Erdős-Ko-Rado Theorems for Permutations

Karen Meagher

(joint work with Bahman Ahmadi, Chris Godsil, Alison Purdy, Pablo Spiga and Pham Huu Tiep)

August 23, 2019

Theorem (EKR Theorem-1961)

Let \mathcal{F} be an intersecting k-set system on an n-set. If n > 2k, then $|\mathcal{F}| \le {n-1 \choose k-1}$,

and F meets this bound if and only if the sets all contain a common element.

Theorem (EKR Theorem-1961)

Let \mathcal{F} be an intersecting k-set system on an n-set. If n > 2k, then $|\mathcal{F}| \le {n-1 \choose k-1}$,

and F meets this bound if and only if the sets all contain a common element.

This is the largest intersecting 3-set system from [1..8].

123,	124,	125,	126,	127,	128,	134,
1 35,	<mark>1</mark> 36,	1 37,	<mark>1</mark> 38,	1 45,	<mark>1</mark> 46,	147,
148,	156,	157,	158,	167,	168,	178

- There are many different proofs.
 - Original used compression and counting,
 - Katona's cycle proof is very accessible
 - Algebraic eigenvalue proof

- There are many different proofs.
 - Original used compression and counting,
 - Katona's cycle proof is very accessible
 - Algebraic eigenvalue proof
- There are many extensions of this theorem.
 - What is the largest intersecting system without a common point?
 - What is largest t-intersecting system?
 - What is the largest cross-intersecting system?

- There are many different proofs.
 - Original used compression and counting,
 - Katona's cycle proof is very accessible
 - Algebraic eigenvalue proof
- There are many extensions of this theorem.
 - What is the largest intersecting system without a common point?
 - What is largest t-intersecting system?
 - What is the largest cross-intersecting system?
- The EKR theorem generalizes to many different objects.
 - k-dimensional vector subspaces over a finite field,
 - Length-*n* sequences in \mathbb{Z}_q ,
 - Integer partitions,
 - Domino tilings,
 - Permutations . . .

- There are many different proofs.
 - Original used compression and counting,
 - Katona's cycle proof is very accessible
 - Algebraic eigenvalue proof
- There are many extensions of this theorem.
 - What is the largest intersecting system without a common point?
 - What is largest t-intersecting system?
 - What is the largest cross-intersecting system?
- The EKR theorem generalizes to many different objects.
 - k-dimensional vector subspaces over a finite field,
 - Length-*n* sequences in \mathbb{Z}_q ,
 - Integer partitions,
 - Domino tilings,
 - Permutations . . .

Which proofs can be extend to other objects?

Algebraic Graph Theory Proof

The Kneser graph K(n, k) is the graph with all *k*-subsets of an *n*-set as the vertices and vertices are adjacent if they are **not** intersecting.

Algebraic Graph Theory Proof

The Kneser graph K(n, k) is the graph with all *k*-subsets of an *n*-set as the vertices and vertices are adjacent if they are **not** intersecting.

Figure: The Kneser Graph K(5, 2), or our old friend Petersen.

Algebraic Graph Theory Proof

The Kneser graph K(n, k) is the graph with all *k*-subsets of an *n*-set as the vertices and vertices are adjacent if they are **not** intersecting.

Figure: The Kneser Graph K(5, 2), or our old friend Petersen.

What is the largest coclique/independent set in this graph?

Properties of K(n,k)

- Vertex transitive and regular, with degree $\binom{n-k}{k}$.
- It is a graph in the Johnson association scheme.
- If $n \ge 2k$, eigenvalues are

$$(-1)^{i} \binom{n-k-i}{k-i}$$
 with multiplicity $\binom{n}{i} - \binom{n}{i-1}$.

Delsarte-Hoffman Ratio Bound for Cocliques

Theorem (bound part)

If X is a d-regular graph, then

$$\alpha(X) \le \frac{|V(X)|}{1 - \frac{d}{\tau}}$$

where τ is the least eigenvalue of A(X) (or a weighted adjacency matrix).

Delsarte-Hoffman Ratio Bound for Cocliques

Theorem (bound part)

If X is a d-regular graph, then

$$\alpha(X) \le \frac{|V(X)|}{1 - \frac{d}{\tau}}$$

where τ is the least eigenvalue of A(X) (or a weighted adjacency matrix).

Theorem (characterization part)

If equality holds in the ratio bound and v_S is a characteristic vector for a maximum coclique S, then

$$v_S - \frac{lpha(X)}{|V(X)|} \mathbf{1}$$

is an eigenvector for τ .

Bound on the size of a coclique:

$$\alpha(K(n,k)) \le \frac{\binom{n}{k}}{1 - \frac{\binom{n-k}{k}}{-\binom{n-k-1}{k-1}}} = \binom{n-1}{k-1}.$$

Bound on the size of a coclique:

$$\alpha(K(n,k)) \le \frac{\binom{n}{k}}{1 - \frac{\binom{n-k}{k}}{-\binom{n-k-1}{k-1}}} = \binom{n-1}{k-1}.$$

Characterization:

- 1 is a $\binom{n-k}{k}$ -eigenvector.
- Let v_i be the characteristic vector of the collection of all sets that contain *i*. The vectors $v_i \frac{k}{n}\mathbf{1}$ are $-\binom{n-k-1}{k-1}$ -eigenvectors.

Bound on the size of a coclique:

$$\alpha(K(n,k)) \le \frac{\binom{n}{k}}{1 - \frac{\binom{n-k}{k}}{-\binom{n-k-1}{k-1}}} = \binom{n-1}{k-1}.$$

Characterization:

- 1 is a $\binom{n-k}{k}$ -eigenvector.
- Let v_i be the characteristic vector of the collection of all sets that contain *i*. The vectors $v_i \frac{k}{n}\mathbf{1}$ are $-\binom{n-k-1}{k-1}$ -eigenvectors.

• v_i span the $\binom{n-k}{k}$ -eigenspace and the $-\binom{n-k-1}{k-1}$ -eigenspace.

Bound on the size of a coclique:

$$\alpha(K(n,k)) \le \frac{\binom{n}{k}}{1 - \frac{\binom{n-k}{k}}{-\binom{n-k-1}{k-1}}} = \binom{n-1}{k-1}.$$

Characterization:

- 1 is a $\binom{n-k}{k}$ -eigenvector.
- Let v_i be the characteristic vector of the collection of all sets that contain *i*. The vectors $v_i \frac{k}{n}\mathbf{1}$ are $-\binom{n-k-1}{k-1}$ -eigenvectors.
- v_i span the $\binom{n-k}{k}$ -eigenspace and the $-\binom{n-k-1}{k-1}$ -eigenspace.
- The characteristic vector for any maximum coclique is a linear combination of the v_i .

Bound on the size of a coclique:

$$\alpha(K(n,k)) \le \frac{\binom{n}{k}}{1 - \frac{\binom{n-k}{k}}{-\binom{n-k-1}{k-1}}} = \binom{n-1}{k-1}.$$

Characterization:

- 1 is a $\binom{n-k}{k}$ -eigenvector.
- Let v_i be the characteristic vector of the collection of all sets that contain *i*. The vectors $v_i \frac{k}{n}\mathbf{1}$ are $-\binom{n-k-1}{k-1}$ -eigenvectors.
- v_i span the $\binom{n-k}{k}$ -eigenspace and the $-\binom{n-k-1}{k-1}$ -eigenspace.
- The characteristic vector for any maximum coclique is a linear combination of the v_i .
- If n > 2k, the only linear combinations that give 01-vector with weight ⁿ⁻¹_{k-1}) is v_i.

For objects made of "atoms", two objects are intersecting if they have a common atom.

- For objects made of "atoms", two objects are intersecting if they have a common atom.
- A canonically intersecting set is the set of all the objects that contain a fixed atom.

- For objects made of "atoms", two objects are intersecting if they have a common atom.
- A canonically intersecting set is the set of all the objects that contain a fixed atom.

The EKR property

The canonically intersecting set are maximum intersecting sets.

- For objects made of "atoms", two objects are intersecting if they have a common atom.
- A canonically intersecting set is the set of all the objects that contain a fixed atom.

The EKR property

The canonically intersecting set are maximum intersecting sets.

The EKR module property

The characteristic vector of any max intersecting set a linear combination of the canonically intersecting sets.

- For objects made of "atoms", two objects are intersecting if they have a common atom.
- A canonically intersecting set is the set of all the objects that contain a fixed atom.

The EKR property

The canonically intersecting set are maximum intersecting sets.

The EKR module property

The characteristic vector of any max intersecting set a linear combination of the canonically intersecting sets.

The strict EKR property

Allthe maximum intersecting sets the canonically intersecting sets?

- Define a derangement graph:
 - The objects are the vertices of the graph, and
 - two objects are adjacent if they don't intersect.

- Define a derangement graph:
 - The objects are the vertices of the graph, and
 - two objects are adjacent if they don't intersect.
- Find a bound on the size of maximum coclique in the derangement graph.
 - Plan A is to use ratio bound.
 - Plan B use the clique/coclique bound

- Define a derangement graph:
 - The objects are the vertices of the graph, and
 - two objects are adjacent if they don't intersect.
- Find a bound on the size of maximum coclique in the derangement graph.
 - Plan A is to use ratio bound.
 - Plan B use the clique/coclique bound
- Show the characteristic vector of any maximum intersecting set is in a vector space that is spanned by the canonically intersecting sets.

- Define a derangement graph:
 - The objects are the vertices of the graph, and
 - two objects are adjacent if they don't intersect.
- Find a bound on the size of maximum coclique in the derangement graph.
 - Plan A is to use ratio bound.
 - Plan B use the clique/coclique bound
- Show the characteristic vector of any maximum intersecting set is in a vector space that is spanned by the canonically intersecting sets.
- Find all linear combinations of characteristic vectors of the canonically intersecting objects that give characteristic vectors on intersecting sets.

- Define a derangement graph:
 - The objects are the vertices of the graph, and
 - two objects are adjacent if they don't intersect.
- Find a bound on the size of maximum coclique in the derangement graph.
 - Plan A is to use ratio bound.
 - Plan B use the clique/coclique bound
- Show the characteristic vector of any maximum intersecting set is in a vector space that is spanned by the canonically intersecting sets.
- Find all linear combinations of characteristic vectors of the canonically intersecting objects that give characteristic vectors on intersecting sets.

This method works for lots of objects-we will consider permutations.

Intersecting Permutations

Two permutations $\sigma, \pi \in \text{Sym}(n)$ *intersect* if for some $i \in [1..n]$.

$$\sigma(i) = \pi(i)$$
 or $\pi^{-1}\sigma(i) = i$.

Intersecting Permutations

Two permutations $\sigma, \pi \in \text{Sym}(n)$ *intersect* if for some $i \in [1..n]$.

$$\sigma(i) = \pi(i)$$
 or $\pi^{-1}\sigma(i) = i$.

A permutation is a *derangement* if it fixes no points. So σ and π are intersecting if and only if $\pi^{-1}\sigma$ is **not** a derangement.

Intersecting Permutations

Two permutations $\sigma, \pi \in \text{Sym}(n)$ *intersect* if for some $i \in [1..n]$.

$$\sigma(i) = \pi(i)$$
 or $\pi^{-1}\sigma(i) = i$.

A permutation is a *derangement* if it fixes no points. So σ and π are intersecting if and only if $\pi^{-1}\sigma$ is **not** a derangement.

Define $S_{i,j}$ to be the set of all permutations in G that map i to j.

- These are the cosets of the stabilizers of a point
- **2** These are the *canonical* cocliques in Γ_G .
- **③** Use $v_{i,j}$ to denote the characteristic vector of $S_{i,j}$.

For any $G \leq Sym(n)$ we can define a *Derangement Graph*.

- Γ_G denotes the derangement graph for a group *G*.
- The vertices are the elements of *G*.
- Vertices σ, π ∈ G are adjacent if and only if π⁻¹σ is a derangement. (So adjacent if **not** intersecting.)

For any $G \leq Sym(n)$ we can define a *Derangement Graph*.

- Γ_G denotes the derangement graph for a group G.
- The vertices are the elements of G.
- Vertices σ, π ∈ G are adjacent if and only if π⁻¹σ is a derangement. (So adjacent if **not** intersecting.)
- Γ_G = Cay(G, Der(G)) where Der(G) is the set of derangements of G.

For any $G \leq Sym(n)$ we can define a *Derangement Graph*.

- Γ_G denotes the derangement graph for a group G.
- The vertices are the elements of G.
- Vertices σ, π ∈ G are adjacent if and only if π⁻¹σ is a derangement. (So adjacent if **not** intersecting.)
- Γ_G = Cay(G, Der(G)) where Der(G) is the set of derangements of G.

This derangement graph depends on the action!

Examples Derangement Graph

Figure: The graph $\Gamma_{D(4)}$.

If *G* is cyclic, then Γ_G is the complement of the circulant graph $(\mathbb{Z}_{|G|}, C)$ where *C* is the set of all multiples of the cycle lengths of the generator.

Figure: The graph $G = \langle (1, 2, 3)(4, 5) \rangle$.
Derangement Graph for Sym(4)

- Γ_G is vertex transitive.
- An intersecting set in G is a coclique in Γ_G .
- If G has a sharply 1-transitive set, is a clique of size n.

- Γ_G is vertex transitive.
- An intersecting set in G is a coclique in Γ_G .
- If G has a sharply 1-transitive set, is a clique of size n.
- Γ_G is a normal Cayley graph. (The derangements are the connection set.)

- Γ_G is vertex transitive.
- An intersecting set in G is a coclique in Γ_G .
- If G has a sharply 1-transitive set, is a clique of size n.
- Γ_G is a normal Cayley graph. (The derangements are the connection set.)
- The eigenvalues of Γ_G are

$$\frac{1}{\phi(1)}\sum_{d\in D}\phi(d)$$

where ϕ is an irreducible character of G.

- Γ_G is vertex transitive.
- An intersecting set in G is a coclique in Γ_G .
- If G has a sharply 1-transitive set, is a clique of size n.
- Γ_G is a normal Cayley graph. (The derangements are the connection set.)
- The eigenvalues of Γ_G are

$$\frac{1}{\phi(1)}\sum_{d\in D}\phi(d)$$

where ϕ is an irreducible character of G.

• The trivial representation gives the degree, |D|.

- Γ_G is vertex transitive.
- An intersecting set in G is a coclique in Γ_G .
- If G has a sharply 1-transitive set, is a clique of size n.
- Γ_G is a normal Cayley graph. (The derangements are the connection set.)
- The eigenvalues of Γ_G are

$$\frac{1}{\phi(1)}\sum_{d\in D}\phi(d)$$

where ϕ is an irreducible character of G.

- The trivial representation gives the degree, |D|.
- The eigenspaces are unions of *G*-modules, projections are given by E_φ (matrix with (g, h)-entry φ(g⁻¹h)).
- It is the union of the graphs in the conjugacy class association scheme (the *E_φ* are the idempotents in the scheme).

• The permutation character is fix(g).

2 Define $\chi(g) = \text{fix}(g) - 1$ (χ = permutation – trivial).

- The permutation character is fix(g).
- **2** Define $\chi(g) = \text{fix}(g) 1$ (χ = permutation trivial).
- If G is 2-transitive, χ is irreducible.

$$\begin{split} \langle \chi, \chi \rangle &= \frac{1}{|G|} \sum_{g \in G} (|\operatorname{fix}(g)| - 1)^2 \\ &= \frac{1}{|G|} \sum_{g \in G} |\operatorname{fix}(g)|^2 - 2\frac{1}{|G|} \sum_{g \in G} |\operatorname{fix}(g)| + \frac{1}{|G|} \sum_{g \in G} 1 = 1 \end{split}$$

- The permutation character is fix(g).
- **2** Define $\chi(g) = \text{fix}(g) 1$ (χ = permutation trivial).
- If G is 2-transitive, χ is irreducible.

$$\begin{split} \langle \chi, \chi \rangle &= \frac{1}{|G|} \sum_{g \in G} (|\operatorname{fix}(g)| - 1)^2 \\ &= \frac{1}{|G|} \sum_{g \in G} |\operatorname{fix}(g)|^2 - 2\frac{1}{|G|} \sum_{g \in G} |\operatorname{fix}(g)| + \frac{1}{|G|} \sum_{g \in G} 1 = 1 \end{split}$$

(4) The eigenvalue for χ is

$$\lambda_{\chi} = \frac{1}{\chi(1)} \sum_{g \in D} \chi(g) = \frac{-|D|}{n-1}$$

- The permutation character is fix(g).
- **2** Define $\chi(g) = \text{fix}(g) 1$ (χ = permutation trivial).
- If G is 2-transitive, χ is irreducible.

$$\begin{split} \langle \chi, \chi \rangle &= \frac{1}{|G|} \sum_{g \in G} (|\operatorname{fix}(g)| - 1)^2 \\ &= \frac{1}{|G|} \sum_{g \in G} |\operatorname{fix}(g)|^2 - 2\frac{1}{|G|} \sum_{g \in G} |\operatorname{fix}(g)| + \frac{1}{|G|} \sum_{g \in G} 1 = 1 \end{split}$$

• The eigenvalue for χ is

$$\lambda_{\chi} = \frac{1}{\chi(1)} \sum_{g \in D} \chi(g) = \frac{-|D|}{n-1}$$

S The *permutation module* is the span of the columns of E_χ and E₁ (the all ones vector).

Apply the Ratio Bound

Theorem

Let *G* be a 2-transitive group acting on an *n*-set. If $\frac{-|D|}{n-1}$ is the least eigenvalue for Γ_G , then the largest intersecting set has size $\frac{|G|}{n}$

Apply the Ratio Bound

Theorem

Let *G* be a 2-transitive group acting on an *n*-set. If $\frac{-|D|}{n-1}$ is the least eigenvalue for Γ_G , then the largest intersecting set has size $\frac{|G|}{n}$

Proof. By the ratio bound

$$\alpha(\Gamma_G) \le \frac{|G|}{1 - \frac{|D|}{-\frac{|D|}{n-1}}} = \frac{|G|}{n}.$$

Since G is transitive, then the stabilizer of a point has size |G|/n.

Apply the Ratio Bound

Theorem

Let *G* be a 2-transitive group acting on an *n*-set. If $\frac{-|D|}{n-1}$ is the least eigenvalue for Γ_G , then the largest intersecting set has size $\frac{|G|}{n}$

Proof. By the ratio bound

$$\alpha(\Gamma_G) \le \frac{|G|}{1 - \frac{|D|}{-\frac{|D|}{n-1}}} = \frac{|G|}{n}.$$

Since G is transitive, then the stabilizer of a point has size |G|/n.

Theorem

Further, if only χ has eigenvalue $\frac{-|D|}{n-1}$, then the characteristic vector of any maximum coclique *S* is in the permutation module.

Proof. The χ -module is the entire $\frac{-|D|}{n-1}$ -eigenspace, and $v_S - \frac{1}{n}\mathbf{1}$ is a $\frac{-|D|}{n-1}$ -eigenvector.

Lemma

G is a 2-transitive group, then $v_{i,j}$ is in the permutation module.

Proof.

$$E_{\chi}(v_{i,j} - \frac{1}{n}\mathbf{1}) = E_{\chi}(v_{i,j}) = v_{i,j} - \frac{1}{n}\mathbf{1}.$$

Lemma

G is a 2-transitive group, then $v_{i,j}$ is in the permutation module.

Proof.

$$E_{\chi}(v_{i,j} - \frac{1}{n}\mathbf{1}) = E_{\chi}(v_{i,j}) = v_{i,j} - \frac{1}{n}\mathbf{1}.$$

Lemma

$$B := \{ v_{i,j} - \frac{1}{n} \mathbf{1} \mid i, j \in [n-1] \}$$

is a basis for the χ -module of G.

Lemma

G is a 2-transitive group, then $v_{i,j}$ is in the permutation module.

Proof.

$$E_{\chi}(v_{i,j} - \frac{1}{n}\mathbf{1}) = E_{\chi}(v_{i,j}) = v_{i,j} - \frac{1}{n}\mathbf{1}.$$

Lemma

$$B := \{ v_{i,j} - \frac{1}{n} \mathbf{1} \mid i, j \in [n-1] \}$$

is a basis for the χ -module of G.

Proof. Define a matrix *L* with columns $v_{i,j}$. $L^{\top}L = \frac{(n-1)!}{2} I_{(n-1)^2} + \frac{(n-2)!}{2} (A(K_{n-1}) \otimes A(K_{n-1})).$

Lemma

G is a 2-transitive group, then $v_{i,j}$ is in the permutation module.

Proof.

$$E_{\chi}(v_{i,j} - \frac{1}{n}\mathbf{1}) = E_{\chi}(v_{i,j}) = v_{i,j} - \frac{1}{n}\mathbf{1}.$$

Lemma

$$B := \{ v_{i,j} - \frac{1}{n} \mathbf{1} \, | \, i, j \in [n-1] \}$$

is a basis for the χ -module of G.

Proof. Define a matrix *L* with columns $v_{i,j}$. $L^{\top}L = \frac{(n-1)!}{2} I_{(n-1)^2} + \frac{(n-2)!}{2} (A(K_{n-1}) \otimes A(K_{n-1})).$

Corollary

 $\{v_{i,j} | i, j \in [n-1]\} \cup v_{n,n}$ is a basis for the permutation module of G.

If the characteristic vector for any maximum coclique is in the permutation module, then it is a linear combination of the vectors $v_{i,j}$.

If the characteristic vector for any maximum coclique is in the permutation module, then it is a linear combination of the vectors $v_{i,j}$.

For Sym(3),

If the characteristic vector for any maximum coclique is in the permutation module, then it is a linear combination of the vectors $v_{i,j}$.

For Sym(3),

identity derangements other permutations

$$\begin{bmatrix} \mathbf{i} \to \mathbf{i} & \mathbf{j} & \mathbf{i} \to \mathbf{j} \\ \mathbf{1} & \mathbf{0} & \mathbf{0} \\ -\mathbf{0} & -\mathbf{i} - \mathbf{N} \\ \mathbf{X} & \mathbf{j} & \mathbf{Y} \end{bmatrix} \quad \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ \mathbf{0} \\ -\mathbf{y}' \end{pmatrix}$$

identity $\begin{bmatrix} \mathbf{1} \rightarrow \mathbf{1} & \mathbf{1} \rightarrow \mathbf{J} \\ \mathbf{1} & \mathbf{0} \\ \mathbf{0} - \mathbf{N} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{X} \\ \mathbf{V} \\ \mathbf{V} \end{bmatrix}$

$$\frac{\mathbf{I} \rightarrow \mathbf{I} + \mathbf{I} \rightarrow \mathbf{J}}{\mathbf{I} - \mathbf{I} - \mathbf{N}} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -\mathbf{I} \\ \mathbf{0} \\ -\mathbf{V} \end{pmatrix}$$

Steps to characterize maximum cocliques

identity derangements other permutations $\begin{bmatrix} \mathbf{i} \rightarrow \mathbf{i} & \mathbf{j} & \mathbf{i} \rightarrow \mathbf{j} \\ \mathbf{1} & \mathbf{0} & \mathbf{0} \\ -\mathbf{0} & -\mathbf{i} - \mathbf{N} \\ -\mathbf{X} & -\mathbf{Y} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -\mathbf{1} \\ -\mathbf{0} \\ -\mathbf{y}' \end{pmatrix}$

Steps to characterize maximum cocliques

If the matrix N has full rank then $x_2 = 0$. (HARD!!)

identity derangements other permutations

$$\begin{bmatrix} \mathbf{i} \to \mathbf{i} & | & \mathbf{i} \to \mathbf{j} \\ \hline \mathbf{1} & | & \mathbf{0} \\ \hline \mathbf{0} & | & \mathbf{N} \\ \hline \mathbf{X} & | & \mathbf{Y} \end{bmatrix} = \begin{pmatrix} -\mathbf{1} & \mathbf{x}_1 \\ -\mathbf{x}_2 & \mathbf{y} \end{pmatrix} = \begin{pmatrix} -\mathbf{1} & \mathbf{0} \\ -\mathbf{0} & \mathbf{y}' \\ -\mathbf{y}' \end{pmatrix}$$

Steps to characterize maximum cocliques

- If the matrix N has full rank then $x_2 = 0$. (HARD!!)
- 2 The matrix X contains a $n \times n$ identity matrix, so x_1 is a 01-vector.
- **3** The sum of the entries of x_1 is 1, so x_1 contains exactly one 1.

identity derangements other permutations

$$\begin{bmatrix} \mathbf{i} \to \mathbf{i} & | & \mathbf{i} \to \mathbf{j} \\ \hline \mathbf{1} & | & \mathbf{0} \\ \hline \mathbf{0} & | & -\mathbf{N} \\ \hline \mathbf{X} & | & \mathbf{Y} \end{bmatrix} = \begin{pmatrix} -\mathbf{1} & \mathbf{1} \\ -\mathbf{1} & \mathbf{x}_2 \\ \hline \mathbf{y}' \end{bmatrix}$$

Steps to characterize maximum cocliques

- If the matrix N has full rank then $x_2 = 0$. (HARD!!)
- 2 The matrix X contains a $n \times n$ identity matrix, so x_1 is a 01-vector.
- **③** The sum of the entries of x_1 is 1, so x_1 contains exactly one 1.

Some Notes

- If the group <u>doesn't</u> have the strict EKR property, we may get a characterization by finding a basis of the kernel of N.
- 2 The 01-vectors y can be thought of as Cameron-Leibler sets.

Results for 2-Transitive Groups

- All 2-transitive groups have EKR-property (M., Spiga, Tiep).
- **2** Sym(n) has strict EKR-property.
- **③** For PGL(n,q)
 - all n it has the EKR-module property (Spiga);
 - for n = 2 has the strict-EKR property (M. and Spiga);
 - For n ≥ 3 the maximum intersecting sets are either stabilizers of a point or a hyperplane (M. and Spiga, Spiga).
- **3** Long, Plaza, Sin, Xiang showed that PSL(2, q) has the strict-EKR property.
- Ahmadi and M. showed Alt(n) and the Matthieu groups have the strict EKR.
- **•** PSU(3,q) has the EKR-module property.

Results for 2-Transitive Groups

- All 2-transitive groups have EKR-property (M., Spiga, Tiep).
- **2** Sym(n) has strict EKR-property.
- **③** For PGL(n,q)
 - all n it has the EKR-module property (Spiga);
 - for n = 2 has the strict-EKR property (M. and Spiga);
 - ▶ for n ≥ 3 the maximum intersecting sets are either stabilizers of a point or a hyperplane (M. and Spiga, Spiga).
- **3** Long, Plaza, Sin, Xiang showed that PSL(2, q) has the strict-EKR property.
- Ahmadi and M. showed Alt(n) and the Matthieu groups have the strict EKR.
- **•** PSU(3,q) has the EKR-module property.

I don't know of an example of 2-transitive group that does not have the EKR-module property.

Let G be a 1-transitive group.

- Canonical cocliques are still the sets $S_{i,j}$ of all permutations that map i to j
- 2 Since G is 1-transitive, $|S_{i,j}| = \frac{|G|}{n}$.
- **3** $\chi(g) = \text{fix}(g) 1$ is still a representation, just not irreducible!

Let G be a 1-transitive group.

- Canonical cocliques are still the sets $S_{i,j}$ of all permutations that map i to j
- 2 Since G is 1-transitive, $|S_{i,j}| = \frac{|G|}{n}$.
- 3 $\chi(g) = \text{fix}(g) 1$ is still a representation, just not irreducible!
- If χ is multiplicity-free, then vectors $v_{i,j}$ span the permutation module.

Let G be a 1-transitive group.

- Canonical cocliques are still the sets $S_{i,j}$ of all permutations that map i to j
- Since G is 1-transitive, $|S_{i,j}| = \frac{|G|}{n}$.
- **3** $\chi(g) = \text{fix}(g) 1$ is still a representation, just not irreducible!
- If χ is multiplicity-free, then vectors $v_{i,j}$ span the permutation module.

Can we prove that the characteristic vector of a maximum coclique is in the permutation module?

Set up:

• If *X* is a graph in an association scheme.

 $\alpha(X)\,\omega(X)\leq |V(X)|.$

Set up:

• If X is a graph in an association scheme.

 $\alpha(X)\,\omega(X)\leq |V(X)|.$

More Set up:

- Equality in the clique-Coclique bound.
- Let $\mathcal{E} = \{E_0, E_1, \dots, E_d\}$ the idempotents of the scheme,
- If C is a clique of maximum size with characteristic vector v_C and
- if S is a maximum coclique with characteristic vector v_S , then

Set up:

• If X is a graph in an association scheme.

 $\alpha(X)\,\omega(X)\leq |V(X)|.$

More Set up:

- Equality in the clique-Coclique bound.
- Let $\mathcal{E} = \{E_0, E_1, \dots, E_d\}$ the idempotents of the scheme,
- If C is a clique of maximum size with characteristic vector v_C and
- if S is a maximum coclique with characteristic vector v_S , then

 $v_S^T E_i v_S \ v_C^T E_i v_C = 0,$

Set up:

• If X is a graph in an association scheme.

 $\alpha(X)\,\omega(X)\leq |V(X)|.$

More Set up:

- Equality in the clique-Coclique bound.
- Let $\mathcal{E} = \{E_0, E_1, \dots, E_d\}$ the idempotents of the scheme,
- If C is a clique of maximum size with characteristic vector v_C and
- if S is a maximum coclique with characteristic vector v_S , then

 $v_S^T E_i v_S \ v_C^T E_i v_C = 0,$

So, if $E_i v_C \neq 0$, then $E_i v_s = 0$.

The group GL(2,q) acts on the $q^2 - 1$ non-zero vectors in \mathbb{F}_q^2 .

- This action is 1-transitive (not 2-transitive).
- 2 This group has a clique of size $q^2 1$.
- 3 The subgroup that fixes a point is a subgroup of size q(q-1),
- The eigenvalues of the derangement graph are:

$$q(q^3 - 2q^2 - q + 3), \quad q, \quad -q^2 + 2q, \quad -q^2 + q + 1.$$

The group GL(2,q) acts on the $q^2 - 1$ non-zero vectors in \mathbb{F}_q^2 .

- This action is 1-transitive (not 2-transitive).
- 2 This group has a clique of size $q^2 1$.
- **③** The subgroup that fixes a point is a subgroup of size q(q-1),
- The eigenvalues of the derangement graph are:

$$q(q^3 - 2q^2 - q + 3), \quad q, \quad -q^2 + 2q, \quad -q^2 + q + 1.$$

The ratio bound does not hold with equality, but it has EKR property by clique-coclique bound.
I can put a weighting on the conjugacy classes and then calculate the eigenvalues of the weighted adjacency matrix.

I can put a weighting on the conjugacy classes and then calculate the eigenvalues of the weighted adjacency matrix.

Character	degree	number	unweighted evalue	weighted evalue
$\alpha = \overline{\beta}$	q + 1	$rac{q-3}{2}$ or $rac{q-2}{2}$	q	-1
$\alpha = 1$	q + 1	q-2	$-q^2 + 2q$	-1
otherwise	q+1	$\frac{(q-3)^2}{2}$ or $\frac{(q-2)(q-4)}{2}$	q	$\frac{2}{q-3}$
$\alpha = 1$	q	1	$-q^2 + q + 1$	-1
$\alpha^2 = 1$	q	1	q	-1
otherwise	q	q-3	q	$\frac{1}{q}\left(\frac{q-1}{q-2} + \frac{q+1}{q-3}\right)$
$\alpha = 1$	1	1	$q(q^3 - 2q^2 - q + 3)$	$q^2 - 2$
$\alpha^2 = 1$ (if q is odd)	1	1	q	-1
otherwise	1	q-3	q	$\frac{q-1}{q-2} + \frac{q+1}{q-3}$
$\chi = 1$	q - 1	$rac{q-1}{2}$ or $rac{q}{2}$	q	q-3
$\chi \neq 1$	q-1	$rac{(q-1)^2}{2}$ or $rac{q(q-2)}{2}$	q	$\frac{2}{q-2}$

- The trivial representation gives the maximum eigenvalue $q^2 2$.
- All the other irreducible representations in the permutation representation all give the minimal eigenvalue -1 (and some other representations too).

- **(**) The trivial representation gives the maximum eigenvalue $q^2 2$.
- 2 All the other irreducible representations in the permutation representation all give the minimal eigenvalue -1 (and some other representations too).
- **③** By the ratio bound GL(2, q) has the EKR property.

- **(**) The trivial representation gives the maximum eigenvalue $q^2 2$.
- 2 All the other irreducible representations in the permutation representation all give the minimal eigenvalue -1 (and some other representations too).
- **③** By the ratio bound GL(2,q) has the EKR property.
- There is a maximum clique that force the characteristic vector of any maximum coclique in to the permutation module.

- The trivial representation gives the maximum eigenvalue $q^2 2$.
- 2 All the other irreducible representations in the permutation representation all give the minimal eigenvalue -1 (and some other representations too).
- **③** By the ratio bound GL(2, q) has the EKR property.
- There is a maximum clique that force the characteristic vector of any maximum coclique in to the permutation module.
- The characteristic vector of any maximum coclique is a linear combination of the canonical vectors.

- The trivial representation gives the maximum eigenvalue $q^2 2$.
- 2 All the other irreducible representations in the permutation representation all give the minimal eigenvalue -1 (and some other representations too).
- **③** By the ratio bound GL(2, q) has the EKR property.
- There is a maximum clique that force the characteristic vector of any maximum coclique in to the permutation module.
- The characteristic vector of any maximum coclique is a linear combination of the canonical vectors.
- GL(2, q) is EKR and has the EKR-module property, but is not strictly EKR.

- The trivial representation gives the maximum eigenvalue $q^2 2$.
- 2 All the other irreducible representations in the permutation representation all give the minimal eigenvalue -1 (and some other representations too).
- **③** By the ratio bound GL(2,q) has the EKR property.
- There is a maximum clique that force the characteristic vector of any maximum coclique in to the permutation module.
- The characteristic vector of any maximum coclique is a linear combination of the canonical vectors.
- GL(2, q) is EKR and has the EKR-module property, but is not strictly EKR.

Can we do this for any 1-transitive group?

Consider Sym(n) acting on ordered *t*-sets.

Theorem (Ellis, Friedgut, Pilpel 2010)

For *n* sufficiently large, the maximum *t*-intersecting set of permutations has size (n - t)! and is the coset of the point-wise stabilizer of a *t*-set.

Consider Sym(n) acting on ordered *t*-sets.

Theorem (Ellis, Friedgut, Pilpel 2010)

For *n* sufficiently large, the maximum *t*-intersecting set of permutations has size (n - t)! and is the coset of the point-wise stabilizer of a *t*-set.

Consider Sym(n) acting on unordered *t*-sets.

Theorem (Ellis, 2011)

For n sufficiently large, the maximum t-set-wise intersecting set of permutations has size (n - t)!t! and is the coset of the stabilizer of a t-set.

AGL(2,q) acts on the q(q+1) lines of \mathbb{F}_q^2 , this action is 1-transitive.

- The eigenvalues can be calculated, the ratio bound does not hold with equality.
- I could not find a weighting the would give a good bound!

AGL(2,q) acts on the q(q+1) lines of \mathbb{F}_q^2 , this action is 1-transitive.

- The eigenvalues can be calculated, the ratio bound does not hold with equality.
- I could not find a weighting the would give a good bound!

Conjecture

The group AGL(2,q) does not have the EKR property. There is an intersecting set of size $\frac{1}{2}q^2(q-1)(3q-4)$.

The stabilizer of a point has size $\frac{q^3(q-1)^2(q+1)}{q(q+1)} = q^2(q-1)^2$.

Big Dramatic Summary

2-Transitive Groups

- All have the EKR property.
- I conjecture that all have the EKR module property.
- On't all have strict EKR property.
 - a. Can we characterize which do?
 - b. Are the maximum cocliques always subgroups or cosets?

Big Dramatic Summary

2-Transitive Groups

- All have the EKR property.
- I conjecture that all have the EKR module property.
- On't all have strict EKR property.
 - a. Can we characterize which do?
 - b. Are the maximum cocliques always subgroups or cosets?

1-Transitive Groups

- Do not all have the EKR property.
 - a. Can we characterize which groups have the EKR property?
 - b. What about rank-3 groups?
 - c. Which imprimitvie groups don't have the EKR property?
- Which have the EKR module property?
- Which have the strict EKR property?

Big Dramatic Summary

2-Transitive Groups

- All have the EKR property.
- I conjecture that all have the EKR module property.
- On't all have strict EKR property.
 - a. Can we characterize which do?
 - b. Are the maximum cocliques always subgroups or cosets?

1-Transitive Groups

- Do not all have the EKR property.
 - a. Can we characterize which groups have the EKR property?
 - b. What about rank-3 groups?
 - c. Which imprimitvie groups don't have the EKR property?
- Which have the EKR module property?
- Which have the strict EKR property?

What other families of groups are interesting?