
Models of computation Coherent configurations Implementations Improvements

Efficient Algorithms For Coherent Configurations
Algebraic and Extremal Graph Theory

University of Delaware

Sven Reichard

TU Dresden

2017-08-10

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

Outline

Models of computation

Coherent configurations

Implementations

Improvements

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

I There are different models of computation.
I Most common:

I Central processing unit
I Random memory with uniform access
I Program and data stored in the same memory.

I Other model: Turing machine.

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

I More realistic model of current hardware:
I Network of processing units
I Each processing unit can process several pieces of data at a

time
I Varying distances between the units
I Hierarchy of memory modules of increasing size and latency.
I Parts of the memory may be exclusive to (groups of) processors

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

I These models allow us to investigate the complexity of
algorithms.

I The different models are equivalent in the following sense:

I Bounds on the complexity of a given algorithm in different
models are the same up to a constant factor.

I So if we are interested in the asymptotic behaviour we choose
the most convenient model.

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

I If we write and use programs in practice, we have a different
point of view.

I Knuth: “The size of the constant does matter.”

I Hence it is good to keep the more realistic model in mind.

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

I We will look at one particular problem from graph theory.

I Several implementations of the same basic idea.

I The best asymptotic implementation is actually slower for all
practical examples.

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

Outline

Models of computation

Coherent configurations

Implementations

Improvements

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

I Let Ω be a finite set.

I Let n = |Ω|, let k ∈ N.

I The group S(Ω) acts on Ωk componentwise:

g(x1, . . . , xk) = (g(x1), . . . , g(xk))

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

I On the other hand, the group Sk acts on Ωk .

I For σ ∈ Sk and x ∈ Ωk we have

xσ = (xσ(1), . . . , xσ(k)).

I The two group actions commute:

g(xσ) = g(x)σ.

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

I Let G ≤ S(Ω).

I The orbits of G on Ωk are the k-orbits of G .
I We get the following properties:

I If x , y are in the same orbit, then

xi = xj ⇒ yi = yj ;

I if x , y are in the same orbit, then so are xσ, yσ.

I These are the defining properties of a configuration.

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

I A configuration consists of a finite set Ω, a set of colours C
and a coloring

c : Ωk → C

such that
I If for x , y ∈ Ωk we have c(x) = c(y), then for 0 ≤ i , j < k we

have
xi = xj ⇒ yi = yj .

I For σ ∈ Sk and x , y ∈ Ωk we have

c(x) = c(y)⇒ c(xσ) = c(yσ).

This gives an action of Sk on C.

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

Automorphisms

I A permutation φ ∈ S(Ω) is an automorphism of W = (Ω, c) if
c(x) = c(φ(x)) for all x ∈ Ωk .

I More generally, φ is a colour automorphism if it permutes
colours.

I In other words, there is a ψ ∈ Sk such that

ψ ◦ c = c ◦ φ

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

Dimension 2

A 2-dimensional configuration corresponds to a set R of binary
relations on Ω such that

I the relations partition Ω2;

I each relation is either reflexive or antireflexive;

I if R ∈ R, then R−1 ∈ R.

This implies that each relation is either symmetric or
antisymmetric.

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

Substitution

I If x ∈ Ωk , y ∈ Ω, and 0 ≤ i < k , we denote by xyi the result
of replacing the i-th coordinate of x by y .

I So, (xyi)i = y , and (xyi)j = xj for i 6= j .

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

WL refinement

I A configuration c ′ is a refinement of a configuration c if for
x , y ∈ Ωk , c ′(x) = c ′(y) implies c(x) = c(y).

I Given a configuration c we define its WL-refinement as
follows:

c ′(x) = (c(x), [(c(xy1), . . . , c(xyk)) | y ∈ Ω])

Here, the second component is a multiset of vectors obtained
by picking a point y and substituting it for all components of
x in turn.

I Since c(x) appears as the first component of c ′(x), the latter
is in fact a refinement.

I We get that Aut(c) = Aut(c ′).

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

Coherent configurations

I A configuration is coherent, if c ′ is equivalent to c .

I Any configuration c has a unique coarsest coherent
refinement, its coherent closure 〈〈c〉〉.

I

Aut(c) = Aut (〈〈c〉〉)

I The procedure of finding the coherent closure by successive
refinement is known as the k-dimensional Weisfeiler-Leman
algorithm (WLk).

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

Reformulation WL2: Graphs

I Given an edge-colouring of a complete graph.

I Given an edge (x,y) of colour k, and two colours i , j .

I Count the number of points z such that c(x , z) = i ,
c(z , y) = j .

I Use these counts to distinguish edges of colour k.

I When no new colours appear we have a coherent graph.

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

Reformulation WL2: Matrices

I A two-dimensional configuration is basically a matrix.

I Replace all distinct entry values by non-commuting
indeterminates.

I Replace the matrix by its square.

I Repeat as long as the number of distinct entries grows.

I This is Weisfeiler’s original formulation.

I Can be extended to higher dimensions by defining an
appropriate product of tensors.

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

Outline

Models of computation

Coherent configurations

Implementations

Improvements

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

Previous implementations

I Two implementations of WL2 were described in a 1990’s
paper (Babel et al): a “Russian” and a “German” program

I Focus on practical vs. theoretical complexity.

I Input of size n2.

I The German algorithm has a running time of O(n3 log n) and
a space requirement of O(n3).

I The Russian algorithm has a running time bounded by O(n6)
and a space requirement O(n2).

I The latter is faster for most practical instances

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

Outline

Models of computation

Coherent configurations

Implementations

Improvements

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

We will describe a few improvements to these classical
implementations.

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

Using values instead of polynomials

I During the algorithm we need to compute a matrix product.

I The actual values of the entries is relevant only for the
determination of structure constants; during the stabilization
we are interested only in the classes of equal entries.

I The entries are dot products of the form f =
∑n

k=1 XikXjk ,
where the Xi are non-commuting indeterminates over the
integers.

I Computation in this ring can become expensive, in the sense
that basic operations such as comparison, addition and
multiplication cannot be done in constant time.

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

I To distinguish two expressions it is sufficient to find a point
where they evaluate differently.

I For a ring R and x , y ∈ R r , let f (x , y) =
∑

k xikyjk .

I Then the matrix product can be computed in R.

I However it is possible that we fail to distinguish some
expressions.

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

I Let R be a ring, U = R∗ the set of units.

I Let f 6= 0 be an “expression” with small coefficients:

f =
∑

αijxiyj

I Let x , y ∈ U r be uniformly distributed.

I Then f (x , y) 6= 0 with high probability.

It follows that if f (x , y) = g(x , y), then f = g with high
probability.
For ease of implementation we choose R = Zq, q = 232.

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

Fast matrix multiplication

I The problem is reduced to n × n matrix multiplication over
the integers mod p.

I The naive algorithm uses O(n3) operations.

I A lower bound is O(n2).

I The fastest known methods have an exponent of about 2.35.
However, those become worthwhile only for very large n.

I Strassen’s method uses the fact that 2× 2 products can be
computed with seven multiplications (instead of eight).

I This gives an exponent of log2 7 = 2.81.

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

I So far, fast matrix multiplication has not led to practical
improvement.

I One reason is that we do not get good bounds on the number
of iterations.

I Following an idea of Babel’s, we take a different approach.

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

Reusing results
I We can give a bound on the number of times each triangle is

considered.
I If there are m new colors in one iteration we can choose the

recoloring in such a way that at least n/m arcs retain their
color.

I An ordered triangle (x , y , z) contributes to the product (x , z).
I If the color of the arc (x , y) is changed from i to i ′, the

product has to be recomputed.
I At most half of the arcs of colour i is recoloured to i ′.
I Hence each arc is recoloured at most log2(n2) times (very

rough estimate).
I Each arc contributes to 2n products, so we need to perform

4n log2 n updates of products.
I If we keep all products in memory we do not need essentially

more memory to perform the updates.
Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

Memory layout

I The algorithm is not very compute intensive.

I Memory access actually dominates it.

I Hence it it beneficial to optimize memory access patterns.

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

I We basically need to compute a matrix product.

I Each individual product involves a row and a column of the
matrix.

I If we store the matrix row by row, the elements of one row are
located close together.

I However, the entries of a column are spread out.

I This leads to bad cache usage.

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

I The usual way around this is an alternative storage pattern.

I For example z-order.

I Complicated to implement for general n.

I Another way around the cache problem is theory.

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

Lemma
The algorithm remains correct if the square M2 is replaced by
MṀT .

Proof.
Since after preprocessing we always have a configuration we get
that

Mij = Mkl

if and only if
Mji = Mlk .

It follows that two row-column products are equal only if the
corresponding row-row-columns are equal.
And we are only interested in equality/inequality of the entries of
the product.

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

I The previous lemma allows us to replace the columns in the
algorithms with rows.

I This alone led to a five-fold speedup, highlighting the
importance of memory access.

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

Parallelization

I We need to compute inner products over the ring of integers
mod 232.

I Common processors can compute several (4-8) integer
products simultaneously.

I The various inner products are independent and can be
computed by different cores.

I It remains to be seen if parallelization across CPU’s is worth
the communication overhead.

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

Algorithm outline

I The input is given in the matrix M.

I Preprocessing to distinguish the diagonal and make the
algebra symmetric.

I Select random numbers xi , yi , where i runs through all colors.

I Compute the product P = M(x) ∗M(y) over R; use fast
multiplication.

I Repeat the following until no new colors appear.
I Collect the set of pairs (M[x][y],P[x][y]), for x , y ∈ Ω
I Decide for each orignal color which class of arcs will retain that

color.
I Extend x and y by adding additional values for all new colors.
I For each arc (x , z) that changes its color from i to i ′

I Update all relevant products

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

Benchmarks

I The three algorithms were tested on three classes of examples
I A finite set of small chemical compounds.
I Benzene stacks.
I Möbius ladders.

I These may not be the best test cases, for various reasons.

I However, the latter two give examples with known results
which are arbitrarily scalable.

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

Benchmarks

Möbius ladders

order RU DE S

200 3 2 0.3
400 2
800 15

1600 127

Sven Reichard TU Dresden

Coherent configurations

Models of computation Coherent configurations Implementations Improvements

Benchmarks

Benzene stacks

order RU DE S

60 0 2 0
150 2 35 0
198 6 0
300 1
600 7

1200 67

Sven Reichard TU Dresden

Coherent configurations

	Models of computation
	Coherent configurations
	Implementations
	Improvements

