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1. Cap-sets

2. Partial ovoids in Q−(5,q)

3. Partial ovoids in the Ree-Tits Octagon
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Cap-sets (affine caps)

Definition. Let A ⊆ F3
n. We say that A is a cap-set if there are

no nontrivial solutions to

x + y + z = 0,

where x , y , z ∈ A. (Here “trivial" means that x = y = z.)

Question. What is the largest size of a cap-set in F3
n? (We will

denote the largest size by r3(n).)
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The first few terms of the sequence are 2,4,9,20,45,112. See
A090245 in Sloane’s encyclopedia of integer sequences.

You probably encountered the number r3(4) = 20 if you played
the card game SET.

One can easily show that r3(n) ≥ 2n. Simply note that {0,1}n is
a cap-set in F3

n.

A more sophisticated construction by Edel shows that
r3(n) ≥ (2.2174...)n when n is large.
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Upper Bounds

I Meshulam (1995, JCTA) r3(n) ≤ c 3n

n .

I Bateman-Katz (2012, JAMS) r3(n) ≤ c 3n

n1+ε , where ε is a
small positive constant.

I Croot-Lev-Pach; Ellenberg-Gijswijt (May 2016, Annals
Math) r3(n) ≤ 3 · (2.7551...)n.
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The proof uses polynomials and linear algebra. Let’s fix some
notation.

We will consider various subspaces of the polynomial ring
V = {f : F3

n → F3} = F3[X1, . . . ,Xn]/(X 3
1 − X1, . . . ,X 3

n − Xn).

For an integer 0 ≤ d ≤ 2n, let Pold =the F3-vector subspace of
cube-free polynomials in n variables of degree ≤ d
=Span{X i1

1 X i2
2 · · ·X

in
n | i1 + i2 + · · ·+ in ≤ d , 0 ≤ ij ≤ 2 ∀j}.

For example, dim(Pol2n) = 3n. Write D = dim(Pol2n/3).

With a little bit “generating function" argument one finds that
D = (2.7551...)n. Also note that dim(Pol4n/3) = 3n − D.



Lemma
Let A ⊆ F3

n with |A| > 3D. Then there is a subset A′ ⊂ A and
some p ∈ Pol4n/3 such that |A′| ≥ |A| − D, p(b) 6= 0 for all
b ∈ A′ and p(x) = 0 for all x 6∈ A.

Proof. For any x 6∈ A, the condition that p(x) = 0 is a linear
relation on the coefficients of p. So by linear algebra the
subspace W consisting of p ∈ Pol4n/3 with p(x) = 0 for all
x 6∈ A has dimension

≥ (3n − D)− (3n − |A|) = |A| − D.

Furthermore there is some p ∈W which is nonzero on a subset
A′ ⊂ A of size ≥ dimW .



The Croot-Lev-Pach Principle

Lemma
Let B,C ⊆ F3

n. Assume that p ∈ Pold . Form the matrix M
whose rows are indexed by elements b ∈ B, whose columns
are indexed by elements c ∈ C, and with (b, c)-entry equal to
p(b + c). Then the rank of M over F3 is less than or equal to
2 · dim(Pold/2).

Proof. Factorize M = XNY , where X ,Y are Vandermonde-like
matrices and the entries of N consist of coefficients of p(b + c).
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Proof of the Bound of Ellenberg and Gijswijt

Let A ⊆ F3
n be a cap-set. Suppose that |A| > 3D, where

D = dim(Pol2n/3).

By Lemma 1, there exist a subset A′ ⊂ A, |A′| > 2D, and
p ∈ Pol4n/3 such that p(x) = 0 for all x 6∈ A, and p(b) 6= 0 for all
b ∈ A′.

Apply Lemma 2 to B = C = −A′. Note that

Mb,c = p(b + c),

which is 0 if b 6= c since b + c 6∈ A, and is nonzero if b = c
since b + c = 2b = −b ∈ A′.
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So M is a diagonal matrix with nonzero diagonal entries. Hence

rankF3(M) = |A′| ≥ |A| − D > 2D.

But by Lemma 2,

rankF3(M) ≤ 2 · dim(Pol2n/3) = 2D,

a contradiction. Therefore |A| ≤ 3D.
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Generalized n-gons

A generalized n-gon of order (s, r) is a triple Γ = (P,L, I),
where elements of P are called points, elements of L are called
lines, and I ⊆ P × L is an incidence relation between the points
and lines, which satisfies the following axioms:
(a) Each line is incident with s + 1 points.
(b) Each point is incident with r + 1 lines.
(c) The incidence graph has diameter n and girth 2n.
Here the incidence graph is the bipartite graph with P ∪ L as
vertices, p ∈ P and ` ∈ L are adjacent if (p, `) ∈ I. If s=1 or
r = 1, the generalized n-gon is called thin. Otherwise, it is
called thick.



Example. A generalized 2-gon of order (2,2).
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For n = 2, a generalized 2-gon is just a complete bipartite
graph Ks+1,r+1.

For n = 3, a thick generalized 3-gon is a projective plane.

Generalized quadrangles have been extensively studied.

Theorem (Feit-Higman, 1964)
Finite thick generalized n-gons exist only for n ∈ {2,3,4,6,8}.



The only known thick finite generalized octagons are the
Ree-Tits octagons O(q) (sometimes also called generalized
octagons of type 2F4(q)) , where q = 2t and t is odd, and their
duals.

The Ree-Tits octagon O(q) has (q + 1)(q3 + 1)(q6 + 1) points
and (q2 + 1)(q3 + 1)(q6 + 1) lines. The smallest example,
O(2), has 1755 points and 2925 lines.

It is a big open problem whether there exist other generalized
octagons.



Even from the point of view of graph theory, generalized n-gons
are very interesting because they provide sparse but highly
connected graphs. The competing goals of being sparse and
highly connected are desirable in the design of efficient
communication networks and for constructions of LDPC codes.



Partial Ovoids in Generalized n-gons

A partial ovoid of a generalized n-gon Γ is a set of points
pairwise at distance n in the incidence graph.

Example. Ovoids in thin generalized quadrangles.
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Generalized Quadrangles

A generalized quadrangle (GQ) of order (s, r) is a triple
(P,L, I), where elements of P are called points, elements of L
are called lines, and I ⊆ P × L is an incidence relation between
the points and lines, which satisfies the following axioms:
(a) Each line is incident with s + 1 points.
(b) Each point is incident with r + 1 lines.
(c) For every point p not on a line `, there exists a unique point

p′ I ` and a unique line `′ such that p′ I `′.
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Examples

Finite classical polar spaces of rank 2: W (3,q), Q(4,q),
Q−(5,q), H(3,q2), H(4,q2)

Example: Q−(5,q)

Let Q : Fq
6 → Fq be the quadratic form

Q(x) = x1x2 + x3x4 + f (x5, x6), where f (x5, x6) is an irreducible
quadratic form.

1. Let P be the set of all totally singular 1-spaces.
2. Let L be the set of all totally singular 2-spaces.
3. Let I be the inclusion relation.

Then (P,L, I) is a GQ(q,q2).
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A strongly regular graph (SRG) with parameters (v , k , λ, µ) is a
k -regular graph on v vertices such that two adjacent vertices
have λ common neighbors and two non-adjacent vertices have
µ common neighbors.

The point graph of a generalized quadrangle (P,L, I) is the
graph with vertex set P, where two elements of P are adjacent
if and only if they are on a common line of the GQ.

Lemma
The point graph of a GQ of order (s, r) is an SRG with
v = (s + 1)(sr + 1), k = (r + 1)s, λ = s − 1, and µ = r + 1.



Partial Ovoids in GQs

Definition. (Thas, 1981) A partial ovoid O of a GQ is a subset
of points, which meet every line at most once (equivalently, no
two points of O are collinear).

Definition. (Alternative) A partial ovoid of a GQ is a coclique of
its point graph.

Lemma
A partial ovoid of a GQ(s, r) has size at most sr + 1.

A partial ovoid of a GQ(s, r) having size sr + 1 is called an
ovoid.
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Question. Which GQs possess ovoids? If a GQ does not
possess ovoids, what is the largest size of a partial ovoid of the
GQ?

A thin GQ(s, r) always has an ovoid.

As another example, Q(4,q) (the parabolic quadric) has ovoids.
Some hyperplane of Fq

5 meets Q(4,q) in an elliptic quadric,
which is an ovoid of Q(4,q).



Lemma (Thas, 1981)
A partial ovoid O of a GQ(q,q2) has size at most q3 − q2 + q.
In particular, Q−(5,q) does not have an ovoid.
Proof. (argument due to Godsil)

1. As the point graph is an SRG, the adjacency matrix of the
point graph has THREE eigenspaces.

2. One eigenspace V has dimension q3 − q2 + q.
3. Let E be the orthonormal projection onto V .
4. The submatrix EO of E indexed by O has form αI + βJ.
5. The matrix EO has full rank.



Theorem (De Beule, Klein, Metsch, Storme, 2008)
A partial ovoid O of Q−(5,q) has size at most (q3 + q + 2)/2.

This bound is tight for q = 2,3.

Theorem (Ihringer, Sin, X, April 2016)
A partial ovoid O of Q−(5,q), q = pt , has size at most(

2p3 + p
3

)t

+ 1.

Proof. Use p-ranks instead of ranks over R.

For p = 2 fixed, we obtain the bound ≈ q2.59.
For p = 3 fixed, we obtain the bound ≈ q2.68.
The largest known infinite family has size ≈ 3q2/2.
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Partial Ovoids in the Ree-Tits Octagon

Recall: A partial ovoid of a generalized octagon Γ is a set of
points pairwise at distance 8 in the incidence graph.

An easy counting argument shows that the size of a partial
ovoid of a generalized octagon of order (s, r) is at most
(sr)2 + 1. A partial ovoid of a generalized octagon of order
(s, r) is called an ovoid if it has the maximum possible size
(sr)2 + 1. The Ree-Tits octagon O(2t ) is a generalized octagon
of order (2t ,4t ), so the size of a partial ovoid is at most 64t + 1.



Theorem (Ihringer, Sin, X. April 2016)
The size of a partial ovoid of the Ree-Tits octagon O(2t ), t odd,
is at most 26t + 1.

Corollary
The Ree-Tits octagon does not have an ovoid.

Remarks. (1) In the case where t = 1, the theorem was proved
by Coolsaet and Van Maldeghem in 2000.

(2) The corollary was conjectured by Coolsaet and Van
Maldeghem in 2000.



Lemma
Let (X ,∼) be a graph. Let A be the adjacency matrix of X . Let
Y be a clique of X . Then

|Y | ≤

{
rankp(A) + 1, if p divides |Y | − 1,
rankp(A), otherwise.

Proof.
Let J be the all-ones matrix of size |Y | × |Y |. Let I be the
identity matrix of size |Y | × |Y |. As Y is a clique, the submatrix
A′ of A indexed by Y is J − I. Hence, the submatrix has p-rank
|Y | − 1 if p divides |Y | − 1, and it has p-rank |Y | if p does not
divide |Y | − 1. As rankp(A′) ≤ rankp(A), the assertion
follows.
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Now we consider the oppositeness graph of the Ree-Tits
octagon. The vertices of the graph are the points of the
octagon and two vertices are connected by an edge if and only
if they are opposite (i.e., the two points have distance 8 in the
incidence graph of the octagon).

A partial ovoid of the octagon corresponds to a clique in the
oppositeness graph.



Theorem (Peter Sin)
Let AR(q) denote the oppositeness matrix for objects of one
fixed type in a building with root system R over Fq, where
q = pt , p is a prime. Then

rankp(AR(q)) = rankp(AR(p))t .



For the Ree-Tits octagon O(2), it was known that the
oppositeness matrix has 2-rank 26. (Veldkamp 1970, and Sin
2012)

By the above theorem, the oppositeness matrix of the Ree-Tits
octagon O(2t ) has 2-rank 26t for all odd t . Hence by the lemma
about the clique sizes of graphs, we see that the size of a
partial ovoid of O(2t ) is at most 26t + 1.



Thank you for your attention!


	Cap-sets in F3n

