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Erdos-Ko-Rado problems

In this talk we look at objects of a geometry and ask for
1. the largest number of objects no two of which are in general position,

2. the structure of the largest such sets.
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The theorem of Erdos-Ko-Rado

Find the largest number of intersecting d-subsets from an n-set.

Point-Example. All d-sets containing a fixed element.

Theorem (Erdés-Ko-Rado, 1961)

If X is an intersecting family of d-subsets of an n-set with n > 2d, then
|X| < |Point-example|. For n > 2d + 1 equality holds if and only if X is
the point-example.
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Homogenous coherent configurations

Let Q be a set and Ry, ..., Ry be relations on Q such that

Ri ={(u,u) | ueQ},
Every pair (u, v) of Q x Q lies in exactly one relation.
R' € {Ri,...,R4}

Regularity condition:
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Bose-Mesner algebra

Q ={u1,...,u,}, adjacency matrices Ay, ..., Ay € C"*" defined by

1 if (u,~, UJ') € Ry
0 otherwise

Ai(isj) = {

Then
e Ai=1,
@ A1+ -+ Ay is the all-one matrix
° A,-T € {A1,..., A4}
o AAi=>", p,{jAk

= A:=(A1,...,Aq)c is C-algebra. Usually it is not commutative.

Klaus Metsch, Justus-Liebig-Universitat, GieBen Erdos-Ko-Rado theorems in buildings



The symmetric case

A,-T = A; Vi
= Ai,...,Aq can be diagonalized simultaneously.
= d comon eigenspaces Vi,..., Vy .

= Projections Ei, ..., E4 on eigenspaces
d
A= PiE;
i=1

d
Ei = Z QijAi
i—1

where (P;;)(Qjj) = In. Regularity condition gives Q;; = ‘I,z,jf| m;
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The linear programming bound

Consider a subset X of Q = {u1,...,un}
Characteristic vector x € C": x; =1, if u; € X, and x; =0 if u; ¢ X.
Distribution array (x1, ..., xa) of X with x; = %7 |R; N (X x X))

Xi =

—xTAix and |X|= Zx,-

\XI
e forj=1,...,d
0<x Ex=> Qix"Ax
i
d
P;ji
= 0< Z IR; Xj
i=1
@ No two of X in general position = x4 = 0.
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Application: buildings of type A,

Two k-subspaces U, U’ of an n-dimensional vector space V of dimension
n > 2k are in general position, if UN U’ = {0}.

Point-example: All k-subspaces containing a given 1-dim. subspace .

Theorem (Newman, 2004)
For n > 2k every largest EKR-set is of this form. J
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Application: buildings of type C,

Polar spaces other than hyperbolic quadrics
Two generators are in general position, if they are disjoint.

Point-Example: All generators containing a given point.

Theorem (Stanton, 1980)

Except when the polar space is of Hermitian type H(2d — 1, q?), with
d > 3 odd, the point example is a largest EKR-set.

Theorem (Pepe, Storme, Vanhove, 2011)

Classification of largest EKR-sets. Not all are point-examples.
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Polar spaces H(2d — 1, q2), d > 3, odd.

Example: d = 3. All generators (planes) meeting a given plane in at least
a line. This is a largest EKR-set one (again Pepe et.al).

Point-example: q(d_l)z.
Hoffman bound g(d—1)°+(d=1),
Theorem (lhringer, M, 2014)

If X is an EKR set of generators of H(2d — 1,q?), d > 5, odd, then

|X| < q(d_l)2+1 + const - q(d_l)z.
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Some types of buildings

A, o—e o o
1 2 d—2 d—1 d
C, o—eo — e —»
1 2 d-—2 d-1 d
D, e——e d
1 2 d—2
d—1
F4 o0 ——o  ——0
1 2 3 4
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Some types of buildings

A, o—e o o
1 2 d—2 d—1 d
C, o—eo — e —»
1 2 d-—2 d-1 d
D, e——e d
1 2 d—2
d—1
F4 o0 ——o  ——0
1 2 3 4

Some problems are trivial
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Point-plane flags in PG(4, q)

T T

General position:

Not symmetric:
Py

Example: Take solid S and all point-plane flags with its plane in S.

Theorem (Blokhuis, Brouwer, Szényi, 2014)
These are the largest EKR-sets
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Point-Hyperplane flags in Ay

(P1, H1) and (Py, H>) are in general position iff Py ¢ Hp and Py ¢ Hs.

Ay &— — o @

EXAMPLE: Take a chamber C of a projective space of rank d. Then
X :={(P,H)| P& S CH forsomeS e C}

is an EKR-set of point-hyperplane flags.

Theorem (Blokhuis, Brouwer, Giiven, 2014) }

This is best possible and the only example of that size.
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Lines in polar spaces

Two lines £ and h of a polar space are in general position iff ¢ N h = 0.
EXAMPLE: Let C be a chamber of the polar space. Then

X = {£|4NnS#0, SC " for some S € C}
is an EKR-Rado set of lines.

Theorem (M, 2019)

The above example is best possible for finite classical non-degenerate polar
spaces of rank d > 2 and order ¢ > 2(d — 1).
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Lines in polar spaces
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Lines in polar spaces
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Lines in polar spaces
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Lines in polar spaces
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Point relations in F4

Two equal points °
Collinear points
Symplectic pair

o
Special pair \/o

Distance three
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EKR sets of points in Fy

Choose S =Symplecton F = EKR-set of lines of S.
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EKR sets of points in Fy

Choose S =Symplecton F = EKR-set of lines of S.

Define X = set of all points of S, all points in planes on lines of F.

£

L
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EKR sets of points in Fy

Choose S =Symplecton F = EKR-set of lines of S.

Define X = set of all points of S, all points in planes on lines of F.

£

L

Alternative description with incident point-line pair (P, ¢) (center)
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EKR sets of points in Fy

Choose S =Symplecton F = EKR-set of lines of S.

Define X = set of all points of S, all points in planes on lines of F.

£

L

Alternative description with incident point-line pair (P, ¢) (center)

Theorem (M, 2019)
The above example is best possible for all finite thick buildings of type F4.J
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The general case: symmetric or not

Theory by Higman (1975, 1976, 1987)

° A’—r S {Al,...,Ad}
o AT = A
o A is semisimple

r
° A ~ @CS,’XS,’
i=1

o Irreducible representations: D; : A — C%*% with D;(A7) = D;(A;)*
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The result of Hobart

d
Let X C Q, xi = 1Al x and C(X) ==Y “’;’ A
=1
Theorem (Hobart, 2009)
For all j the matrix D;(C(X)) is positive semidefinite. J
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The result of Hobart

d
Let X C Q, xi = 1Al x and C(X) ==Y “’;’ A
=1
Theorem (Hobart, 2009)
For all j the matrix D;(C(X)) is positive semidefinite. J

Example: In symmetric case we have D;(A;) = P;ji
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The result of Hobart

d
Let X C Q, xi = 1xAl x and C(X) := Z

j \

Theorem (Hobart, 2009)
For all j the matrix D;(C(X)) is positive semidefinite. J

Example: In symmetric case we have D;(A;) = P;ji

Corollary
For all j we have Trace(D;(C(X))) > J

Trace(D;j(C(X)) can be calculated without knowing Dj!
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The result of Hobart

d
Let X C Q, xi = 1xAl x and C(X) := Z

j \

Theorem (Hobart, 2009)
For all j the matrix D;(C(X)) is positive semidefinite. J

Example: In symmetric case we have D;(A;) = P;ji

Corollary
For all j we have Trace(D;(C(X))) > J

Trace(D;j(C(X)) can be calculated without knowing Dj!
Each representation gives a linear inequality in the parameters x; of X.
Linear programming gives bound on |X|.
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Example: Chambers in GQ's (type &)

Q is set of chambers of a thick GQ of order (s, t).

There are eight relations:

LIV VYV VL

Thus: dim(.A) = 8 and A is not commutative. This implies that

A2CaeCaCaoCoC?*?
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Example: Chambers in GQ's

The three linear inequalities (other than valency) of the 1-dimensional
representation are sufficient for the correct bound (s + 1)(t + 1).

For | X| = (s + 1)(t + 1) = information on distribution array (xi, ..., Xq).
= Geometric classification is easy for order (s, t) # (2,2).

For order (s, t) = (2,2), there is a sporadic example in Q(4,2), coming
from an embedded Q*(3,2).
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Example: Point-plane flags in ps of rank 3

There are 14 relations

A <D<
o <D D]
> B <1 <D

Center has dimension 8, so A = 6C @ 2C2*2
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Example: Point-plane flags in ps of rank 3

Theorem (M, 2019+)

An EKR-set X of point-plane flags in a polar spaces of rank 3 with
e #0, % satisfies

IX| < (¢ +q+1)(q°+1)(g°T +1)

This bound is sharp, one example attaining the bound consists of all
point-plane flags with the point P in a given plane, a second examples
consists of all point-plane flags with its plane on a given point.

Open problems

1. More examples?

2. What happens for e = %
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Example: chambers in A3

EKR-sets of chambers (point-line-plane flags) (P, ¢, E) in PG(3, q)

Examples. 1. All flags with £ on a given point.
2. All flags with ¢ in a given plane.

Either 24 or 16 relations depending on group.
Full group of Az give 16 relations: A ~ 4C @ 3C2*?

Model: point-line flags in @*(5, q) (using Klein correspondence)

Theorem (M, 2019+)

An EKR-set of chambers of PG(3,q) has at most (q°> + q + 1)(q + 1)?
elements. For g > 43, only the above examples

Klaus Metsch, Justus-Liebig-Universitat, GieBen Erdos-Ko-Rado theorems in buildings



EKR-sets of flags in classical situation

The classical set situation. Thin building of type A,

Let M be a finite set |[M| = n.
A flag is a chain

T.CcTrC---CTs
of subsets o f M, its type is | = {|T1],...,|Ts|}.

Natural concept of general position.

Problem: Find largest EKR-sets of flags of type /.
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EKR-sets of flags in classical situation

The classical set situation. Thin building of type A,

o Let M be a finite set |[M| = n.
o A flag is a chain
T.CcTrC---CTs
of subsets o f M, its type is | = {| T1]|,...,|Ts|}

Natural concept of general position.

Problem: Find largest EKR-sets of flags of type /.

Remark: reduces to classical case when max/ < g or min/ > g
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Flags of type {1,n — 2}

o Flags of type {1,n— 2} of the set {1,...,n}, n > 5.
e Example X(n,i), 1 <i<n-—2:
All flags {A, B} with A= {a} and |B| = n — 2 where
» a<jand{l,...,a} C B, or
> {1,..../yCBC{l,....,n—1}

@ This is maximal for i = n—4 and i = n — 5 and comaximal for
i=n-—3.
Theorem (2019++)
Largest EKR-sets have size |X(n,n —4)| = (3) + 2.
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Thank you very much for your attention!
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