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Erdős-Ko-Rado Theorem

Theorem (EKR Theorem-1961)
Let F be an intersecting k-set system on an n-set. If n > 2k, then

1 |F| ≤
(
n−1
k−1
)
,

2 and F meets this bound if and only if the sets all contain a
common element.

This is the largest intersecting 3-set system from [1..8].

123, 124, 125, 126, 127, 128, 134,
135, 136, 137, 138, 145, 146, 147,
148, 156, 157, 158, 167, 168, 178
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Reasons to love the Erdős-Ko-Rado Theorem

There are many different proofs.
I Original used compression and counting,
I Katona’s cycle proof is very accessible
I Algebraic eigenvalue proof

There are many extensions of this theorem.
I What is the largest intersecting system without a common point?
I What is largest t-intersecting system?
I What is the largest cross-intersecting system?

The EKR theorem generalizes to many different objects.
I k-dimensional vector subspaces over a finite field,
I Length-n sequences in Zq,
I Integer partitions,
I Domino tilings,
I Permutations . . .

Which proofs can be extend to other objects?
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Algebraic Graph Theory Proof

The Kneser graph K(n, k) is the graph with all k-subsets of an n-set as
the vertices and vertices are adjacent if they are not intersecting.

{1,3}

{2,4}

{3,5}
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{2,5}
{4,5}

{1,5}

{1,2}

{2,3}

{3,4}

Figure: The Kneser Graph K(5, 2), or our old friend Petersen.

What is the largest coclique/independent set in this graph?
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Kneser Graphs

Properties of K(n, k)

Vertex transitive and regular, with degree
(
n−k
k

)
.

It is a graph in the Johnson association scheme.
If n ≥ 2k, eigenvalues are

(−1)i
(
n− k − i
k − i

)
with multiplicity

(
n

i

)
−
(

n

i− 1

)
.



Delsarte-Hoffman Ratio Bound for Cocliques

Theorem (bound part)
If X is a d-regular graph, then

α(X) ≤ |V (X)|
1− d

τ

where τ is the least eigenvalue of A(X) (or a weighted adjacency
matrix).

Theorem (characterization part)
If equality holds in the ratio bound and vS is a characteristic vector for
a maximum coclique S, then

vS −
α(X)

|V (X)|
1

is an eigenvector for τ .
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Ratio Bound for Kneser Graph

Bound on the size of a coclique:

α(K(n, k)) ≤
(
n
k

)
1− (n−k

k )
−(n−k−1

k−1 )

=

(
n− 1

k − 1

)
.

Characterization:
1 is a

(
n−k
k

)
-eigenvector.

Let vi be the characteristic vector of the collection of all sets that
contain i. The vectors vi − k

n1 are −
(
n−k−1
k−1

)
-eigenvectors.

vi span the
(
n−k
k

)
-eigenspace and the −

(
n−k−1
k−1

)
-eigenspace.

The characteristic vector for any maximum coclique is a linear
combination of the vi.
If n > 2k, the only linear combinations that give 01-vector with
weight

(
n−1
k−1
)

is vi.
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Extending this Method to Other Objects

1 For objects made of “atoms”, two objects are intersecting if they
have a common atom.

2 A canonically intersecting set is the set of all the objects that
contain a fixed atom.

The EKR property
The canonically intersecting set are maximum intersecting sets.

The EKR module property
The characteristic vector of any max intersecting set a linear

combination of the canonically intersecting sets.

The strict EKR property
Allthe maximum intersecting sets the canonically intersecting sets?
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Steps in this Type of Proof

1 Define a derangement graph:
I The objects are the vertices of the graph, and
I two objects are adjacent if they don’t intersect.

2 Find a bound on the size of maximum coclique in the
derangement graph.

I Plan A is to use ratio bound.
I Plan B use the clique/coclique bound

3 Show the characteristic vector of any maximum intersecting set is
in a vector space that is spanned by the canonically intersecting
sets.

4 Find all linear combinations of characteristic vectors of the
canonically intersecting objects that give characteristic vectors on
intersecting sets.

This method works for lots of objects–we will consider permutations.
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Intersecting Permutations

Two permutations σ, π ∈ Sym(n) intersect if for some i ∈ [1..n].

σ(i) = π(i) or π−1σ(i) = i.

A permutation is a derangement if it fixes no points. So σ and π are
intersecting if and only if π−1σ is not a derangement.

Define Si,j to be the set of all permutations in G that map i to j.

1 These are the cosets of the stabilizers of a point
2 These are the canonical cocliques in ΓG.
3 Use vi,j to denote the characteristic vector of Si,j .
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Derangement Graph

For any G ≤ Sym(n) we can define a Derangement Graph.

ΓG denotes the derangement graph for a group G.
The vertices are the elements of G.
Vertices σ, π ∈ G are adjacent if and only if π−1σ is a
derangement. (So adjacent if not intersecting.)

ΓG = Cay(G,Der(G)) where Der(G) is the set of derangements
of G.

This derangement graph depends on the action!
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Examples Derangement Graph

e
(1, 2, 3, 4)

(2, 4)

(1, 2)(3, 4)
(1, 3)(2, 4)

(1, 4, 3, 2)

(1, 3)

(1, 4)(2, 3)

Figure: The graph ΓD(4).



Derangement Graph for Cyclic Groups

If G is cyclic, then ΓG is the complement of the circulant graph (Z|G|, C)
where C is the set of all multiples of the cycle lengths of the generator.

(1, 2, 3)(4, 5)

e

(1, 3, 2)(4, 5) (1, 2, 3)

(4, 5)

(1, 3, 2)

Figure: The graph G = 〈(1, 2, 3)(4, 5)〉.



Derangement Graph for Sym(4)



Properties of the Derangement Graph

ΓG is vertex transitive.
An intersecting set in G is a coclique in ΓG.
If G has a sharply 1-transitive set, is a clique of size n.

ΓG is a normal Cayley graph. (The derangements are the
connection set.)
The eigenvalues of ΓG are

1

φ(1)

∑
d∈D

φ(d)

where φ is an irreducible character of G.
The trivial representation gives the degree, |D|.
The eigenspaces are unions of G-modules, projections are given
by Eφ (matrix with (g, h)-entry φ(g−1h)).
It is the union of the graphs in the conjugacy class association
scheme (the Eφ are the idempotents in the scheme).
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2-Transitive Subgroups

1 The permutation character is fix(g).
2 Define χ(g) = fix(g)− 1 (χ = permutation − trivial).

3 If G is 2-transitive, χ is irreducible.

〈χ, χ〉 =
1

|G|
∑
g∈G

(|fix(g)| − 1)2

=
1

|G|
∑
g∈G
| fix(g)|2 − 2

1

|G|
∑
g∈G
| fix(g)|+ 1

|G|
∑
g∈G

1 = 1

4 The eigenvalue for χ is

λχ =
1

χ(1)

∑
g∈D

χ(g) =
−|D|
n− 1

5 The permutation module is the span of the columns of Eχ and E1

(the all ones vector).
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Apply the Ratio Bound

Theorem

Let G be a 2-transitive group acting on an n-set. If −|D|n−1 is the least

eigenvalue for ΓG, then the largest intersecting set has size |G|n

Proof. By the ratio bound

α(ΓG) ≤ |G|
1− |D|

− |D|
n−1

=
|G|
n
.

Since G is transitive, then the stabilizer of a point has size |G|/n.

Theorem

Further, if only χ has eigenvalue −|D|n−1 , then the characteristic vector of
any maximum coclique S is in the permutation module.

Proof. The χ-module is the entire −|D|n−1 -eigenspace, and vS − 1
n1 is a

−|D|
n−1 -eigenvector.
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A Basis for the Permutation Module

Lemma
G is a 2-transitive group, then vi,j is in the permutation module.

Proof.
Eχ(vi,j −

1

n
1) = Eχ(vi,j) = vi,j −

1

n
1.

Lemma

B := {vi,j −
1

n
1 | i, j ∈ [n− 1]}

is a basis for the χ-module of G.

Proof. Define a matrix L with columns vi,j .
L>L = (n−1)!

2 I(n−1)2 + (n−2)!
2 (A(Kn−1)⊗A(Kn−1)) .

Corollary
{vi,j | i, j ∈ [n− 1]} ∪ vn,n is a basis for the permutation module of G.
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The Characterization for Sym(3)

If the characteristic vector for any maximum coclique is in the
permutation module, then it is a linear combination of the vectors vi,j .

For Sym(3),

1→1 2→2 3→3 1→2 2→1
[1,2,3] 1 1 1 0 0
[2,3,1] 0 0 0 1 0
[3,1,2] 0 0 0 0 1
[1,3,2] 1 0 0 0 0
[3,2,1] 0 1 0 0 0
[2,1,3] 0 0 1 1 1


x1,1
x2,2
x3,3
x1,2
x2,1

 =



1[1,2,3]
0[2,3,1]
0[3,1,2]
y[1,3,2]
y[3,2,1]
y[2,1,3]
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Characterization for General 2-Transitive Groups

i →i i →j
identity 1 0

derangements 0 N
other permutations X Y

(
x1
x2

)
=

 1
0
y′



Steps to characterize maximum cocliques
1 If the matrix N has full rank then x2 = 0. (HARD!!)
2 The matrix X contains a n× n identity matrix, so x1 is a 01-vector.
3 The sum of the entries of x1 is 1, so x1 contains exactly one 1.

Some Notes
1 If the group doesn’t have the strict EKR property, we may get a

characterization by finding a basis of the kernel of N .
2 The 01-vectors y can be thought of as Cameron-Leibler sets.
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Results for 2-Transitive Groups

1 All 2-transitive groups have EKR-property (M., Spiga, Tiep).
2 Sym(n) has strict EKR-property.
3 For PGL(n, q)

I all n it has the EKR-module property (Spiga);
I for n = 2 has the strict-EKR property (M. and Spiga);
I for n ≥ 3 the maximum intersecting sets are either stabilizers of a

point or a hyperplane (M. and Spiga, Spiga).
4 Long, Plaza, Sin, Xiang showed that PSL(2, q) has the strict-EKR

property.
5 Ahmadi and M. showed Alt(n) and the Matthieu groups have the

strict EKR.
6 PSU(3, q) has the EKR-module property.

I don’t know of an example of 2-transitive group that does not have the
EKR-module property.
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1-Transitive Groups

Let G be a 1-transitive group.

1 Canonical cocliques are still the sets Si,j of all permutations that
map i to j

2 Since G is 1-transitive, |Si,j | = |G|
n .

3 χ(g) = fix(g)− 1 is still a representation, just not irreducible!

4 If χ is multiplicity-free, then vectors vi,j span the permutation
module.

Can we prove that the characteristic vector of a maximum coclique is
in the permutation module?
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Clique-Coclique Bound in an Association Scheme

Set up:
If X is a graph in an association scheme.

α(X)ω(X) ≤ |V (X)|.

More Set up:
Equality in the clique-Coclique bound.
Let E = {E0, E1, . . . , Ed} the idempotents of the scheme,
If C is a clique of maximum size with characteristic vector vC and
if S is a maximum coclique with characteristic vector vS , then

vTSEivS v
T
CEivC = 0,

So, if EivC 6= 0, then Eivs = 0.
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General Linear Group GL(2, q)

The group GL(2, q) acts on the q2 − 1 non-zero vectors in F2
q .

1 This action is 1-transitive (not 2-transitive).
2 This group has a clique of size q2 − 1.
3 The subgroup that fixes a point is a subgroup of size q(q − 1),
4 The eigenvalues of the derangement graph are:

q(q3 − 2q2 − q + 3), q, −q2 + 2q, −q2 + q + 1.

The ratio bound does not hold with equality, but it has EKR property by
clique-coclique bound.
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Weighted Adjacency Matrix

I can put a weighting on the conjugacy classes and then calculate the
eigenvalues of the weighted adjacency matrix.

Character degree number unweighted evalue weighted evalue

α = β q + 1 q−3
2 or q−2

2 q -1
α = 1 q + 1 q − 2 −q2 + 2q -1

otherwise q + 1 (q−3)2
2 or (q−2)(q−4)

2 q 2
q−3

α = 1 q 1 −q2 + q + 1 -1
α2 = 1 q 1 q -1

otherwise q q − 3 q 1
q

(
q−1
q−2 + q+1

q−3

)
α = 1 1 1 q(q3 − 2q2 − q + 3) q2 − 2

α2 = 1 (if q is odd) 1 1 q -1
otherwise 1 q − 3 q q−1

q−2 + q+1
q−3

χ = 1 q − 1 q−1
2 or q

2 q q − 3

χ 6= 1 q − 1 (q−1)2
2 or q(q−2)

2 q 2
q−2
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Weighted Adjacency Matrix

Big Take Aways:
1 The trivial representation gives the maximum eigenvalue q2 − 2.
2 All the other irreducible representations in the permutation

representation all give the minimal eigenvalue −1 (and some other
representations too).

3 By the ratio bound GL(2, q) has the EKR property.
4 There is a maximum clique that force the characteristic vector of

any maximum coclique in to the permutation module.
5 The characteristic vector of any maximum coclique is a linear

combination of the canonical vectors.
6 GL(2, q) is EKR and has the EKR-module property, but is not

strictly EKR.

Can we do this for any 1-transitive group?
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t-Intersecting Permutations

Consider Sym(n) acting on ordered t-sets.

Theorem (Ellis, Friedgut, Pilpel 2010)
For n sufficiently large, the maximum t-intersecting set of permutations
has size (n− t)! and is the coset of the point-wise stabilizer of a t-set.

Consider Sym(n) acting on unordered t-sets.

Theorem (Ellis, 2011)
For n sufficiently large, the maximum t-set-wise intersecting set of
permutations has size (n− t)!t! and is the coset of the stabilizer of a
t-set.
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AGL(2, q) on Lines

AGL(2, q) acts on the q(q + 1) lines of F2
q , this action is 1-transitive.

1 The eigenvalues can be calculated, the ratio bound does not hold
with equality.

2 I could not find a weighting the would give a good bound!

Conjecture
The group AGL(2, q) does not have the EKR property. There is an
intersecting set of size 1

2q
2(q − 1)(3q − 4).

The stabilizer of a point has size q3(q−1)2(q+1)
q(q+1) = q2(q − 1)2.



AGL(2, q) on Lines

AGL(2, q) acts on the q(q + 1) lines of F2
q , this action is 1-transitive.

1 The eigenvalues can be calculated, the ratio bound does not hold
with equality.

2 I could not find a weighting the would give a good bound!

Conjecture
The group AGL(2, q) does not have the EKR property. There is an
intersecting set of size 1

2q
2(q − 1)(3q − 4).

The stabilizer of a point has size q3(q−1)2(q+1)
q(q+1) = q2(q − 1)2.



Big Dramatic Summary

2-Transitive Groups
1 All have the EKR property.
2 I conjecture that all have the EKR module property.
3 Don’t all have strict EKR property.

a. Can we characterize which do?
b. Are the maximum cocliques always subgroups or cosets?

1-Transitive Groups
1 Do not all have the EKR property.

a. Can we characterize which groups have the EKR property?
b. What about rank-3 groups?
c. Which imprimitvie groups don’t have the EKR property?

2 Which have the EKR module property?
3 Which have the strict EKR property?

What other families of groups are interesting?
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