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Erdős-Ko-Rado problems

In this talk we look at objects of a geometry and ask for

1. the largest number of objects no two of which are in general position,

2. the structure of the largest such sets.
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The theorem of Erdős-Ko-Rado

Find the largest number of intersecting d-subsets from an n-set.

Point-Example. All d-sets containing a fixed element.

Theorem (Erdős-Ko-Rado, 1961)

If X is an intersecting family of d-subsets of an n-set with n ≥ 2d, then
|X | ≤ |Point-example|. For n ≥ 2d + 1 equality holds if and only if X is
the point-example.
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Homogenous coherent configurations

Let Ω be a set and R1, . . . ,Rd be relations on Ω such that

R1 = {(u, u) | u ∈ Ω},
Every pair (u, v) of Ω× Ω lies in exactly one relation.

R>i ∈ {R1, . . . ,Rd}
Regularity condition:

Rk

Ri Rj

u

pk
ij

v
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Bose-Mesner algebra

Ω = {u1, . . . , un}, adjacency matrices A1, . . . ,Ad ∈ Cn×n defined by

Ak(i , j) :=

{
1 if (ui , uj) ∈ Rk

0 otherwise

Then

A1 = In

A1 + · · ·+ Ad is the all-one matrix

A>i ∈ {A1, . . . ,Ad}
AiAj =

∑
k pk

ijAk

⇒ A := 〈A1, . . . ,Ad〉C is C-algebra. Usually it is not commutative.
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The symmetric case

A>i = Ai ∀i

⇒ A1, . . . ,Ad can be diagonalized simultaneously.

⇒ d comon eigenspaces V1, . . . ,Vd .

⇒ Projections E1, . . . ,Ed on eigenspaces

Aj =
d∑

i=1

PijEi

Ej =
d∑

i=1

QijAi

where (Pij)(Qij) = In. Regularity condition gives Qij =
Pji

|Ri |mj
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The linear programming bound

Consider a subset X of Ω = {u1, . . . , un}
Characteristic vector χ ∈ Cn: χi = 1, if ui ∈ X , and χi = 0 if ui /∈ X .

Distribution array (x1, . . . , xd) of X with xi = 1
|X | |Ri ∩ (X × X )|

xi =
1

|X |
χ>Aiχ and |X | =

∑
xi

for j = 1, . . . , d

0 ≤ χ>Ejχ =
∑
i

Qijχ
>Aiχ

⇒ 0 ≤
d∑

i=1

Pji

|Ri |
xi

No two of X in general position ⇒ xd = 0.
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Application: buildings of type An

Two k-subspaces U,U ′ of an n-dimensional vector space V of dimension
n ≥ 2k are in general position, if U ∩ U ′ = {0}.

Point-example: All k-subspaces containing a given 1-dim. subspace .

Theorem (Newman, 2004)

For n ≥ 2k every largest EKR-set is of this form.
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Application: buildings of type Cn

Polar spaces other than hyperbolic quadrics

Two generators are in general position, if they are disjoint.

Point-Example: All generators containing a given point.

Theorem (Stanton, 1980)

Except when the polar space is of Hermitian type H(2d − 1, q2), with
d ≥ 3 odd, the point example is a largest EKR-set.

Theorem (Pepe, Storme, Vanhove, 2011)

Classification of largest EKR-sets. Not all are point-examples.
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The exception

Polar spaces H(2d − 1, q2), d ≥ 3, odd.

Example: d = 3. All generators (planes) meeting a given plane in at least
a line. This is a largest EKR-set one (again Pepe et.al).

Point-example: q(d−1)2 .

Hoffman bound q(d−1)2+(d−1).

Theorem (Ihringer, M, 2014)

If X is an EKR set of generators of H(2d − 1, q2), d ≥ 5, odd, then

|X | ≤ q(d−1)2+1 + const · q(d−1)2 .
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Some types of buildings

An

1 2 d − 2 d − 1 d

Cn

1 2 d − 2 d − 1 d

Dn

1 2 d − 2

d

d − 1

F4

1 2 3 4

Some problems are trivial
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Point-plane flags in PG(4, q)

General position: P1 P2

π1 π2

Not symmetric:
P1

P2

π1 π2

Example: Take solid S and all point-plane flags with its plane in S .

Theorem (Blokhuis, Brouwer, Szőnyi, 2014)

These are the largest EKR-sets
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Point-Hyperplane flags in Ad

(P1,H1) and (P2,H2) are in general position iff P1 /∈ H2 and P2 /∈ H1.

Ad

EXAMPLE: Take a chamber C of a projective space of rank d . Then

X := {(P,H) | P ∈ S ⊆ H for some S ∈ C}

is an EKR-set of point-hyperplane flags.

Theorem (Blokhuis, Brouwer, Güven, 2014)

This is best possible and the only example of that size.
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Lines in polar spaces

Two lines ` and h of a polar space are in general position iff `⊥ ∩ h = ∅.

EXAMPLE: Let C be a chamber of the polar space. Then

X := {` | ` ∩ S 6= ∅, S ⊆ `⊥ for some S ∈ C}

is an EKR-Rado set of lines.

Theorem (M, 2019)

The above example is best possible for finite classical non-degenerate polar
spaces of rank d ≥ 2 and order q > 2(d − 1).
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Lines in polar spaces

R
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Lines in polar spaces

R
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Point relations in F4

Two equal points

Collinear points

Symplectic pair

Special pair

Distance three
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EKR sets of points in F4

Choose S =Symplecton F = EKR-set of lines of S .

Define X = set of all points of S , all points in planes on lines of F .

Alternative description with incident point-line pair (P, `) (center)

Theorem (M, 2019)

The above example is best possible for all finite thick buildings of type F4.
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EKR sets of points in F4

Choose S =Symplecton F = EKR-set of lines of S .

Define X = set of all points of S , all points in planes on lines of F .

Alternative description with incident point-line pair (P, `) (center)

Theorem (M, 2019)

The above example is best possible for all finite thick buildings of type F4.

Klaus Metsch, Justus-Liebig-Universität, Gießen Erdős-Ko-Rado theorems in buildings
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The general case: symmetric or not

Theory by Higman (1975, 1976, 1987)

A>i ∈ {A1, . . . ,Ad}
Ā> = A.

A is semisimple

A '
r⊕

i=1

Csi×si

Irreducible representations: Di : A → Csi×si with Di (A∗j ) = Di (Aj)
∗
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The result of Hobart

Let X ⊆ Ω, xi = 1
nχA>i χ and C (X ) :=

d∑
i=1

xi
|Ri |

Ai

Theorem (Hobart, 2009)

For all j the matrix Dj(C (X )) is positive semidefinite.

Example: In symmetric case we have Dj(Ai ) = Pji

Corollary

For all j we have Trace(Dj(C (X ))) ≥ 0.

Trace(Dj(C (X )) can be calculated without knowing Dj !
Each representation gives a linear inequality in the parameters xi of X .
Linear programming gives bound on |X |.
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Example: Chambers in GQ’s (type C2)

Ω is set of chambers of a thick GQ of order (s, t).

There are eight relations:

Thus: dim(A) = 8 and A is not commutative. This implies that

A ∼= C⊕ C⊕ C⊕ C⊕ C2×2
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Example: Chambers in GQ’s

The three linear inequalities (other than valency) of the 1-dimensional
representation are sufficient for the correct bound (s + 1)(t + 1).

For |X | = (s + 1)(t + 1) ⇒ information on distribution array (x1, . . . , xd).

⇒ Geometric classification is easy for order (s, t) 6= (2, 2).

For order (s, t) = (2, 2), there is a sporadic example in Q(4, 2), coming
from an embedded Q+(3, 2).
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Example: Point-plane flags in ps of rank 3

There are 14 relations

Center has dimension 8, so A ∼= 6C⊕ 2C2×2
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Example: Point-plane flags in ps of rank 3

Theorem (M, 2019+)

An EKR-set X of point-plane flags in a polar spaces of rank 3 with
e 6= 0, 12 satisfies

|X | ≤ (q2 + q + 1)(qe + 1)(qe+1 + 1)

.

This bound is sharp, one example attaining the bound consists of all
point-plane flags with the point P in a given plane, a second examples
consists of all point-plane flags with its plane on a given point.
Open problems
1. More examples?
2. What happens for e = 1

2 .
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Example: chambers in A3

EKR-sets of chambers (point-line-plane flags) (P, `,E ) in PG(3, q)

Examples. 1. All flags with ` on a given point.
2. All flags with ` in a given plane.

Either 24 or 16 relations depending on group.

Full group of A3 give 16 relations: A ' 4C⊕ 3C2×2

Model: point-line flags in Q+(5, q) (using Klein correspondence)

Theorem (M, 2019+)

An EKR-set of chambers of PG(3, q) has at most (q2 + q + 1)(q + 1)2

elements. For q ≥ 43, only the above examples
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EKR-sets of flags in classical situation

The classical set situation. Thin building of type An

Let M be a finite set |M| = n.

A flag is a chain
T1 ⊂ T2 ⊂ · · · ⊂ Ts

of subsets o f M, its type is I = {|T1|, . . . , |Ts |}.
Natural concept of general position.

Problem: Find largest EKR-sets of flags of type I .

Remark: reduces to classical case when max I ≤ n
2 or min I ≥ n

2 .
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Flags of type {1, n − 2}

Flags of type {1, n − 2} of the set {1, . . . , n}, n ≥ 5.

Example X (n, i), 1 ≤ i ≤ n − 2:

All flags {A,B} with A = {a} and |B| = n − 2 where
I a ≤ i and {1, . . . , a} ⊆ B, or
I {1, . . . , i} ⊆ B ⊆ {1, . . . , n − 1}

This is maximal for i = n − 4 and i = n − 5 and comaximal for
i = n − 3.

Theorem (2019++)

Largest EKR-sets have size |X (n, n − 4)| =
(n
3

)
+ 2.
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Thank you very much for your attention!
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