular\ subspaces\ of\ } \Delta & \leftrightarrow & {
m totally\ } f\mbox{-singular\ subspaces\ of\ } V \ {
m rank}(\Delta) & = & {
m Witt\ index\ of\ } f \end{array}$$

* If $char(\mathbb{F}) = 2$ then f cannot be alternating.

* If $char(\mathbb{F}) \neq 2$ or f is Hermitian then ε is the unique embedding of Δ .

* If $char(\mathbb{F}) = 2$ and f is quadratic then ε admits several proper quotients associated to generalized quadratic forms.

・ロン ・回 と ・ ヨ と ・ ヨ と

 $\begin{array}{l} \Delta: \text{ non-degenerate polar space of } \operatorname{rank}\left(\Delta\right) = n \text{ and } \operatorname{def}(\Delta) = d. \\ \varepsilon: \Delta \to \operatorname{PG}(V): \text{ universal embedding} \\ \Delta \hookrightarrow \Delta(f), f: \text{ non-deg. Hermitian or quadratic form of } V \\ \text{ of Witt index } n \end{array}$

- - 4 回 ト - 4 回 ト

 $\begin{array}{l} \Delta: \text{ non-degenerate polar space of } \operatorname{rank}\left(\Delta\right) = n \text{ and } \operatorname{def}(\Delta) = d. \\ \varepsilon: \Delta \to \operatorname{PG}(V): \text{ universal embedding} \\ \Delta \hookrightarrow \Delta(f), f: \text{ non-deg. Hermitian or quadratic form of } V \\ \text{ of Witt index } n \end{array}$

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_n \quad \oplus \quad$$

mutually orthogonal hyperbolic 2-spaces V_0

anisotropic space orthogonal to V_i

A (1) > A (2) > A

 $\begin{array}{l} \Delta: \text{ non-degenerate polar space of } \operatorname{rank}\left(\Delta\right) = n \text{ and } \operatorname{def}(\Delta) = d. \\ \varepsilon: \Delta \to \operatorname{PG}(V): \text{ universal embedding} \\ \Delta \hookrightarrow \Delta(f), f: \text{ non-deg. Hermitian or quadratic form of } V \\ \text{ of Witt index } n \end{array}$

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_n \quad \oplus \quad$$

mutually orthogonal hyperbolic 2-spaces

 V_0

anisotropic space orthogonal to V_i

イロト イヨト イヨト イヨト

Definition

The *anisotropic defect* of f(def(f)) is the dimension of V_0 .

 $\begin{array}{l} \Delta: \text{ non-degenerate polar space of } \operatorname{rank}\left(\Delta\right) = n \text{ and } \operatorname{def}(\Delta) = d. \\ \varepsilon: \Delta \to \operatorname{PG}(V): \text{ universal embedding} \\ \Delta \hookrightarrow \Delta(f), f: \text{ non-deg. Hermitian or quadratic form of } V \\ \text{ of Witt index } n \end{array}$

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_n \quad \oplus \quad$$

mutually orthogonal hyperbolic 2-spaces

 V_0

anisotropic space orthogonal to V_i

イロト イポト イヨト イヨト

Definition

The *anisotropic defect* of $f(\operatorname{def}(f))$ is the dimension of V_0 .

Theorem [I.C., L. Giuzzi, A. Pasini, 2019]

$$\operatorname{def}(\Delta) = \operatorname{def}(f)(= \dim(V) - 2n)$$

$$\begin{split} V &= V(N, \mathbb{F}) \\ f: \text{ non-deg. Hermitian or quadratic form of Witt index } n > 2. \\ \Delta(f): \text{ non-degenerate polar space associated to } f. \\ 1 &\leq k \leq n \\ \Delta_k: \text{ polar } k\text{-}\text{Grassmannian associated to } f. \\ f \text{ hermitian } \rightarrow \mathcal{H}_k: \text{ Hermitian } k\text{-}\text{grassmannian} \\ \mathcal{H}: \text{ Hermitian polar space} \end{split}$$

f quadratic $\rightarrow \mathcal{Q}_k$: Orthogonal k-grassmannian \mathcal{Q} : Orthogonal polar space

* The points of Δ_k are points of the *k*-projective Grassmannian \mathcal{G}_k of $\operatorname{PG}(V)$ and for k < n also the lines of Δ_k are lines of \mathcal{G}_k .

イロト イポト イヨト イヨト

Hermitian grassmannians- known results at 2018.

 \mathcal{H} : non-degenerate Hermitian polar space of rank n \mathcal{H}_k : Hermitian grassmannian of rank n

$def(\mathcal{H}_k)$	k	F	$\operatorname{gr}(\mathcal{H}_k)$	$\operatorname{er}(\mathcal{H}_k)$	References
d = 0, 1	1	any	2n+d	2n+d	folklore
0	>1	$\neq \mathbb{F}_4$	$\binom{2n}{k}$	$\binom{2n}{k}$	[1998-2012]
0	n	\mathbb{F}_4	?	$(4^n + 2)/3$	[2002]
1	n	\mathbb{F}_q	$\leq 2^n$	—	[2001]

Orthogonal grassmannians- known results at 2018. 1/2

$\mathcal{Q}:$ non-degenerate Orthogonal polar space of rank n $\mathcal{Q}_k:$ Orthogonal grassmannian of rank n

$def(\mathcal{Q}_k)$	k	F	$\operatorname{gr}(\mathcal{Q}_k)$	$\operatorname{er}(\mathcal{Q}_k)$	References
$0 \le d \le 2$	1	any	2n+d	2n+d	folklore
0	n	any	$\prod_{i=0}^{n-1} (\mathbb{F} ^i + 1)$		[1983]
d = 1,2	п	$\operatorname{char}(\mathbb{F}) \neq 2$	2 ⁿ	2 ⁿ	[1998-2011]
2	n	$\operatorname{char}(\mathbb{F}) = 2$	2 ⁿ	2 ⁿ	[2001],[2011]

向下 イヨト イヨト

Orthogonal grassmannians- known results at 2018. 2/2

$def(Q_k)$	k	F	$\operatorname{gr}(\mathcal{Q}_k)$	$\operatorname{er}(\mathcal{Q}_k)$	Ref.
1	n	$\neq \mathbb{F}_2$	$\binom{2n}{n} - \binom{2n}{n-2}$	$\binom{2n}{n} - \binom{2n}{n-2}$	[2007]
1	п	\mathbb{F}_2	?	$\frac{(2^n+1)(2^{n-1}+1)}{2}$	[2001]
d = 0, 1, 2	2 < <i>n</i>	\mathbb{F}_{p}	$\binom{2n+d}{2}$	$\binom{2n+d}{2}$	[1998]
d = 0, 1	2	any	$\leq \binom{2n+d}{2}+g$?	[2001]
<i>d</i> = 0, 1	2,3 < n	perfect, $char(\mathbb{F}) > 0$ number field	?	$\binom{2n+d}{k}$	[2013]

- 4 回 2 - 4 □ 2 - 4 □

References

- (1) R.J. Blok and A.E. Brouwer, J. Geom. 62 (1998).
- (2) R.J. Blok, European J. Combin. 28 (2007).
- (3) R.J. Blok and B.N. Cooperstein, JCTA, 119 (2012).
- (4) R.J. Blok and A. Pasini, Kluwer, Dordrecth (2001).
- (5) I.Cardinali and A.Pasini, J.Alg.Combin. 38 (2013).
- (6) B.N. Cooperstein, European J. Combin. 18 (1997).
- (7) B.N. Cooperstein, Bull. Belg. Math. Soc. 5 (1998).
- (8) B.N. Cooperstein, J. Alg. Combin. 13 (2001).
- (9) B.N. Cooperstein and E.E.Shult, J. Geom 60 (1997).
- (10) B.De Bruyn, Linear Multilinear Algebra 58(7) (2010).
- (11) B.De Bruyn, Ars Combinatoria 99 (2011).
- (12) B. De Bruyn and A. Pasini. Elect. J. Combin. 14 (2007).
- (13) P. Li. JCTA,94 (2001).
- (14) P. Li. JCTA, **98** (2002).
- (15) A.L. Wells, Quart. J. Math Oxford (2), 34 (1983).

イロン イヨン イヨン イヨン

New results - Extremal cases: k = 1 and k = n

- Δ : non-degenerate polar space of rank (Δ) = *n* and def(Δ) = *d*.
- *H*: hyperplane of Δ

(i.e. *H* is a proper subspace s.t. $|H \cap \ell| = 1$ or $\ell \subseteq H, \forall \ell$ line of Δ)

・ 同 ト ・ ヨ ト ・ ヨ ト

New results - Extremal cases: k = 1 and k = n

- Δ : non-degenerate polar space of $\operatorname{rank}(\Delta) = n$ and $\operatorname{def}(\Delta) = d$.
- *H*: hyperplane of Δ

(i.e. *H* is a proper subspace s.t. $|H \cap \ell| = 1$ or $\ell \subseteq H, \forall \ell$ line of Δ)

Theorem [I.C., L. Giuzzi, A. Pasini, 2019]

• If d > 0 the set H_n of *n*-singular subspaces contained in H is a generating set of the dual polar space Δ_n .

$$2 \operatorname{gr}(\Delta_n) \leq \operatorname{gr}(H_n).$$

イロト イポト イヨト イヨト

New results - Extremal cases: k = 1 and k = n

- Δ : non-degenerate polar space of $\operatorname{rank}(\Delta) = n$ and $\operatorname{def}(\Delta) = d$.
- *H*: hyperplane of Δ

(i.e. *H* is a proper subspace s.t. $|H \cap \ell| = 1$ or $\ell \subseteq H, \forall \ell$ line of Δ)

Theorem [I.C., L. Giuzzi, A. Pasini, 2019]

• If d > 0 the set H_n of *n*-singular subspaces contained in H is a generating set of the dual polar space Δ_n .

 $(2) \operatorname{gr}(\Delta_n) \leq \operatorname{gr}(H_n).$

Theorem [I.C., L. Giuzzi, A. Pasini, 2019]

If there exists at least one maximal well ordered chain of nice subspaces of Δ and Δ admits an embedding of dimension 2n + d, then $\operatorname{gr}(\Delta) = \operatorname{er}(\Delta) = 2n + d$.

イロン 不同と 不同と 不同と

 Δ : non-degenerate polar space of rank (Δ) = n and def(Δ) = d. H: hyperplane of Δ , p_0 : point of $\Delta \setminus H$.

・ロン ・回と ・ヨン ・ヨン

æ

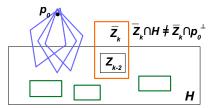
Constructions for $2 \le k < n$

 $\begin{array}{ll} \Delta: \text{ non-degenerate polar space of } \operatorname{rank}(\Delta) = n \text{ and } \operatorname{def}(\Delta) = d. \\ H: \text{ hyperplane of } \Delta, \qquad p_0: \text{ point of } \Delta \setminus H. \\ S_k(H) := \{X_k \colon X_k \subseteq H\}, \qquad S_k(p_0) := \{X_k \colon p_0 \in X_k\}, \end{array}$

イロン イヨン イヨン イヨン

2

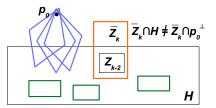
 $\begin{array}{ll} \Delta: \text{ non-degenerate polar space of } \operatorname{rank}\left(\Delta\right) = n \text{ and } \operatorname{def}(\Delta) = d. \\ H: \text{ hyperplane of } \Delta, \qquad p_0: \text{ point of } \Delta \setminus H. \\ S_k(H) := \{X_k \colon X_k \subseteq H\}, \qquad S_k(p_0) := \{X_k \colon p_0 \in X_k\}, \\ \overline{G}_{H,p_0} := \{\overline{Z}_k \colon Z_{k-2} \in G_{H,p_0}\} \text{ where } G_{H,p_0} \text{ is a generating set of } (H \cap p_0^{\perp})_{k-2}. \end{array}$



$$S_k(H, p_0, \overline{G}_{H, p_0}) := S_k(H) \cup S_k(p_0) \cup \overline{G}_{H, p_0}$$

< 三 ▶ …

 $\begin{array}{ll} \Delta: \text{ non-degenerate polar space of } \operatorname{rank}\left(\Delta\right) = n \text{ and } \operatorname{def}(\Delta) = d. \\ H: \text{ hyperplane of } \Delta, \qquad p_0: \text{ point of } \Delta \setminus H. \\ S_k(H) := \{X_k \colon X_k \subseteq H\}, \qquad S_k(p_0) := \{X_k \colon p_0 \in X_k\}, \\ \overline{G}_{H,p_0} := \{\overline{Z}_k \colon Z_{k-2} \in G_{H,p_0}\} \text{ where } G_{H,p_0} \text{ is a generating set of } (H \cap p_0^{\perp})_{k-2}. \end{array}$



 $S_k(H, p_0, \overline{G}_{H, p_0}) := S_k(H) \cup S_k(p_0) \cup \overline{G}_{H, p_0}$

Theorem [I.C, L.Giuzzi, A. Pasini, 2019]

The set $S_k(H, p_0, \overline{G}_{H,p_0})$ spans Δ_k for any k = 2, 3, ..., n - 1.

 Δ : non-degenerate polar space of rank (Δ) = *n* and def(Δ) = *d*. $H = q^{\perp}$: singular hyperplane, p_0 : point of $\Delta \setminus H$ s.t. $p_0 \not\perp q$

イロン イヨン イヨン イヨン

Constructions for $2 \le k < n$

 $\begin{array}{ll} \Delta: \text{ non-degenerate polar space of } \operatorname{rank}(\Delta) = n \text{ and } \operatorname{def}(\Delta) = d. \\ H = q^{\perp}: \text{ singular hyperplane,} & p_0: \text{ point of } \Delta \setminus H \text{ s.t. } p_0 \not\perp q \\ S_k(q) := \{X_k : p_0 \in X_k\}, & S_k(\{q, p_0\}^{\perp}) := \{X_k : X_k \subseteq \{q, p_0\}^{\perp}\}, \end{array}$

(4回) (4回) (4回)

Constructions for $2 \le k < n$

$$\Delta: \text{ non-degenerate polar space of rank } (\Delta) = n \text{ and } \operatorname{def}(\Delta) = d.$$

$$H = q^{\perp}: \text{ singular hyperplane, } p_0: \text{ point of } \Delta \setminus H \text{ s.t. } p_0 \not\perp q$$

$$S_k(q) := \{X_k : p_0 \in X_k\}, \qquad S_k(\{q, p_0\}^{\perp}) := \{X_k : X_k \subseteq \{q, p_0\}^{\perp}\},$$

$$\overline{G}_{q,p_0} := \{\overline{Z}_k : Z_{k-2} \in G_{q,p_0}\} \text{ where } G_{q,p_0} \text{ is a generating set of } (\{q, p_0\}^{\perp})_{k-2}.$$

 $S_k(q, p_0, \overline{G}_{q, p_0}) := S_k(q) \cup S_k(\{q, p_0\}^{\perp}) \cup S_k(p_0) \cup \overline{G}_{q, p_0}$

문 🛌 문

Constructions for $2 \le k < n$

$$\Delta: \text{ non-degenerate polar space of rank } (\Delta) = n \text{ and } def(\Delta) = d.$$

$$H = q^{\perp}: \text{ singular hyperplane, } p_0: \text{ point of } \Delta \setminus H \text{ s.t. } p_0 \not\perp q$$

$$S_k(q) := \{X_k: p_0 \in X_k\}, \quad S_k(\{q, p_0\}^{\perp}) := \{X_k: X_k \subseteq \{q, p_0\}^{\perp}\},$$

$$\overline{G}_{q,p_0} := \{\overline{Z}_k: Z_{k-2} \in G_{q,p_0}\} \text{ where } G_{q,p_0} \text{ is a generating set of } (\{q, p_0\}^{\perp})_{k-2}.$$

$$P_0 = \{\overline{Z}_k: Z_{k-2} \in G_{q,p_0}\} \text{ where } G_{q,p_0} \text{ is a generating set of } (\{q, p_0\}^{\perp})_{k-2}.$$

$$P_0 = \{\overline{Z}_k: \overline{Z}_k = \overline{Z}_k, (q, p_0, \overline{G}_{q,p_0}) := S_k(q) \cup S_k(\{q, p_0\}^{\perp}) \cup S_k(p_0) \cup \overline{G}_{q,p_0}.$$

$$S_k(q, p_0, \overline{G}_{q,p_0}) := S_k(q) \cup S_k(\{q, p_0\}^{\perp}) \cup S_k(p_0) \cup \overline{G}_{q,p_0}.$$

$$Corollary [I.C, L.Giuzzi, A. Pasini, 2019]$$
The set $S_k(q, p_0, \widehat{G}_{q,p_0})$ spans Δ_k for any $k = 2, 3, ..., n-1.$

Generation of Hermitian Grassmannians

 \mathcal{H} : non-deg. Hermitian polar space of rank n and $def(\mathcal{H}) = d$. \mathcal{H}_k : k-Grassmannian of \mathcal{H} , for $1 \le k \le n$. \mathbb{F} : underlying field of \mathcal{H} .

イロト イヨト イヨト イヨト

Generation of Hermitian Grassmannians

 \mathcal{H} : non-deg. Hermitian polar space of rank n and $def(\mathcal{H}) = d$. \mathcal{H}_k : k-Grassmannian of \mathcal{H} , for $1 \le k \le n$. \mathbb{F} : underlying field of \mathcal{H} .

Theorem [I.C., L.Giuzzi, A. Pasini, 2019]

1 If $d < \infty$, k < n (and $\mathbb{F} \neq \mathbb{F}_4$ when k > 1) then $\operatorname{gr}(\mathcal{H}_k) = \binom{2n+d}{k}$.

2 If d > 0 and k = n then $gr(\mathcal{H}_n) \leq 2^n$.

Generation of Hermitian Grassmannians

 \mathcal{H} : non-deg. Hermitian polar space of rank n and $def(\mathcal{H}) = d$. \mathcal{H}_k : k-Grassmannian of \mathcal{H} , for $1 \le k \le n$. \mathbb{F} : underlying field of \mathcal{H} .

Theorem [I.C., L.Giuzzi, A. Pasini, 2019]

1 If $d < \infty$, k < n (and $\mathbb{F} \neq \mathbb{F}_4$ when k > 1) then $\operatorname{gr}(\mathcal{H}_k) = \binom{2n+d}{k}$.

2 If d > 0 and k = n then $gr(\mathcal{H}_n) \leq 2^n$.

Corollary [I.C., L.Giuzzi, A. Pasini, 2019]

If $d < \infty$, k < n (and $\mathbb{F} \neq \mathbb{F}_4$ when k > 1) then the Plücker embedding of \mathcal{H}_k is universal.

・ロン ・回と ・ヨン ・ヨン

Generation of Orthogonal Grassmannians

 \mathcal{Q} : non-deg. orthogonal polar space of rank *n* and $def(\mathcal{Q}) = d$. \mathcal{Q}_n : dual polar space of orthogonal type, \mathbb{F} : underlying field of \mathcal{Q} .

Theorem [I.C, L.Giuzzi, A. Pasini, 2019]

If d > 0 and $char(\mathbb{F}) \neq 2$ then $gr(\mathcal{Q}_n) \leq 2^n$.

When $0 < d \le 2$ and $char(\mathbb{F}) \ne 2$ the inequality $gr(\mathcal{Q}_n) \le 2^n$ is in fact an equality. Perhaps the same is true when d > 2 but, since \mathcal{Q}_n is not (projectively) embeddable when d > 2, there is no easy way to prove it.

イロン イヨン イヨン イヨン

 $\mathcal{Q}(\mathbb{F})$: non-degenerate orthogonal polar space in $\mathrm{PG}(V)$, $V = V(N, \mathbb{F})$ \mathbb{F}_0 : proper subfield of \mathbb{F}

・ 同 ト ・ 臣 ト ・ 臣 ト

æ

 $\mathcal{Q}(\mathbb{F})$: non-degenerate orthogonal polar space in $\mathrm{PG}(V)$, $V = V(N, \mathbb{F})$ \mathbb{F}_0 : proper subfield of \mathbb{F}

 $\mathcal{Q}(\mathbb{F}_0)$: non-degenerate orthogonal polar space in $\mathrm{PG}(V_0)$, $V_0 = V(N, \mathbb{F}_0)$

(4回) (1日) (日)

 $\mathcal{Q}(\mathbb{F})$: non-degenerate orthogonal polar space in $\mathrm{PG}(V)$, $V = V(N, \mathbb{F})$ \mathbb{F}_0 : proper subfield of \mathbb{F} $\mathcal{Q}(\mathbb{F}_0)$: non-degenerate orthogonal polar space in $\mathrm{PG}(V_0)$, $V_0 = V(N, \mathbb{F}_0)$ $\mathrm{PG}(V_0)$ subgeometry of $\mathrm{PG}(V)$ \downarrow

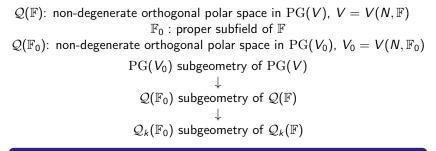
・ 回 と ・ ヨ と ・ ヨ と …

```
\begin{array}{l} \mathcal{Q}(\mathbb{F}): \text{ non-degenerate orthogonal polar space in } \mathrm{PG}(V), \ V = V(N, \mathbb{F}) \\ \mathbb{F}_0: \text{ proper subfield of } \mathbb{F} \\ \mathcal{Q}(\mathbb{F}_0): \text{ non-degenerate orthogonal polar space in } \mathrm{PG}(V_0), \ V_0 = V(N, \mathbb{F}_0) \\ \mathrm{PG}(V_0) \text{ subgeometry of } \mathrm{PG}(V) \\ \downarrow \\ \mathcal{Q}(\mathbb{F}_0) \text{ subgeometry of } \mathcal{Q}(\mathbb{F}) \\ \downarrow \end{array}
```

・ 回 ト ・ ヨ ト ・ ヨ ト ・

```
\begin{array}{l} \mathcal{Q}(\mathbb{F}): \text{ non-degenerate orthogonal polar space in } \mathrm{PG}(V), \ V = V(N, \mathbb{F}) \\ \mathbb{F}_0: \text{ proper subfield of } \mathbb{F} \\ \mathcal{Q}(\mathbb{F}_0): \text{ non-degenerate orthogonal polar space in } \mathrm{PG}(V_0), \ V_0 = V(N, \mathbb{F}_0) \\ \mathrm{PG}(V_0) \text{ subgeometry of } \mathrm{PG}(V) \\ \downarrow \\ \mathcal{Q}(\mathbb{F}_0) \text{ subgeometry of } \mathcal{Q}(\mathbb{F}) \\ \downarrow \\ \mathcal{Q}_k(\mathbb{F}_0) \text{ subgeometry of } \mathcal{Q}_k(\mathbb{F}) \end{array}
```

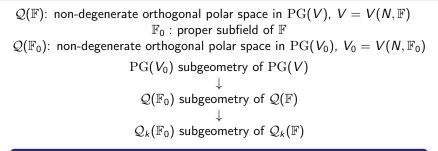
◆□→ ◆ □→ ◆ □→



Definition

If $\langle \mathcal{Q}_k(\mathbb{F}_0) \rangle_{\mathcal{Q}_k(\mathbb{F})} = \mathcal{Q}_k(\mathbb{F})$ then $\mathcal{Q}_k(\mathbb{F})$ is \mathbb{F}_0 -generated.

イロン イヨン イヨン イヨン



Definition

If $\langle \mathcal{Q}_k(\mathbb{F}_0) \rangle_{\mathcal{Q}_k(\mathbb{F})} = \mathcal{Q}_k(\mathbb{F})$ then $\mathcal{Q}_k(\mathbb{F})$ is \mathbb{F}_0 -generated.

Application: if $\mathcal{Q}_k(\mathbb{F})$ is \mathbb{F}_0 -generated then $\operatorname{gr}(\mathcal{Q}_k(\mathbb{F})) \leq \operatorname{gr}(\mathcal{Q}_k(\mathbb{F}_0))$.

イロト イヨト イヨト イヨト

 $\begin{array}{l} \mathcal{Q}(\mathbb{F}): \text{ non-degenerate orthogonal polar space in } \mathrm{PG}(V), \ V = V(N,\mathbb{F}) \\ \mathbb{F}_0: \text{ proper subfield of } \mathbb{F} \\ \mathcal{Q}(\mathbb{F}_0): \text{ non-degenerate orthogonal polar space in } \mathrm{PG}(V_0), \ V_0 = V(N,\mathbb{F}_0) \\ \mathrm{PG}(V_0) \text{ subgeometry of } \mathrm{PG}(V) \\ \downarrow \\ \mathcal{Q}(\mathbb{F}_0) \text{ subgeometry of } \mathcal{Q}(\mathbb{F}) \\ \downarrow \\ \mathcal{Q}_k(\mathbb{F}_0) \text{ subgeometry of } \mathcal{Q}_k(\mathbb{F}) \end{array}$

Definition

If $\langle \mathcal{Q}_k(\mathbb{F}_0) \rangle_{\mathcal{Q}_k(\mathbb{F})} = \mathcal{Q}_k(\mathbb{F})$ then $\mathcal{Q}_k(\mathbb{F})$ is \mathbb{F}_0 -generated.

Application: if $\mathcal{Q}_k(\mathbb{F})$ is \mathbb{F}_0 -generated then $\operatorname{gr}(\mathcal{Q}_k(\mathbb{F})) \leq \operatorname{gr}(\mathcal{Q}_k(\mathbb{F}_0))$.

Problem: When is $\mathcal{Q}_k(\mathbb{F}) \mathbb{F}_0$ -generated?

(ロ) (同) (E) (E) (E)

 $\begin{array}{l} \mathcal{Q}(\mathbb{F}): \text{ non-degenerate orthogonal polar space in } \mathrm{PG}(V), \ V = V(N,\mathbb{F}) \\ \mathbb{F}_0: \text{ proper subfield of } \mathbb{F} \\ \mathcal{Q}(\mathbb{F}_0): \text{ non-degenerate orthogonal polar space in } \mathrm{PG}(V_0), \ V_0 = V(N,\mathbb{F}_0) \\ \mathrm{PG}(V_0) \text{ subgeometry of } \mathrm{PG}(V) \\ \downarrow \\ \mathcal{Q}(\mathbb{F}_0) \text{ subgeometry of } \mathcal{Q}(\mathbb{F}) \\ \downarrow \\ \mathcal{Q}_k(\mathbb{F}_0) \text{ subgeometry of } \mathcal{Q}_k(\mathbb{F}) \end{array}$

Definition

If $\langle \mathcal{Q}_k(\mathbb{F}_0) \rangle_{\mathcal{Q}_k(\mathbb{F})} = \mathcal{Q}_k(\mathbb{F})$ then $\mathcal{Q}_k(\mathbb{F})$ is \mathbb{F}_0 -generated.

Application: if $\mathcal{Q}_k(\mathbb{F})$ is \mathbb{F}_0 -generated then $\operatorname{gr}(\mathcal{Q}_k(\mathbb{F})) \leq \operatorname{gr}(\mathcal{Q}_k(\mathbb{F}_0))$.

Problem: When is $\mathcal{Q}_k(\mathbb{F}) \mathbb{F}_0$ -generated?

* If $def(\mathcal{Q}(\mathbb{F}_p)) = 0, 1, 2$ then $\operatorname{gr}(\mathcal{Q}_2(\mathbb{F}_p)) = \binom{2n+d}{2}$, [Cooperstein, 1998]. * If $def(\mathcal{Q}(\mathbb{F})) = 0, 1$ and $[\mathbb{F}:\mathbb{F}_0] = g$ then $\operatorname{gr}(\mathcal{Q}_2(\mathbb{F})) \leq \binom{2n+d}{2} + g$, [Blok,Pasini, 2001]. Haria Cardinali Generating Sets of Polar Grassmannians

 $\mathcal{Q}(\mathbb{F})$: non-deg. orthogonal polar space of rank *n* and $def(\mathcal{Q}(\mathbb{F})) = d$. $\mathcal{Q}_2(\mathbb{F})$: line-Grassmannian of $\mathcal{Q}(\mathbb{F})$, \mathbb{F} : underlying field.

・ロン ・回と ・ヨン ・ヨン

æ

 $\mathcal{Q}(\mathbb{F})$: non-deg. orthogonal polar space of rank *n* and $def(\mathcal{Q}(\mathbb{F})) = d$. $\mathcal{Q}_2(\mathbb{F})$: line-Grassmannian of $\mathcal{Q}(\mathbb{F})$, \mathbb{F} : underlying field.

Theorem [I.C, L.Giuzzi, A. Pasini, 2019]

Let $\mathcal{Q}(\mathbb{F})$ be a non-degenerate orthogonal polar space of rank n > 2 in $PG(2n + d - 1, \mathbb{F})$. Put $\mathbb{F} = \mathbb{F}_q$ with $q \in \{4, 8, 9\}$.

• If
$$\left\{\begin{array}{l} d=0 \text{ and } n>3\\ or\\ d=1,2 \text{ and } n\geq 3\end{array}\right\}$$
 then $\operatorname{gr}(\mathcal{Q}_2(\mathbb{F}))=\operatorname{er}(\mathcal{Q}_2(\mathbb{F}))=\binom{2n+d}{2}.$

If moreover d ≤ 1 then Q₂(𝔅) is generated over the prime subfield of 𝔅.

イロト イヨト イヨト イヨト

 $\mathcal{Q}(\mathbb{F})$: non-deg. orthogonal polar space of rank *n* and $def(\mathcal{Q}(\mathbb{F})) = d$. $\mathcal{Q}_2(\mathbb{F})$: line-Grassmannian of $\mathcal{Q}(\mathbb{F})$, \mathbb{F} : underlying field.

Theorem [I.C, L.Giuzzi, A. Pasini, 2019]

Let $\mathcal{Q}(\mathbb{F})$ be a non-degenerate orthogonal polar space of rank n > 2 in $PG(2n + d - 1, \mathbb{F})$. Put $\mathbb{F} = \mathbb{F}_q$ with $q \in \{4, 8, 9\}$.

• If
$$\left\{\begin{array}{l} d=0 \text{ and } n>3\\ or\\ d=1,2 \text{ and } n\geq 3\end{array}\right\}$$
 then $\operatorname{gr}(\mathcal{Q}_2(\mathbb{F}))=\operatorname{er}(\mathcal{Q}_2(\mathbb{F}))=\binom{2n+d}{2}.$

If moreover d ≤ 1 then Q₂(𝔅) is generated over the prime subfield of 𝔅.

Theorem [I.C, L.Giuzzi, A. Pasini, 2019]

If $\mathcal{Q}(\mathbb{F})$ is a non-degenerate hyperbolic polar space of rank 3 in $\mathrm{PG}(5,\mathbb{F})$ then $\mathcal{Q}_2(\mathbb{F})$ is never \mathbb{F}_0 -generated, for any proper subfield \mathbb{F}_0 of \mathbb{F} .

イロト イヨト イヨト イヨト

Hermitian grassmannians- known results till now.

 \mathcal{H} : non-degenerate Hermitian polar space of rank n \mathcal{H}_k : Hermitian grassmannian of rank n

$def(\mathcal{H}_k)$	k	F	$\operatorname{gr}(\mathcal{H}_k)$	$\operatorname{er}(\mathcal{H}_k)$	References
0	1	any	2 <i>n</i>	2 <i>n</i>	folklore
0	>1	$ eq \mathbb{F}_4$	$\binom{2n}{k}$	$\binom{2n}{k}$	[1998-2012]
0	n	\mathbb{F}_4	?	$(4^n + 2)/3$	[2002]
1	n	\mathbb{F}_{q}	$\leq 2^n$	—	[2001]
any	$\neq n$	$ eq \mathbb{F}_4 ext{ if } k > 1 $	$\binom{2n+d}{k}$	$\binom{2n+d}{k}$	[2019]
<i>d</i> > 0	n	$ eq \mathbb{F}_4 ext{ if } k > 1 $	$\leq 2^n$		[2019]

Ilaria Cardinali Generating Sets of Polar Grassmannians

Orthogonal grassmannians- known results till now.

$def(\mathcal{Q}_k)$	k	\mathbb{F}	$\operatorname{gr}(\mathcal{Q}_k)$	$\operatorname{er}(\mathcal{Q}_k)$	Ref.
1	п	$\neq \mathbb{F}_2$	$\binom{2n}{n} - \binom{2n}{n-2}$	$\binom{2n}{n} - \binom{2n}{n-2}$	[2007]
1	п	\mathbb{F}_2	?	$\frac{(2^n+1)(2^{n-1}+1)}{2}$	[2001]
d = 0, 1, 2	2 < <i>n</i>	\mathbb{F}_{p}	$\binom{2n+d}{2}$	$\binom{2n+d}{2}$	[1998]
d=0,1	2	any	$\leq \binom{2n+d}{2}+g$?	[2001]
d = 0, 1	2,3 < n	perfect, $char(\mathbb{F}) > 0$ number field	?	$\binom{2n+d}{k}$	[2013]
d = 0 and n > 3 d = 1, 2 and n > 2	2 < <i>n</i>	$\mathbb{F}_4, \mathbb{F}_8, \mathbb{F}_9$	$\binom{2n+d}{2}$	$\binom{2n+d}{2}$	[2019]
<i>d</i> > 0	n	$\operatorname{char}(\mathbb{F}) \neq 2$	$\leq 2^n$		[2019]
				★ E ★ E ★	ヨー わら(

Ilaria Cardinali

Generating Sets of Polar Grassmannians

・ロト ・回 ト ・ヨト ・ヨト

• Generating rank of line orthogonal grassmannians $Q_2(\mathbb{F})$ for $\mathbb{F} \neq \mathbb{F}_q, \ q \neq 4, 8, 9.$

イロン スポン イヨン イヨン

- Generating rank of line orthogonal grassmannians $Q_2(\mathbb{F})$ for $\mathbb{F} \neq \mathbb{F}_q, \ q \neq 4, 8, 9.$
- Generating rank of k-orthogonal grassmannians for k > 2.

イロト イヨト イヨト イヨト

- Generating rank of line orthogonal grassmannians $Q_2(\mathbb{F})$ for $\mathbb{F} \neq \mathbb{F}_q, \ q \neq 4, 8, 9.$
- Generating rank of k-orthogonal grassmannians for k > 2.
- If n > 3, is $\mathcal{Q}_{n-1}^+(2n-1,\mathbb{F})$ generated over subfields?

・ロン ・回と ・ヨン・

Projective codes

$$Ω$$
: set of N points of PG(V), $V = V(K, \mathbb{F}_q)$.
 $↓$
 $C(Ω)$: projective $[N, K, d_{min}]_q$ -code associated to Ω

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Projective codes

$$Ω$$
: set of N points of $PG(V)$, $V = V(K, \mathbb{F}_q)$.
 $↓$
 $C(Ω)$: projective $[N, K, d_{min}]_q$ -code associated to $Ω$

* The columns of a generator matrix of $\mathcal{C}(\Omega)$ are coordinates of the points of Ω .

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Projective codes

$$Ω$$
: set of *N* points of PG(*V*), *V* = *V*(*K*, 𝔽_{*q*}).
↓
C(Ω): projective [*N*, *K*, *d_{min}]_{*q*}-code associated to Ω*

* The columns of a generator matrix of $C(\Omega)$ are coordinates of the points of Ω .

Theorem

Any semilinear collineation of $P\Gamma L(K, q)$ stabilizing Ω induces automorphisms of $C(\Omega)$.

・ロト ・回ト ・ヨト ・ヨト

Basics on polar grassmannians Generating sets New results

$\Omega \subset \mathrm{PG}(K-1,\mathbb{F}_q)$ $\mathcal{C}(\Omega)$: projective $[N, K, d_{min}]_q$ -code associated to Ω

・ロン ・回と ・ヨン・

Basics on polar grassmannians Generating sets New results

$$\begin{split} &\Omega \subset \mathrm{PG}(\mathcal{K}-1,\mathbb{F}_q)\\ &\mathcal{C}(\Omega): \mathsf{projective}\;[\mathcal{N},\mathcal{K},d_{min}]_q\text{-code associated to}\;\Omega \end{split}$$

Parameters of $\mathcal{C}(\Omega)$:

• $N = |\Omega|;$

・ロン ・回 と ・ ヨン ・ ヨン

$$\begin{split} &\Omega \subset \mathrm{PG}(\mathcal{K}-1,\mathbb{F}_q)\\ &\mathcal{C}(\Omega): \mathsf{projective}\;[\mathcal{N},\mathcal{K},d_{\textit{min}}]_q\text{-code associated to }\Omega \end{split}$$

Parameters of $\mathcal{C}(\Omega)$:

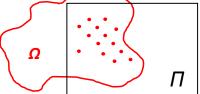
- $N = |\Omega|;$
- $K = \dim(\langle \Omega \rangle);$

・ロン ・回と ・ヨン・

$$\begin{split} &\Omega \subset \mathrm{PG}(\mathcal{K}-1,\mathbb{F}_q)\\ &\mathcal{C}(\Omega): \text{projective } [\mathcal{N},\mathcal{K},d_{\textit{min}}]_q\text{-code associated to }\Omega \end{split}$$

Parameters of $\mathcal{C}(\Omega)$:

- $N = |\Omega|;$
- $K = \dim(\langle \Omega \rangle);$



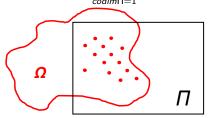
イロト イヨト イヨト イヨト

$$\begin{split} &\Omega \subset \mathrm{PG}(\mathcal{K}-1,\mathbb{F}_q)\\ &\mathcal{C}(\Omega): \text{projective } [\mathcal{N},\mathcal{K},d_{\textit{min}}]_q\text{-code associated to }\Omega \end{split}$$

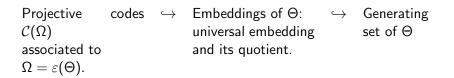
Parameters of $\mathcal{C}(\Omega)$:

- $N = |\Omega|;$
- $K = \dim(\langle \Omega \rangle);$

•
$$d_{\min} = N - \max_{\prod \leq \operatorname{PG}(K-1,\mathbb{F}_q)} |\Pi \cap \Omega|.$$



The study of the weights of $\mathcal{C}(\Omega)$ is equivalent to the study of the hyperplane sections of Ω .



(4回) (4回) (4回)

 \mathcal{G}_k : k-Grassmannian of $\mathrm{PG}(V), V := V(m, \mathbb{F}_q), \quad 1 \leq k < m$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

 $\mathcal{G}_k: \ k\text{-Grassmannian of } \operatorname{PG}(V), V := V(m, \mathbb{F}_q), \quad 1 \le k < m$ Grassmann or Plücker embedding of \mathcal{G}_k $e_k: \mathcal{G}_k \to \operatorname{PG}(\bigwedge^k V)$ $\langle v_1, \dots, v_k \rangle \to \langle v_1 \land v_2 \land \dots \land v_k \rangle$ * dim $(e_k) = \binom{m}{k}$

向下 イヨト イヨト

 \mathcal{G}_k : k-Grassmannian of $\mathrm{PG}(V), V := V(m, \mathbb{F}_q), \quad 1 \le k < m$ Grassmann or Plücker embedding of \mathcal{G}_k

$$e_k: \mathcal{G}_k \to \mathrm{PG}(\bigwedge^{\wedge} V) \\ \langle v_1, \dots, v_k \rangle \to \langle v_1 \wedge v_2 \wedge \dots \wedge v_k \rangle$$

* dim
$$(e_k) = \binom{m}{k}$$

 $\Delta_k = (\mathcal{P}_k, \mathcal{L}_k): \ k\text{-polar grassmannian of rank } n, \quad 1 \le k \le n$ Grassmann or Plücker embedding of Δ_k

$$\varepsilon_k := e_k|_{\mathcal{P}_k} \colon \mathcal{P}_k \to \Sigma \leq \operatorname{PG}(\bigwedge^k V)$$

A (1) > A (2) > A

 \mathcal{G}_k : k-Grassmannian of $\mathrm{PG}(V), V := V(m, \mathbb{F}_q), \quad 1 \le k < m$ Grassmann or Plücker embedding of \mathcal{G}_k

$$e_k: \mathcal{G}_k \to \mathrm{PG}(\bigwedge^{\wedge} V) \\ \langle v_1, \dots, v_k \rangle \to \langle v_1 \wedge v_2 \wedge \dots \wedge v_k \rangle$$

* dim
$$(e_k) = \binom{m}{k}$$

 $\Delta_k = (\mathcal{P}_k, \mathcal{L}_k): \ k\text{-polar grassmannian of rank } n, \quad 1 \le k \le n$ Grassmann or Plücker embedding of Δ_k

$$\varepsilon_k := e_k|_{\mathcal{P}_k} \colon \mathcal{P}_k \to \Sigma \leq \operatorname{PG}(\bigwedge^k V)$$

A (1) > A (2) > A

 \mathcal{G}_k : Grassmannian of the k-subspaces of V(m, q).

・ロン ・回と ・ヨン・

 \mathcal{G}_k : Grassmannian of the k-subspaces of V(m, q). $\mathcal{C}(\mathcal{G}_k) := \mathcal{C}(e_k(\mathcal{G}_k))$: Grassmann code, determined by $e_k(\mathcal{G}_k) \subseteq \operatorname{PG}(\bigwedge^k V)$.

* The parameters of a Grassmann code are known, [Nogin, 1996]: $N = \frac{(q^m - 1)(q^m - q)\cdots(q^m - q^{k-1})}{(q^m - q^{k-1})}, \quad K = \binom{m}{2}, \quad d_{\min} = q^{(m-k)k}.$

$$V = \frac{(q - 1)(q - q)(q - q)(q - q - q - 1)}{(q^{k} - 1)(q^{k} - q)(q^{k} - q^{k-1})}, \quad K = \binom{m}{k}, \quad d_{\min} = q^{(m-k)}$$

(ロ) (同) (E) (E) (E)

 \mathcal{G}_k : Grassmannian of the *k*-subspaces of V(m, q). $\mathcal{C}(\mathcal{G}_k) := \mathcal{C}(e_k(\mathcal{G}_k))$: Grassmann code, determined by $e_k(\mathcal{G}_k) \subseteq \operatorname{PG}(\bigwedge^k V)$.

* The parameters of a Grassmann code are known, [Nogin, 1996]: $N = \frac{(q^m - 1)(q^m - q)\cdots(q^m - q^{k-1})}{(q^k - 1)(q^k - q)\cdots(q^k - q^{k-1})}, \quad K = \binom{m}{k}, \quad d_{\min} = q^{(m-k)k}.$

> *k*-multilinear alternating forms on $V \leftrightarrow$ Hyperplanes of $\bigwedge^k V$

イロト イヨト イヨト イヨト

 \mathcal{G}_k : Grassmannian of the *k*-subspaces of V(m, q). $\mathcal{C}(\mathcal{G}_k) := \mathcal{C}(e_k(\mathcal{G}_k))$: Grassmann code, determined by $e_k(\mathcal{G}_k) \subseteq \operatorname{PG}(\bigwedge^k V)$.

* The parameters of a Grassmann code are known, [Nogin, 1996]: $N = \frac{(q^m-1)(q^m-q)\cdots(q^m-q^{k-1})}{(q^k-1)(q^k-q)\cdots(q^k-q^{k-1})}, \quad K = \binom{m}{k}, \quad d_{\min} = q^{(m-k)k}.$

> *k*-multilinear alternating forms on $V \leftrightarrow$ Hyperplanes of $\bigwedge^k V$

Remark

- Minimum weight codewords in a Grassmann code correspond to non-null k-multilinear alternating forms with a maximum number of totally isotropic spaces.
- When k = 2 these are non-null alternating forms with maximum radical.

Basics on polar grassmannians Generating sets New results

 $\bar{\Delta}_k$: Symplectic Grassmannian of rank n $\bar{\varepsilon}_k$: Grassmann embedding of $\bar{\Delta}_k$.

・ロト ・回ト ・ヨト ・ヨト

Э

Basics on polar grassmannians Generating sets New results

 $\overline{\Delta}_k$: Symplectic Grassmannian of rank *n* $\overline{\varepsilon}_k$: Grassmann embedding of $\overline{\Delta}_k$.

Theorem [A.A. Premet, I.D. Suprunenko 1983; B. De Bruyn 2009]

 $\dim(\bar{\varepsilon}_k) = \binom{2n}{k} - \binom{2n}{k-2} \text{ for } 1 \le k \le n.$

・ロン ・回 と ・ ヨ と ・ ヨ と

Theorem [A.A. Premet, I.D. Suprunenko 1983; B. De Bruyn 2009]

 $\dim(\bar{\varepsilon}_k) = \binom{2n}{k} - \binom{2n}{k-2} \text{ for } 1 \le k \le n.$

 Q_k : Orthogonal Grassmannian of rank *n* and defect 1 ε_k : Grassmann embedding of Q_k .

・ロン ・回と ・ヨン・

Theorem [A.A. Premet, I.D. Suprunenko 1983; B. De Bruyn 2009]

 $\dim(\bar{\varepsilon}_k) = \binom{2n}{k} - \binom{2n}{k-2} \text{ for } 1 \le k \le n.$

 Q_k : Orthogonal Grassmannian of rank *n* and defect 1 ε_k : Grassmann embedding of Q_k .

Theorem [I.C., A. Pasini, JACo 2013]

If q is odd then $\dim(\varepsilon_k) = \binom{2n+1}{k}$ for $1 \le k \le n$.

・ロン ・回と ・ヨン ・ヨン

Theorem [A.A. Premet, I.D. Suprunenko 1983; B. De Bruyn 2009]

 $\dim(\bar{\varepsilon}_k) = \binom{2n}{k} - \binom{2n}{k-2} \text{ for } 1 \le k \le n.$

 Q_k : Orthogonal Grassmannian of rank *n* and defect 1 ε_k : Grassmann embedding of Q_k .

Theorem [I.C., A. Pasini, JACo 2013]

If q is odd then $\dim(\varepsilon_k) = \binom{2n+1}{k}$ for $1 \le k \le n$. If q is even then $\dim(\varepsilon_k) = \binom{2n+1}{k} - \binom{2n+1}{k-2}$ for $1 \le k \le n$.

・ロト ・回ト ・ヨト ・ヨト

Theorem [A.A. Premet, I.D. Suprunenko 1983; B. De Bruyn 2009]

 $\dim(\bar{\varepsilon}_k) = \binom{2n}{k} - \binom{2n}{k-2} \text{ for } 1 \le k \le n.$

 Q_k : Orthogonal Grassmannian of rank *n* and defect 1 ε_k : Grassmann embedding of Q_k .

Theorem [I.C., A. Pasini, JACo 2013]

If q is odd then $\dim(\varepsilon_k) = \binom{2n+1}{k}$ for $1 \le k \le n$. If q is even then $\dim(\varepsilon_k) = \binom{2n+1}{k} - \binom{2n+1}{k-2}$ for $1 \le k \le n$.

 \mathcal{H}_k : Hermitian Grassmannian of rank *n* and defect d = 0, 1 ε_k : Grassmann embedding of \mathcal{H}_k .

Theorem [Blok, Cooperstein, 2012; I.C., L. Giuzzi, A. Pasini, 2018] $\dim(\varepsilon_k) = \binom{2n+d}{k} \text{ for } 1 \le k \le n.$

Definition

• Δ_k : Orthogonal/Hermitian/Symplectic grassmannian

•
$$\mathcal{C}(\Delta_k) := \mathcal{C}(\varepsilon_k(\Delta_k))$$
:

Orthogonal/Hermitian/Symplectic Grassmann code.

 \checkmark if $k = n \rightarrow$ Symplectic Grassmann codes are also called Lagrangian Grassmann code.

イロン 不同と 不同と 不同と

Definition

• Δ_k : Orthogonal/Hermitian/Symplectic grassmannian

•
$$\mathcal{C}(\Delta_k) := \mathcal{C}(\varepsilon_k(\Delta_k))$$
:

Orthogonal/Hermitian/Symplectic Grassmann code.

 \checkmark if $k = n \rightarrow$ Symplectic Grassmann codes are also called Lagrangian Grassmann code.

- * I.C., Luca Giuzzi, FFA 24 (2013), 148-169.
- * J. Carrillo-Pacheco, F. Zaldivar, DCC 60 (2011), 291-298.
- * I.C., L. Giuzzi, K. V. Kaipa and A. Pasini, JPAA 220 (2016), 1924-1934.
- * I.C., Luca Giuzzi, LAA 488 (2016), 124-134
- * I.C., Luca Giuzzi, FFA 46 (2017), 107-138.
- * I.C., Luca Giuzzi, FFA 51 (2018), 407-432.
- * I.C., Luca Giuzzi, LAA 580 (2019), 96-120.

ロト ・ 同ト ・ ヨト ・ ヨト

Basics on polar grassmannians Generating sets New results

Orthogonal Grassmann Codes

Theorem (I.C., L. Giuzzi, K.V. Kaipa, A. Pasini 2013–2017)

The known parameters of an Orthogonal Grassmann Code are

(n, k)	N	K	d
$1 \leq k < n$	$\prod_{i=0}^{k-1} \frac{q^{2(n-i)}-1}{q^{i+1}-1}$	$\binom{2n+1}{k}$	$d \geq \widetilde{d}(q, n, k)$
(3, 3)	$(q^3+1)(q^2+1)(q+1)$	35	$q^2(q-1)(q^3-1)$
(<i>n</i> , 2)	$\frac{(q^{2n}-1)(q^{2n-2}-1)}{(q-1)(q^2-1)}$	(2n + 1)n	$q^{4n-5} - q^{3n-4}$

q odd

Basics on polar grassmannians Generating sets New results

Orthogonal Grassmann Codes

Theorem (I.C., L. Giuzzi, K.V. Kaipa, A. Pasini 2013–2017)

The known parameters of an Orthogonal Grassmann Code are

(n, k)	Ν	K	d
$1 \leq k < n$	$\prod_{i=0}^{k-1} \frac{q^{2(n-i)}-1}{q^{i+1}-1}$	$\binom{2n+1}{k}$	$d \geq \widetilde{d}(q, n, k)$
(3, 3)	$(q^3+1)(q^2+1)(q+1)$	35	$q^2(q-1)(q^3-1)$
(<i>n</i> , 2)	$\frac{(q^{2n}-1)(q^{2n-2}-1)}{(q-1)(q^2-1)}$	(2n + 1)n	$q^{4n-5} - q^{3n-4}$

(n, k)	N	K	d
$1 \leq k < n$	$\prod_{i=0}^{k-1} \frac{q^{2(n-i)}-1}{q^{i+1}-1}$	$\binom{2n+1}{k} - \binom{2n+1}{k-2}$	$d \geq \widetilde{d}(q, n, k)$
(3, 3)	$(q^3+1)(q^2+1)(q+1)$	28	$q^{5}(q-1)$
(<i>n</i> , 2)	$\frac{(q^{2n}-1)(q^{2n-2}-1)}{(q-1)(q^2-1)}$	(2n+1)n - 1	$q^{4n-5} - q^{3n-4}$

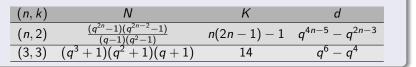
q even

$$\widetilde{d}(q,n,k):=(q+1)(q^{k(n-k)}-1)+1$$

Symplectic and Hermitian Grassmann codes

Theorem (I.C., L.Giuzzi 2013-2016)

The known parameters of a Symplectic Grassmann code are



Symplectic and Hermitian Grassmann codes

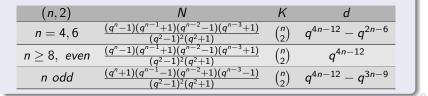
Theorem (I.C., L.Giuzzi 2013-2016)

The known parameters of a Symplectic Grassmann code are

$$\begin{array}{c|cccc} (n,k) & N & \mathcal{K} & d \\ \hline (n,2) & \frac{(q^{2n}-1)(q^{2n-2}-1)}{(q-1)(q^2-1)} & n(2n-1)-1 & q^{4n-5}-q^{2n-3} \\ \hline (3,3) & (q^3+1)(q^2+1)(q+1) & 14 & q^6-q^4 \end{array}$$

Theorem (I.C., L.Giuzzi 2018)

The known parameters of a Hermitian Grassmann code are



• Minimum distance of $\mathcal{C}(\Delta_k)$ with k > 2

イロン イヨン イヨン イヨン

- Minimum distance of $\mathcal{C}(\Delta_k)$ with k>2
- Higher weights

・ロト ・回ト ・ヨト ・ヨト

- Minimum distance of $\mathcal{C}(\Delta_k)$ with k>2
- Higher weights
- Dual code of $\mathcal{C}(\Delta_k)$

イロト イヨト イヨト イヨト

- Minimum distance of $\mathcal{C}(\Delta_k)$ with k>2
- Higher weights
- Dual code of $\mathcal{C}(\Delta_k)$
- Implementation of $\mathcal{C}(\Delta_k)$, k > 2.

(本間) (本語) (本語)