Erdős-Ko-Rado Theorems for Permutations

Karen Meagher
(joint work with Bahman Ahmadi, Chris Godsil, Alison Purdy, Pablo Spiga and Pham Huu Tiep)

August 23, 2019
Erdős-Ko-Rado Theorem

Theorem (EKR Theorem-1961)

Let \mathcal{F} be an intersecting k-set system on an n-set. If $n > 2k$, then

1. $|\mathcal{F}| \leq \binom{n-1}{k-1},$

2. and \mathcal{F} meets this bound if and only if the sets all contain a common element.

Theorem (EKR Theorem-1961)

Let \mathcal{F} be an intersecting k-set system on an n-set. If $n > 2k$, then

1. $|\mathcal{F}| \leq \binom{n-1}{k-1}$,

2. and \mathcal{F} meets this bound if and only if the sets all contain a common element.

This is the largest intersecting 3-set system from $[1..8]$.

123, 124, 125, 126, 127, 128, 134,
135, 136, 137, 138, 145, 146, 147,
148, 156, 157, 158, 167, 168, 178
Reasons to love the Erdős-Ko-Rado Theorem

There are many different proofs.
 - Original used compression and counting,
 - Katona’s cycle proof is very accessible
 - Algebraic eigenvalue proof

There are many extensions of this theorem.
 - What is the largest intersecting system without a common point?
 - What is largest t-intersecting system?
 - What is the largest cross-intersecting system?

The EKR theorem generalizes to many different objects.
 - k-dimensional vector subspaces over a finite field,
 - Length-n sequences in \mathbb{Z}_q,
 - Integer partitions,
 - Domino tilings,
 - Permutations . . .

Which proofs can be extend to other objects?
Reasons to love the Erdős-Ko-Rado Theorem

- There are many different proofs.
 - Original used compression and counting,
 - Katona’s cycle proof is very accessible
 - Algebraic eigenvalue proof

- There are many extensions of this theorem.
 - What is the largest intersecting system without a common point?
 - What is largest t-intersecting system?
 - What is the largest cross-intersecting system?

The EKR theorem generalizes to many different objects.
- k-dimensional vector subspaces over a finite field,
- Length-n sequences in \mathbb{Z}_q,
- Integer partitions,
- Domino tilings,
- Permutations . . .
Which proofs can be extended to other objects?
There are many different proofs.

- Original used compression and counting,
- Katona’s cycle proof is very accessible
- Algebraic eigenvalue proof

There are many extensions of this theorem.

- What is the largest intersecting system without a common point?
- What is largest t-intersecting system?
- What is the largest cross-intersecting system?

The EKR theorem generalizes to many different objects.

- k-dimensional vector subspaces over a finite field,
- Length-n sequences in \mathbb{Z}_q,
- Integer partitions,
- Domino tilings,
- Permutations . . .
Reasons to love the Erdős-Ko-Rado Theorem

There are many different proofs.
- Original used compression and counting,
- Katona’s cycle proof is very accessible
- Algebraic eigenvalue proof

There are many extensions of this theorem.
- What is the largest intersecting system without a common point?
- What is largest \(t \)-intersecting system?
- What is the largest cross-intersecting system?

The EKR theorem generalizes to many different objects.
- \(k \)-dimensional vector subspaces over a finite field,
- Length-\(n \) sequences in \(\mathbb{Z}_q \),
- Integer partitions,
- Domino tilings,
- Permutations . . .

Which proofs can be extend to other objects?
The Kneser graph $K(n, k)$ is the graph with all k-subsets of an n-set as the vertices and vertices are adjacent if they are not intersecting.
The Kneser graph $K(n, k)$ is the graph with all k-subsets of an n-set as the vertices and vertices are adjacent if they are not intersecting.

Figure: The Kneser Graph $K(5, 2)$, or our old friend Petersen.
The Kneser graph $K(n, k)$ is the graph with all k-subsets of an n-set as the vertices and vertices are adjacent if they are not intersecting.

Figure: The Kneser Graph $K(5, 2)$, or our old friend Petersen.

What is the largest **coclique/independent set** in this graph?
Kneser Graphs

Properties of $K(n, k)$

- Vertex transitive and regular, with degree $\binom{n-k}{k}$.
- It is a graph in the Johnson association scheme.
- If $n \geq 2k$, eigenvalues are

$$(-1)^i \binom{n-k-i}{k-i} \quad \text{with multiplicity} \quad \binom{n}{i} - \binom{n}{i-1}.$$
Delsarte-Hoffman Ratio Bound for Cocliques

Theorem (bound part)

If X is a d-regular graph, then

$$
\alpha(X) \leq \frac{|V(X)|}{1 - \frac{d}{\tau}}
$$

where τ is the least eigenvalue of $A(X)$ (or a weighted adjacency matrix).
Delsarte-Hoffman Ratio Bound for Cocliques

Theorem (bound part)

If \(X \) is a \(d \)-regular graph, then

\[
\alpha(X) \leq \frac{|V(X)|}{1 - \frac{d}{\tau}}
\]

where \(\tau \) is the least eigenvalue of \(A(X) \) (or a weighted adjacency matrix).

Theorem (characterization part)

If equality holds in the ratio bound and \(v_S \) is a characteristic vector for a maximum coclique \(S \), then

\[
v_S - \frac{\alpha(X)}{|V(X)|} 1
\]

is an eigenvector for \(\tau \).
Ratio Bound for Kneser Graph

Bound on the size of a coclique:

\[\alpha(K(n, k)) \leq \frac{\binom{n}{k}}{1 - \frac{\binom{n-k}{k}}{\binom{n-k-1}{k-1}}} = \frac{n}{k-1}. \]
Bound on the size of a coclique:

\[\alpha(K(n, k)) \leq \frac{\binom{n}{k}}{1 - \frac{\binom{n-k}{k}}{-\binom{n-k-1}{k-1}}} = \binom{n-1}{k-1}. \]

Characterization:

- 1 is a \(\binom{n-k}{k} \)-eigenvector.
- Let \(v_i \) be the characteristic vector of the collection of all sets that contain \(i \). The vectors \(v_i - \frac{k}{n}1 \) are \(-\binom{n-k-1}{k-1} \)-eigenvectors.
Ratio Bound for Kneser Graph

Bound on the size of a coclique:

$$\alpha(K(n, k)) \leq \frac{(n)}{k} \frac{(n-k)}{k-1} = \binom{n-1}{k-1}.$$

Characterization:

- 1 is a $\binom{n-k}{k}$-eigenvector.
- Let v_i be the characteristic vector of the collection of all sets that contain i. The vectors $v_i - \frac{k}{n} 1$ are $-\binom{n-k-1}{k-1}$-eigenvectors.
- v_i span the $\binom{n-k}{k}$-eigenspace and the $-\binom{n-k-1}{k-1}$-eigenspace.
Ratio Bound for Kneser Graph

Bound on the size of a coclique:

\[\alpha(K(n, k)) \leq \frac{\binom{n}{k}}{1 - \frac{\binom{n-k}{k}}{-\binom{n-k-1}{k-1}}} = \binom{n-1}{k-1}. \]

Characterization:

- 1 is a \(\binom{n-k}{k} \)-eigenvector.
- Let \(v_i \) be the characteristic vector of the collection of all sets that contain \(i \). The vectors \(v_i - \frac{k}{n} 1 \) are \(-\binom{n-k-1}{k-1} \)-eigenvectors.
- \(v_i \) span the \(\binom{n-k}{k} \)-eigenspace and the \(-\binom{n-k-1}{k-1} \)-eigenspace.
- The characteristic vector for any maximum coclique is a linear combination of the \(v_i \).
Ratio Bound for Kneser Graph

Bound on the size of a coclique:

\[\alpha(K(n, k)) \leq \frac{\binom{n}{k}}{1 - \frac{\binom{n-k}{k}}{-\binom{n-k-1}{k-1}}} = \binom{n-1}{k-1}. \]

Characterization:

- 1 is a \(\binom{n-k}{k} \)-eigenvector.
- Let \(v_i \) be the characteristic vector of the collection of all sets that contain \(i \). The vectors \(v_i - \frac{k}{n} 1 \) are \(-\binom{n-k-1}{k-1} \)-eigenvectors.
- \(v_i \) span the \(\binom{n-k}{k} \)-eigenspace and the \(-\binom{n-k-1}{k-1} \)-eigenspace.
- The characteristic vector for any maximum coclique is a linear combination of the \(v_i \).
- If \(n > 2k \), the only linear combinations that give 01-vector with weight \(\binom{n-1}{k-1} \) is \(v_i \).
Extending this Method to Other Objects

1. For objects made of “atoms”, two objects are intersecting if they have a common atom.
Extending this Method to Other Objects

1. For objects made of “atoms”, two objects are intersecting if they have a common atom.

2. A canonically intersecting set is the set of all the objects that contain a fixed atom.
Extending this Method to Other Objects

1. For objects made of “atoms”, two objects are intersecting if they have a common atom.

2. A *canonically intersecting set* is the set of all the objects that contain a fixed atom.

The EKR property

The canonically intersecting set are maximum intersecting sets.
Extending this Method to Other Objects

1. For objects made of “atoms”, two objects are intersecting if they have a common atom.

2. A *canonically intersecting set* is the set of all the objects that contain a fixed atom.

The EKR property

The canonically intersecting set are maximum intersecting sets.

The EKR module property

The characteristic vector of any max intersecting set a linear combination of the canonically intersecting sets.
Extending this Method to Other Objects

1. For objects made of “atoms”, two objects are intersecting if they have a common atom.

2. A *canonically intersecting set* is the set of all the objects that contain a fixed atom.

The EKR property

The canonically intersecting set are maximum intersecting sets.

The EKR module property

The characteristic vector of any max intersecting set a linear combination of the canonically intersecting sets.

The strict EKR property

All the maximum intersecting sets the canonically intersecting sets?
Steps in this Type of Proof

1. Define a derangement graph:
 - The objects are the vertices of the graph, and
 - two objects are adjacent if they don’t intersect.
Steps in this Type of Proof

1. Define a derangement graph:
 - The objects are the vertices of the graph, and
 - two objects are adjacent if they don’t intersect.

2. Find a bound on the size of maximum coclique in the derangement graph.
 - Plan A is to use ratio bound.
 - Plan B use the clique/coclique bound
Steps in this Type of Proof

1. Define a derangement graph:
 ▶ The objects are the vertices of the graph, and
 ▶ two objects are adjacent if they don’t intersect.

2. Find a bound on the size of maximum coclique in the derangement graph.
 ▶ Plan A is to use ratio bound.
 ▶ Plan B use the clique/coclique bound

3. Show the characteristic vector of any maximum intersecting set is in a vector space that is spanned by the canonically intersecting sets.
Steps in this Type of Proof

1. Define a derangement graph:
 - The objects are the vertices of the graph, and
 - two objects are adjacent if they don’t intersect.

2. Find a bound on the size of maximum coclique in the derangement graph.
 - Plan A is to use ratio bound.
 - Plan B use the clique/coclique bound

3. Show the characteristic vector of any maximum intersecting set is in a vector space that is spanned by the canonically intersecting sets.

4. Find all linear combinations of characteristic vectors of the canonically intersecting objects that give characteristic vectors on intersecting sets.
Steps in this Type of Proof

1. Define a derangement graph:
 ▶ The objects are the vertices of the graph, and
 ▶ two objects are adjacent if they don’t intersect.

2. Find a bound on the size of maximum coclique in the derangement graph.
 ▶ Plan A is to use ratio bound.
 ▶ Plan B use the clique/coclique bound

3. Show the characteristic vector of any maximum intersecting set is in a vector space that is spanned by the canonically intersecting sets.

4. Find all linear combinations of characteristic vectors of the canonically intersecting objects that give characteristic vectors on intersecting sets.

This method works for lots of objects—we will consider permutations.
Two permutations $\sigma, \pi \in \text{Sym}(n)$ intersect if for some $i \in [1..n]$.

$$\sigma(i) = \pi(i) \quad \text{or} \quad \pi^{-1}\sigma(i) = i.$$
Intersecting Permutations

Two permutations \(\sigma, \pi \in \text{Sym}(n) \) intersect if for some \(i \in [1..n] \).

\[
\sigma(i) = \pi(i) \quad \text{or} \quad \pi^{-1}\sigma(i) = i.
\]

A permutation is a derangement if it fixes no points. So \(\sigma \) and \(\pi \) are intersecting if and only if \(\pi^{-1}\sigma \) is not a derangement.
Intersecting Permutations

Two permutations $\sigma, \pi \in \text{Sym}(n)$ intersect if for some $i \in [1..n]$.

$$\sigma(i) = \pi(i) \quad \text{or} \quad \pi^{-1}\sigma(i) = i.$$

A permutation is a derangement if it fixes no points. So σ and π are intersecting if and only if $\pi^{-1}\sigma$ is not a derangement.

Define $S_{i,j}$ to be the set of all permutations in G that map i to j.

1. These are the cosets of the stabilizers of a point.
2. These are the canonical cocliques in Γ_G.
3. Use $v_{i,j}$ to denote the characteristic vector of $S_{i,j}$.
For any $G \leq \text{Sym}(n)$ we can define a *Derangement Graph*.

- Γ_G denotes the derangement graph for a group G.
- The vertices are the elements of G.
- Vertices $\sigma, \pi \in G$ are adjacent if and only if $\pi^{-1}\sigma$ is a derangement. (So adjacent if **not** intersecting.)
For any $G \leq \text{Sym}(n)$ we can define a Derangement Graph.

- Γ_G denotes the derangement graph for a group G.
- The vertices are the elements of G.
- Vertices $\sigma, \pi \in G$ are adjacent if and only if $\pi^{-1}\sigma$ is a derangement. (So adjacent if not intersecting.)
- $\Gamma_G = \text{Cay}(G, \text{Der}(G))$ where $\text{Der}(G)$ is the set of derangements of G.

For any $G \leq \text{Sym}(n)$ we can define a Derangement Graph.

- Γ_G denotes the derangement graph for a group G.
- The vertices are the elements of G.
- Vertices $\sigma, \pi \in G$ are adjacent if and only if $\pi^{-1}\sigma$ is a derangement. (So adjacent if not intersecting.)
- $\Gamma_G = \text{Cay}(G, \text{Der}(G))$ where $\text{Der}(G)$ is the set of derangements of G.

This derangement graph depends on the action!
Examples Derangement Graph

Figure: The graph $\Gamma_{D(4)}$.
If G is cyclic, then Γ_G is the complement of the circulant graph $(\mathbb{Z}_{|G|}, C)$ where C is the set of all multiples of the cycle lengths of the generator.

Figure: The graph $G = \langle (1, 2, 3)(4, 5) \rangle$.
Derangement Graph for $\text{Sym}(4)$
Properties of the Derangement Graph

- Γ_G is vertex transitive.
- An intersecting set in G is a coclique in Γ_G.
- If G has a sharply 1-transitive set, is a clique of size n.
Properties of the Derangement Graph

- Γ_G is vertex transitive.
- An intersecting set in G is a coclique in Γ_G.
- If G has a sharply 1-transitive set, is a clique of size n.
- Γ_G is a normal Cayley graph. (The derangements are the connection set.)
Properties of the Derangement Graph

- Γ_G is vertex transitive.
- An intersecting set in G is a coclique in Γ_G.
- If G has a sharply 1-transitive set, is a clique of size n.
- Γ_G is a normal Cayley graph. (The derangements are the connection set.)
- The eigenvalues of Γ_G are

$$\frac{1}{\phi(1)} \sum_{d \in D} \phi(d)$$

where ϕ is an irreducible character of G.
Properties of the Derangement Graph

- Γ_G is vertex transitive.
- An intersecting set in G is a coclique in Γ_G.
- If G has a sharply 1-transitive set, is a clique of size n.
- Γ_G is a normal Cayley graph. (The derangements are the connection set.)
- The eigenvalues of Γ_G are

$$\frac{1}{\phi(1)} \sum_{d \in D} \phi(d)$$

where ϕ is an irreducible character of G.
- The trivial representation gives the degree, $|D|$.
Properties of the Derangement Graph

- Γ_G is vertex transitive.
- An intersecting set in G is a coclique in Γ_G.
- If G has a sharply 1-transitive set, is a clique of size n.
- Γ_G is a normal Cayley graph. (The derangements are the connection set.)
- The eigenvalues of Γ_G are
 \[
 \frac{1}{\phi(1)} \sum_{d \in D} \phi(d)
 \]
 where ϕ is an irreducible character of G.
- The trivial representation gives the degree, $|D|$.
- The eigenspaces are unions of G-modules, projections are given by E_{ϕ} (matrix with (g, h)-entry $\phi(g^{-1}h)$).
- It is the union of the graphs in the conjugacy class association scheme (the E_{ϕ} are the idempotents in the scheme).
2-Transitive Subgroups

1. The permutation character is $\text{fix}(g)$.
2. Define $\chi(g) = \text{fix}(g) - 1$ ($\chi = \text{permutation} - \text{trivial}$).
2-Transitive Subgroups

1. The permutation character is $\text{fix}(g)$.
2. Define $\chi(g) = \text{fix}(g) - 1$ (χ = permutation – trivial).
3. If G is 2-transitive, χ is irreducible.

$$\langle \chi, \chi \rangle = \frac{1}{|G|} \sum_{g \in G} (|\text{fix}(g)| - 1)^2$$

$$= \frac{1}{|G|} \sum_{g \in G} |\text{fix}(g)|^2 - 2 \frac{1}{|G|} \sum_{g \in G} |\text{fix}(g)| + \frac{1}{|G|} \sum_{g \in G} 1 = 1$$
2-Transitive Subgroups

1. The permutation character is $\text{fix}(g)$.
2. Define $\chi(g) = \text{fix}(g) - 1$ ($\chi =$ permutation $-$ trivial).
3. If G is 2-transitive, χ is irreducible.

$$\langle \chi, \chi \rangle = \frac{1}{|G|} \sum_{g \in G} (|\text{fix}(g)| - 1)^2$$

$$= \frac{1}{|G|} \sum_{g \in G} |\text{fix}(g)|^2 - 2 \frac{1}{|G|} \sum_{g \in G} |\text{fix}(g)| + \frac{1}{|G|} \sum_{g \in G} 1 = 1$$

4. The eigenvalue for χ is

$$\lambda_\chi = \frac{1}{\chi(1)} \sum_{g \in D} \chi(g) = -\frac{|D|}{n - 1}$$
The permutation character is $\text{fix}(g)$.

Define $\chi(g) = \text{fix}(g) - 1$ ($\chi = \text{permutation - trivial}$).

If G is 2-transitive, χ is irreducible.

\[
\langle \chi, \chi \rangle = \frac{1}{|G|} \sum_{g \in G} (|\text{fix}(g)| - 1)^2
\]

\[
= \frac{1}{|G|} \sum_{g \in G} |\text{fix}(g)|^2 - 2 \frac{1}{|G|} \sum_{g \in G} |\text{fix}(g)| + \frac{1}{|G|} \sum_{g \in G} 1 = 1
\]

The eigenvalue for χ is

\[
\lambda_{\chi} = \frac{1}{\chi(1)} \sum_{g \in D} \chi(g) = \frac{-|D|}{n - 1}
\]

The permutation module is the span of the columns of E_{χ} and E_1 (the all ones vector).
Apply the Ratio Bound

Theorem

Let G be a 2-transitive group acting on an n-set. If $\frac{-|D|}{n-1}$ is the least eigenvalue for Γ_G, then the largest intersecting set has size $\frac{|G|}{n}$.
Apply the Ratio Bound

Theorem

Let G be a 2-transitive group acting on an n-set. If $\frac{-|D|}{n-1}$ is the least eigenvalue for Γ_G, then the largest intersecting set has size $\frac{|G|}{n}$.

Proof. By the ratio bound

$$\alpha(\Gamma_G) \leq \frac{|G|}{1 - \frac{|D|}{n-1}} = \frac{|G|}{n}.$$

Since G is transitive, then the stabilizer of a point has size $|G|/n$.

Apply the Ratio Bound

Theorem

Let G be a 2-transitive group acting on an n-set. If $\frac{-|D|}{n-1}$ is the least eigenvalue for Γ_G, then the largest intersecting set has size $\frac{|G|}{n}$.

Proof. By the ratio bound

$$\alpha(\Gamma_G) \leq \frac{|G|}{1 - \frac{|D|}{n-1}} = \frac{|G|}{n}.$$

Since G is transitive, then the stabilizer of a point has size $|G|/n$.

Theorem

Further, if only χ has eigenvalue $\frac{-|D|}{n-1}$, then the characteristic vector of any maximum coclique S is in the permutation module.

Proof. The χ-module is the entire $\frac{-|D|}{n-1}$-eigenspace, and $v_S - \frac{1}{n} 1$ is a $\frac{-|D|}{n-1}$-eigenvector.
A Basis for the Permutation Module

Lemma

If G is a 2-transitive group, then $v_{i,j}$ is in the permutation module.

Proof.

$$E_X(v_{i,j} - \frac{1}{n}1) = E_X(v_{i,j}) = v_{i,j} - \frac{1}{n}1.$$
Lemma

If G is a 2-transitive group, then $v_{i,j}$ is in the permutation module.

Proof.

$$E_{\chi}(v_{i,j} - \frac{1}{n}1) = E_{\chi}(v_{i,j}) = v_{i,j} - \frac{1}{n}1.$$

Lemma

Let $B := \{v_{i,j} - \frac{1}{n}1 | i, j \in [n - 1]\}$

is a basis for the χ-module of G.
A Basis for the Permutation Module

Lemma

\(G \) is a 2-transitive group, then \(v_{i,j} \) is in the permutation module.

Proof.

\[
E_\chi(v_{i,j} - \frac{1}{n}1) = E_\chi(v_{i,j}) = v_{i,j} - \frac{1}{n}1.
\]

Lemma

\[
B := \{v_{i,j} - \frac{1}{n}1 \mid i, j \in [n-1]\}
\]

is a basis for the \(\chi \)-module of \(G \).

Proof. Define a matrix \(L \) with columns \(v_{i,j} \).

\[
L^\top L = \frac{(n-1)!}{2} I_{(n-1)^2} + \frac{(n-2)!}{2} (A(K_{n-1}) \otimes A(K_{n-1})).
\]
A Basis for the Permutation Module

Lemma

\(G \) is a 2-transitive group, then \(v_{i,j} \) is in the permutation module.

Proof.

\[
E_\chi(v_{i,j} - \frac{1}{n} \mathbf{1}) = E_\chi(v_{i,j}) = v_{i,j} - \frac{1}{n} \mathbf{1}.
\]

Lemma

\[
B := \{v_{i,j} - \frac{1}{n} \mathbf{1} | i, j \in [n-1]\}
\]

is a basis for the \(\chi \)-module of \(G \).

Proof. Define a matrix \(L \) with columns \(v_{i,j} \).

\[
L^\top L = \frac{(n-1)!}{2} I_{(n-1)^2} + \frac{(n-2)!}{2} (A(K_{n-1}) \otimes A(K_{n-1})).
\]

Corollary

\[
\{v_{i,j} | i, j \in [n-1]\} \cup v_{n,n} \text{ is a basis for the permutation module of } G.
\]
The Characterization for \(\text{Sym}(3) \)

If the characteristic vector for any maximum coclique is in the permutation module, then it is a linear combination of the vectors \(v_{i,j} \).
The Characterization for $\text{Sym}(3)$

If the characteristic vector for any maximum coclique is in the permutation module, then it is a linear combination of the vectors $v_{i,j}$.

For $\text{Sym}(3)$,

<table>
<thead>
<tr>
<th></th>
<th>1→1</th>
<th>2→2</th>
<th>3→3</th>
<th>1→2</th>
<th>2→1</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,2,3]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[2,3,1]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>[3,1,2]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>[1,3,2]</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[3,2,1]</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[2,1,3]</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
\begin{pmatrix}
 x_{1,1} \\
 x_{2,2} \\
 x_{3,3} \\
 x_{1,2} \\
 x_{2,1}
\end{pmatrix}
\]
If the characteristic vector for any maximum coclique is in the permutation module, then it is a linear combination of the vectors $v_{i,j}$.

For $\text{Sym}(3)$,

\[
\begin{pmatrix}
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1
\end{pmatrix}
\]

\[
\begin{pmatrix}
x_{1,1} \\
x_{2,2} \\
x_{3,3} \\
x_{1,2} \\
x_{2,1}
\end{pmatrix}
= \begin{pmatrix}
1_{[1,2,3]} \\
0_{[2,3,1]} \\
0_{[3,1,2]} \\
y_{[1,3,2]} \\
y_{[3,2,1]} \\
y_{[2,1,3]}
\end{pmatrix}
\]
Characterization for General 2-Transitive Groups

\[
\begin{pmatrix}
1 & 0 \\
0 & N \\
X & Y
\end{pmatrix}
\]

steps to characterize maximum cocliques

1. If the matrix \(N \) has full rank then \(x_2 = 0 \). (HARD!!)

2. The matrix \(X \) contains a \(n \times n \) identity matrix, so \(x_1 \) is a 01-vector.

3. The sum of the entries of \(x_1 \) is 1, so \(x_1 \) contains exactly one 1.

Some Notes

1. If the group doesn't have the strict EKR property, we may get a characterization by finding a basis of the kernel of \(N \).

2. The 01-vectors \(y \) can be thought of as Cameron-Leibler sets.
Characterization for General 2-Transitive Groups

Steps to characterize maximum cocliques

\[
\begin{pmatrix}
1 & 0 \\
0 & N \\
x_1 & x_2
\end{pmatrix}
= \begin{pmatrix}
1 \\
0 \\
y'
\end{pmatrix}
\]
Characterization for General 2-Transitive Groups

Steps to characterize maximum cocliques

1. If the matrix N has full rank then $x_2 = 0$. (HARD!!)
Characterization for General 2-Transitive Groups

\[
\begin{pmatrix}
1 & 0 \\
0 & N \\
X & Y
\end{pmatrix}
\]

Steps to characterize maximum cocliques

1. If the matrix \(N \) has full rank then \(x_2 = 0 \). (HARD!!)
2. The matrix \(X \) contains a \(n \times n \) identity matrix, so \(x_1 \) is a 01-vector.
3. The sum of the entries of \(x_1 \) is 1, so \(x_1 \) contains exactly one 1.

Some Notes
1. If the group doesn't have the strict EKR property, we may get a characterization by finding a basis of the kernel of \(N \).
2. The 01-vectors \(y \) can be thought of as Cameron-Leibler sets.
Characterization for General 2-Transitive Groups

i \rightarrow i || i \rightarrow j
\[
\begin{pmatrix}
1 & 0 \\
0 & N \\
X & Y
\end{pmatrix}
\]

Steps to characterize maximum cocliques

1. If the matrix N has full rank then $x_2 = 0$. (HARD!!)
2. The matrix X contains a $n \times n$ identity matrix, so x_1 is a 01-vector.
3. The sum of the entries of x_1 is 1, so x_1 contains exactly one 1.

Some Notes

1. If the group doesn’t have the strict EKR property, we may get a characterization by finding a basis of the kernel of N.
2. The 01-vectors y can be thought of as Cameron-Leibler sets.
All 2-transitive groups have EKR-property (M., Spiga, Tiep).

Sym\((n) \) has strict EKR-property.

For PGL\((n, q) \)

- all \(n \) it has the EKR-module property (Spiga);
- for \(n = 2 \) has the strict-EKR property (M. and Spiga);
- for \(n \geq 3 \) the maximum intersecting sets are either stabilizers of a point or a hyperplane (M. and Spiga, Spiga).

Long, Plaza, Sin, Xiang showed that PSL\((2, q) \) has the strict-EKR property.

Ahmadi and M. showed Alt\((n) \) and the Matthieu groups have the strict EKR.

PSU\((3, q) \) has the EKR-module property.
Results for 2-Transitive Groups

1. All 2-transitive groups have EKR-property (M., Spiga, Tiep).
2. Sym(n) has strict EKR-property.
3. For PGL(n, q)
 - all n it has the EKR-module property (Spiga);
 - for $n = 2$ has the strict-EKR property (M. and Spiga);
 - for $n \geq 3$ the maximum intersecting sets are either stabilizers of a point or a hyperplane (M. and Spiga, Spiga).
4. Long, Plaza, Sin, Xiang showed that PSL$(2, q)$ has the strict-EKR property.
5. Ahmadi and M. showed Alt(n) and the Matthieu groups have the strict EKR.
6. PSU$(3, q)$ has the EKR-module property.

I don’t know of an example of 2-transitive group that does not have the EKR-module property.
Let G be a 1-transitive group.

1. Canonical cocliques are still the sets $S_{i,j}$ of all permutations that map i to j.

2. Since G is 1-transitive, $|S_{i,j}| = \frac{|G|}{n}$.

3. $\chi(g) = \text{fix}(g) - 1$ is still a representation, just not irreducible!
Let G be a 1-transitive group.

1. Canonical cocliques are still the sets $S_{i,j}$ of all permutations that map i to j.
2. Since G is 1-transitive, $|S_{i,j}| = \frac{|G|}{n}$.
3. $\chi(g) = \text{fix}(g) - 1$ is still a representation, just not irreducible!
4. If χ is multiplicity-free, then vectors $v_{i,j}$ span the permutation module.
Let G be a 1-transitive group.

1. Canonical cocliques are still the sets $S_{i,j}$ of all permutations that map i to j.

2. Since G is 1-transitive, $|S_{i,j}| = \frac{|G|}{n}$.

3. $\chi(g) = \text{fix}(g) - 1$ is still a representation, just not irreducible!

4. If χ is multiplicity-free, then vectors $v_{i,j}$ span the permutation module.

Can we prove that the characteristic vector of a maximum coclique is in the permutation module?
Clique-Coclique Bound in an Association Scheme

Set up:
- If X is a graph in an association scheme.

\[\alpha(X) \omega(X) \leq |V(X)|. \]
Clique-Coclique Bound in an Association Scheme

Set up:
- If X is a graph in an association scheme.

$$\alpha(X) \omega(X) \leq |V(X)|.$$

More Set up:
- Equality in the clique-Coclique bound.
- Let $\mathcal{E} = \{E_0, E_1, \ldots, E_d\}$ the idempotents of the scheme,
- If C is a clique of maximum size with characteristic vector v_C and
- if S is a maximum coclique with characteristic vector v_S, then
Clique-Coclique Bound in an Association Scheme

Set up:
- If X is a graph in an association scheme.

$\alpha(X) \omega(X) \leq |V(X)|.$

More Set up:
- Equality in the clique-Coclique bound.
- Let $\mathcal{E} = \{E_0, E_1, \ldots, E_d\}$ the idempotents of the scheme,
- If C is a clique of maximum size with characteristic vector v_C and
- if S is a maximum coclique with characteristic vector v_S, then

$v_S^T E_i v_S \ v_C^T E_i v_C = 0,$
Clique-Coclique Bound in an Association Scheme

Set up:
- If X is a graph in an association scheme.

\[\alpha(X) \omega(X) \leq |V(X)|. \]

More Set up:
- Equality in the clique-Coclique bound.
- Let $\mathcal{E} = \{E_0, E_1, \ldots, E_d\}$ the idempotents of the scheme,
- If C is a clique of maximum size with characteristic vector v_C and
- if S is a maximum coclique with characteristic vector v_S, then

\[v_S^T E_i v_S v_C^T E_i v_C = 0, \]

So, if $E_i v_C \neq 0$, then $E_i v_s = 0.$
The group $\text{GL}(2, q)$ acts on the $q^2 - 1$ non-zero vectors in \mathbb{F}_q^2.

1. This action is 1-transitive (not 2-transitive).
2. This group has a clique of size $q^2 - 1$.
3. The subgroup that fixes a point is a subgroup of size $q(q - 1)$,
4. The eigenvalues of the derangement graph are:

$$q(q^3 - 2q^2 - q + 3), \quad q, \quad -q^2 + 2q, \quad -q^2 + q + 1.$$

The ratio bound does not hold with equality, but it has EKR property by clique-coclique bound.
The group $GL(2, q)$ acts on the $q^2 - 1$ non-zero vectors in \mathbb{F}_q^2.

1. This action is 1-transitive (not 2-transitive).
2. This group has a clique of size $q^2 - 1$.
3. The subgroup that fixes a point is a subgroup of size $q(q - 1)$.
4. The eigenvalues of the derangement graph are:

$$q(q^3 - 2q^2 - q + 3), \quad q, \quad -q^2 + 2q, \quad -q^2 + q + 1.$$

The ratio bound does not hold with equality, but it has EKR property by clique-coclique bound.
I can put a weighting on the conjugacy classes and then calculate the eigenvalues of the weighted adjacency matrix.

<table>
<thead>
<tr>
<th>Character degree number</th>
<th>Unweighted evalue</th>
<th>Weighted evalue</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = \beta q^2 - 3$</td>
<td>q^{2-2} or q^{2-4}</td>
<td>$q^{2} - 3$ or $q^{2} - 2$</td>
</tr>
<tr>
<td>$\alpha = 1$</td>
<td>q^{2-2} or q^{2-4}</td>
<td>$q^{2} - 3$ or $q^{2} - 2$</td>
</tr>
<tr>
<td>$\alpha = 1$</td>
<td>q^{2-2} or q^{2-4}</td>
<td>$q^{2} - 3$ or $q^{2} - 2$</td>
</tr>
<tr>
<td>$\chi = 1$</td>
<td>q^{2-2} or q^{2-4}</td>
<td>$q^{2} - 3$ or $q^{2} - 2$</td>
</tr>
<tr>
<td>$\chi \neq 1$</td>
<td>q^{2-2} or q^{2-4}</td>
<td>$q^{2} - 3$ or $q^{2} - 2$</td>
</tr>
</tbody>
</table>
Weighted Adjacency Matrix

I can put a weighting on the conjugacy classes and then calculate the eigenvalues of the weighted adjacency matrix.

<table>
<thead>
<tr>
<th>Character</th>
<th>degree</th>
<th>number</th>
<th>unweighted evalue</th>
<th>weighted evalue</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 1$</td>
<td>$q + 1$</td>
<td>$\frac{q-3}{2}$ or $\frac{q-2}{2}$</td>
<td>q</td>
<td>-1</td>
</tr>
<tr>
<td>otherwise</td>
<td>$q + 1$</td>
<td>$q - 2$</td>
<td>$-q^2 + 2q$</td>
<td>$2\frac{1}{q-3}$</td>
</tr>
<tr>
<td>$\alpha = 1$</td>
<td>q</td>
<td>1</td>
<td>$-q^2 + q + 1$</td>
<td>-1</td>
</tr>
<tr>
<td>$\alpha^2 = 1$</td>
<td>q</td>
<td>1</td>
<td>q</td>
<td>-1</td>
</tr>
<tr>
<td>otherwise</td>
<td>q</td>
<td>$q - 3$</td>
<td>q</td>
<td>$\frac{1}{q} \left(\frac{q-1}{q-2} + \frac{q+1}{q-3} \right)$</td>
</tr>
<tr>
<td>$\alpha = 1$</td>
<td>1</td>
<td>1</td>
<td>$q(q^3 - 2q^2 - q + 3)$</td>
<td>$q^2 - 2$</td>
</tr>
<tr>
<td>$\alpha^2 = 1$ (if q is odd)</td>
<td>1</td>
<td>1</td>
<td>q</td>
<td>-1</td>
</tr>
<tr>
<td>otherwise</td>
<td>1</td>
<td>$q - 3$</td>
<td>q</td>
<td>$\frac{q-1}{q-2} + \frac{q+1}{q-3}$</td>
</tr>
<tr>
<td>$\chi = 1$</td>
<td>$q - 1$</td>
<td>$\frac{q-1}{2}$ or $\frac{q}{2}$</td>
<td>q</td>
<td>$q - 3$</td>
</tr>
<tr>
<td>$\chi \neq 1$</td>
<td>$q - 1$</td>
<td>$\frac{(q-1)^2}{2}$ or $\frac{q(q-2)}{2}$</td>
<td>q</td>
<td>$2\frac{1}{q-2}$</td>
</tr>
</tbody>
</table>
Big Take Aways:

1. The trivial representation gives the maximum eigenvalue $q^2 - 2$.
2. All the other irreducible representations in the permutation representation all give the minimal eigenvalue -1 (and some other representations too).
Weighted Adjacency Matrix

Big Take Aways:

1. The trivial representation gives the maximum eigenvalue $q^2 - 2$.
2. All the other irreducible representations in the permutation representation all give the minimal eigenvalue -1 (and some other representations too).
3. By the ratio bound $\text{GL}(2, q)$ has the EKR property.
Big Take Aways:

1. The trivial representation gives the maximum eigenvalue $q^2 - 2$.
2. All the other irreducible representations in the permutation representation all give the minimal eigenvalue -1 (and some other representations too).
3. By the ratio bound $GL(2, q)$ has the EKR property.
4. There is a maximum clique that force the characteristic vector of any maximum coclique in to the permutation module.
Big Take Aways:

1. The trivial representation gives the maximum eigenvalue $q^2 - 2$.
2. All the other irreducible representations in the permutation representation all give the minimal eigenvalue -1 (and some other representations too).
3. By the ratio bound $GL(2, q)$ has the EKR property.
4. There is a maximum clique that force the characteristic vector of any maximum coclique in to the permutation module.
5. The characteristic vector of any maximum coclique is a linear combination of the canonical vectors.
Big Take Aways:

1. The trivial representation gives the maximum eigenvalue $q^2 - 2$.
2. All the other irreducible representations in the permutation representation all give the minimal eigenvalue -1 (and some other representations too).
3. By the ratio bound $GL(2, q)$ has the EKR property.
4. There is a maximum clique that force the characteristic vector of any maximum coclique in to the permutation module.
5. The characteristic vector of any maximum coclique is a linear combination of the canonical vectors.
6. $GL(2, q)$ is EKR and has the EKR-module property, but is not strictly EKR.
Big Take Aways:

1. The trivial representation gives the maximum eigenvalue $q^2 - 2$.

2. All the other irreducible representations in the permutation representation all give the minimal eigenvalue -1 (and some other representations too).

3. By the ratio bound $\text{GL}(2, q)$ has the EKR property.

4. There is a maximum clique that force the characteristic vector of any maximum coclique in to the permutation module.

5. The characteristic vector of any maximum coclique is a linear combination of the canonical vectors.

6. $\text{GL}(2, q)$ is EKR and has the EKR-module property, but is not strictly EKR.

Can we do this for any 1-transitive group?
Consider $\text{Sym}(n)$ acting on ordered t-sets.

Theorem (Ellis, Friedgut, Pilpel 2010)

For n sufficiently large, the maximum t-intersecting set of permutations has size $(n - t)!$ and is the coset of the point-wise stabilizer of a t-set.
t-Intersecting Permutations

Consider $\text{Sym}(n)$ acting on ordered t-sets.

Theorem (Ellis, Friedgut, Pilpel 2010)

For n sufficiently large, the maximum t-intersecting set of permutations has size $(n - t)!$ and is the coset of the point-wise stabilizer of a t-set.

Consider $\text{Sym}(n)$ acting on unordered t-sets.

Theorem (Ellis, 2011)

For n sufficiently large, the maximum t-set-wise intersecting set of permutations has size $(n - t)!t!$ and is the coset of the stabilizer of a t-set.
AGL(2, q) on Lines

AGL(2, q) acts on the $q(q + 1)$ lines of \mathbb{F}_q^2, this action is 1-transitive.

1. The eigenvalues can be calculated, the ratio bound does not hold with equality.
2. I could not find a weighting the would give a good bound!
AGL(2, q) on Lines

AGL(2, q) acts on the \(q(q + 1) \) lines of \(\mathbb{F}_q^2 \), this action is 1-transitive.

1. The eigenvalues can be calculated, the ratio bound does not hold with equality.
2. I could not find a weighting the would give a good bound!

Conjecture

The group AGL(2, q) does not have the EKR property. There is an intersecting set of size \(\frac{1}{2} q^2 (q - 1)(3q - 4) \).

The stabilizer of a point has size \(\frac{q^3(q-1)^2(q+1)}{q(q+1)} = q^2(q - 1)^2 \).
Big Dramatic Summary

2-Transitive Groups

1. All have the EKR property.
2. I conjecture that all have the EKR module property.
3. Don’t all have strict EKR property.
 a. Can we characterize which do?
 b. Are the maximum cocliques always subgroups or cosets?

2-Transitive Groups

1. Do not all have the EKR property.
2. Can we characterize which groups have the EKR property?
3. What about rank-3 groups?
4. Which imprimitive groups don’t have the EKR property?
5. Which have the EKR module property?
6. Which have the strict EKR property?

What other families of groups are interesting?
2-Transitive Groups

1. All have the EKR property.
2. I conjecture that all have the EKR module property.
3. Don’t all have strict EKR property.
 a. Can we characterize which do?
 b. Are the maximum cocliques always subgroups or cosets?

1-Transitive Groups

1. Do not all have the EKR property.
 a. Can we characterize which groups have the EKR property?
 b. What about rank-3 groups?
 c. Which imprimitvie groups don’t have the EKR property?
2. Which have the EKR module property?
3. Which have the strict EKR property?
Big Dramatic Summary

2-Transitive Groups

1. All have the EKR property.
2. I conjecture that all have the EKR module property.
3. Don’t all have strict EKR property.
 a. Can we characterize which do?
 b. Are the maximum cocliques always subgroups or cosets?

1-Transitive Groups

1. Do not all have the EKR property.
 a. Can we characterize which groups have the EKR property?
 b. What about rank-3 groups?
 c. Which imprimitvie groups don’t have the EKR property?
2. Which have the EKR module property?
3. Which have the strict EKR property?

What other families of groups are interesting?