The underlying geometry of the graphs $C D(k, q)$

Andrew Woldar
Villanova University

Algebraic and Extremal Graph Theory Conference University of Delaware, August 7-10, 2017

To Ron Solomon, who gave me the gift of knowledge and the rewards of friendship, "Semper gratiam Kabebo."

Introduction

The graphs $C D(k, q)$ exhibit many interesting extremal properties, and have sundry applications to coding theory, cryptography and network topology.

Introduction

The graphs $C D(k, q)$ exhibit many interesting extremal properties, and have sundry applications to coding theory, cryptography and network topology.

They have the greatest number of edges among all known graphs of a fixed order and girth at least g for $g \geq 5, g \neq 11,12$. (For $g=11,12$, they are outperformed by the generalized hexagon of type G_{2}.)

Introduction

The graphs $C D(k, q)$ exhibit many interesting extremal properties, and have sundry applications to coding theory, cryptography and network topology.

They have the greatest number of edges among all known graphs of a fixed order and girth at least g for $g \geq 5, g \neq 11,12$. (For $g=11,12$, they are outperformed by the generalized hexagon of type G_{2}.)

They are very close to being Ramanujan, with a conjectured bound of $\lambda_{2} \leq 2 \sqrt{q}$ where λ_{2} is the second largest eigenvalue.

Introduction

The graphs $C D(k, q)$ exhibit many interesting extremal properties, and have sundry applications to coding theory, cryptography and network topology.

They have the greatest number of edges among all known graphs of a fixed order and girth at least g for $g \geq 5, g \neq 11,12$. (For $g=11,12$, they are outperformed by the generalized hexagon of type G_{2}.)

They are very close to being Ramanujan, with a conjectured bound of $\lambda_{2} \leq 2 \sqrt{q}$ where λ_{2} is the second largest eigenvalue.

$$
\left(\text { Ramanujan } \Longleftrightarrow \lambda_{2} \leq 2 \sqrt{q-1}\right)
$$

Introduction

Graphs $C D(k, q)$ are derived from the graphs $D(k, q)$, which are examples of algebraically defined graphs, that is, graphs whose vertices are coordinate vectors, with two vertices adjacent provided their coordinates satisfy a prescribed set of equations (adjacency relations).

Introduction

Graphs $C D(k, q)$ are derived from the graphs $D(k, q)$, which are examples of algebraically defined graphs, that is, graphs whose vertices are coordinate vectors, with two vertices adjacent provided their coordinates satisfy a prescribed set of equations (adjacency relations).

More explicitly, each $C D(k, q)$ is a connected component of the graph $D(k, q)$.

Introduction

Graphs $C D(k, q)$ are derived from the graphs $D(k, q)$, which are examples of algebraically defined graphs, that is, graphs whose vertices are coordinate vectors, with two vertices adjacent provided their coordinates satisfy a prescribed set of equations (adjacency relations).

More explicitly, each $C D(k, q)$ is a connected component of the graph $D(k, q)$.

They exist for every positive integer k and every prime power q.

Introduction

$-C D(5, q)-$

$\begin{aligned} \text { Points: }(p) & =\left(p_{1}, p_{11}, p_{12}, p_{21}, p_{22}\right) \subset \mathbb{F}_{q}^{5} \\ \text { Lines: }[\ell] & =\left[\ell_{1}, \ell_{11}, \ell_{12}, \ell_{21}, \ell_{22}\right] \subset \mathbb{F}_{q}^{5}\end{aligned}$

$-C D(5, q)-$

Points: $\left.\quad \begin{array}{rl}(p) & =\left(p_{1}, p_{11}, p_{12}, p_{21}, p_{22}\right) \subset \mathbb{F}_{q}^{5} \\ \text { Lines: }[\ell] & =\left[\ell_{1}, \ell_{11}, \ell_{12}, \ell_{21}, \ell_{22}\right] \subset \mathbb{F}_{q}^{5}\end{array}\right)$.
Adjacency relations:

$$
\begin{aligned}
p_{11}-\ell_{11} & =p_{1} \ell_{1} \\
p_{12}-\ell_{12} & =p_{1} \ell_{11} \\
p_{21}-\ell_{21} & =p_{11} \ell_{1} \\
p_{22}-\ell_{22} & =p_{12} \ell_{1}
\end{aligned}
$$

$-C D(4, q)-$

$\begin{aligned} \text { Points: } \quad(p) & =\left(p_{1}, p_{11}, p_{12}, p_{21}, \mathbb{F}_{q}^{4}\right. \\ \text { Lines: }[\ell] & =\left[\ell_{1}, \ell_{11}, \ell_{12}, \ell_{21}, \not \subset\right] \subset \mathbb{F}_{q}^{4}\end{aligned}$
Adjacency relations:

$$
\begin{aligned}
p_{11}-\ell_{11} & =p_{1} \ell_{1} \\
p_{12}-\ell_{12} & =p_{1} \ell_{11} \\
p_{21}-\ell_{21} & =p_{11} \ell_{1} \\
p_{22}-\ell_{22} & =12
\end{aligned}
$$

Introduction

$-C D(3, q)-$

$$
\left.\begin{array}{rl}
\text { Points: }(p) & =\left(p_{1}, p_{11}, p_{12},\right. \text { 泣 }
\end{array}\right) \subset \mathbb{F}_{q}^{3}
$$

Adjacency relations:

$$
\begin{aligned}
p_{11}-\ell_{11} & =p_{1} \ell_{1} \\
p_{12}-\ell_{12} & =p_{1} \ell_{11} \\
p_{21}-\ell_{21} & =p_{11} \\
p_{22}-\ell_{22} & =p_{12}
\end{aligned}
$$

Introduction

$-C D(2, q)-$

$$
\begin{aligned}
\text { Points: }(p) & =\left(p_{1}, p_{11},\right. \\
\text { Lines: }[\ell] & =\left[\ell_{1}, \ell_{11}, \ell_{\Omega}, \ell \mathbb{L}, \mathbb{F}_{q}^{2}\right] \subset \mathbb{F}_{q}^{2}
\end{aligned}
$$

Adjacency relations:

Motivation

Even Circuit Theorem (Erdős): Let Γ be a graph with v vertices and e edges, and assume Γ contains no $2 k$-cycle. Then

$$
e \leq O\left(v^{1+\frac{1}{k}}\right)
$$

Motivation

Even Circuit Theorem (Erdős): Let Γ be a graph with v vertices and e edges, and assume Γ contains no $2 k$-cycle. Then

$$
e \leq O\left(v^{1+\frac{1}{k}}\right)
$$

This bound is known to be sharp for only three values of \boldsymbol{k}, namely $k=2,3,5$.

Motivation

Even Circuit Theorem (Erdős): Let Γ be a graph with v vertices and e edges, and assume Γ contains no $2 k$-cycle. Then

$$
e \leq O\left(v^{1+\frac{1}{k}}\right)
$$

This bound is known to be sharp for only three values of \boldsymbol{k}, namely $k=2,3,5$.

Problem: How close to this bound can we come for the remaining values of \boldsymbol{k} ?

Motivation

The GOOD news:

Motivation

The GOOD news:

The cases $k=\mathbf{2 , 3}, 5$ are realized by the respective incidence graphs of the generalized triangle of type $\boldsymbol{A}_{\mathbf{2}}$, the generalized quadrangle of type $\boldsymbol{B}_{\mathbf{2}}$, and the generalized hexagon of type $\boldsymbol{G}_{\mathbf{2}}$.

Motivation

The GOOD news:

The cases $k=\mathbf{2 , 3}, 5$ are realized by the respective incidence graphs of the generalized triangle of type $\boldsymbol{A}_{\mathbf{2}}$, the generalized quadrangle of type $\boldsymbol{B}_{\mathbf{2}}$, and the generalized hexagon of type $\boldsymbol{G}_{\mathbf{2}}$.

The BAD news:

Motivation

The GOOD news:

The cases $k=\mathbf{2 , 3}, 5$ are realized by the respective incidence graphs of the generalized triangle of type $\boldsymbol{A}_{\mathbf{2}}$, the generalized quadrangle of type $\boldsymbol{B}_{\mathbf{2}}$, and the generalized hexagon of type $\boldsymbol{G}_{\mathbf{2}}$.

The BAD news:

Theorem (Feit-Higman): A finite thick generalized \boldsymbol{m}-gon exists only for $m \in\{2,3,4,6,8\}$.

Motivation

The GOOD news:

The cases $k=\mathbf{2 , 3}, 5$ are realized by the respective incidence graphs of the generalized triangle of type $\boldsymbol{A}_{\mathbf{2}}$, the generalized quadrangle of type $\boldsymbol{B}_{\mathbf{2}}$, and the generalized hexagon of type $\boldsymbol{G}_{\mathbf{2}}$.

The BAD news:

Theorem (Feit-Higman): A finite thick generalized \boldsymbol{m}-gon exists only for $m \in\{2,3,4,6,8\}$.

The cases $k=2,3,5$ correspond to $m=3,4,6$ respectively. No other value of \boldsymbol{m} can contribute anything meaningful to our extremal graph theory problem.

Motivation

What was the goal of our research?

Motivation

What was the goal of our research?

To derive families of graphs that simultaneously

Motivation

What was the goal of our research?

To derive families of graphs that simultaneously
(i) mimic the behavior of incidence graphs of generalized m-gons,

Motivation

What was the goal of our research?

To derive families of graphs that simultaneously
(i) mimic the behavior of incidence graphs of generalized m-gons,
(ii) exist for infinitely many values of m.

Motivation

What was the goal of our research?

To derive families of graphs that simultaneously
(i) mimic the behavior of incidence graphs of generalized m-gons,
(ii) exist for infinitely many values of m.

Outline:

Motivation

What was the goal of our research?

To derive families of graphs that simultaneously
(i) mimic the behavior of incidence graphs of generalized m-gons,
(ii) exist for infinitely many values of m.

Outline:
(1) Root systems

Motivation

What was the goal of our research?

To derive families of graphs that simultaneously
(i) mimic the behavior of incidence graphs of generalized m-gons,
(ii) exist for infinitely many values of m.

Outline:
(1) Root systems
(2) The Weyl group

Motivation

What was the goal of our research?

To derive families of graphs that simultaneously
(i) mimic the behavior of incidence graphs of generalized m-gons,
(ii) exist for infinitely many values of m.

Outline:
(1) Root systems
(2) The Weyl group
(3) Dynkin diagrams and the Cartan matrix

Motivation

What was the goal of our research?

To derive families of graphs that simultaneously
(i) mimic the behavior of incidence graphs of generalized m-gons,
(ii) exist for infinitely many values of m.

Outline:
(1) Root systems
(2) The Weyl group
(3) Dynkin diagrams and the Cartan matrix
(4) Lie algebras and the upper Borel subalgebra

Motivation

What was the goal of our research?

To derive families of graphs that simultaneously
(i) mimic the behavior of incidence graphs of generalized m-gons,
(ii) exist for infinitely many values of m.

Outline:
(1) Root systems
(2) The Weyl group
(3) Dynkin diagrams and the Cartan matrix
(9) Lie algebras and the upper Borel subalgebra
(6) Lie groups and finite groups of Lie type

Motivation

What was the goal of our research?

To derive families of graphs that simultaneously
(i) mimic the behavior of incidence graphs of generalized m-gons,
(ii) exist for infinitely many values of m.

Outline:
(1) Root systems
(2) The Weyl group
(3) Dynkin diagrams and the Cartan matrix
(9) Lie algebras and the upper Borel subalgebra
(6) Lie groups and finite groups of Lie type
(Rank 2 buildings

Motivation

What was the goal of our research?

To derive families of graphs that simultaneously
(i) mimic the behavior of incidence graphs of generalized m-gons,
(ii) exist for infinitely many values of m.

Outline:
(1) Root systems
(2) The Weyl group
(3) Dynkin diagrams and the Cartan matrix
(9) Lie algebras and the upper Borel subalgebra
(6) Lie groups and finite groups of Lie type
(0) Rank 2 buildings
(1) Embedding buildings into Lie algebras

Motivation

What was the goal of our research?

To derive families of graphs that simultaneously
(i) mimic the behavior of incidence graphs of generalized m-gons,
(ii) exist for infinitely many values of m.

Outline:
(1) Root systems
(2) The Weyl group
(3) Dynkin diagrams and the Cartan matrix
(9) Lie algebras and the upper Borel subalgebra
(6) Lie groups and finite groups of Lie type
(Rank 2 buildings
(1) Embedding buildings into Lie algebras
(8) Objects of type \widetilde{A}_{1}

Schematic

Irreducible root systems

Schematic

Schematic

Schematic

Schematic

Schematic

Schematic

Schematic

Schematic

Root systems

 definitionLet V be a finite-dimensional Euclidean space with standard inner product (\cdot, \cdot).

Root systems

 definitionLet V be a finite-dimensional Euclidean space with standard inner product (\cdot, \cdot).

A root system Φ is a set of vectors in V such that

Root systems definition

Let V be a finite-dimensional Euclidean space with standard inner product (\cdot, \cdot).

A root system Φ is a set of vectors in V such that
(1) $|\Phi|<\infty$

Root systems definition

Let V be a finite-dimensional Euclidean space with standard inner product (\cdot, \cdot).

A root system Φ is a set of vectors in V such that
(1) $|\Phi|<\infty$
(2) Φ spans V

Root systems definition

Let V be a finite-dimensional Euclidean space with standard inner product (\cdot, \cdot).

A root system Φ is a set of vectors in V such that
(1) $|\Phi|<\infty$
(2) Φ spans V
(3) For every $r, s \in \Phi$, one has $2 \frac{(r, s)}{(r, r)} \in \mathbb{Z}$

Root systems

 definitionLet V be a finite-dimensional Euclidean space with standard inner product (\cdot, \cdot).

A root system Φ is a set of vectors in V such that
(1) $|\Phi|<\infty$
(2) Φ spans V
(3) For every $r, s \in \Phi$, one has $2 \frac{(r, s)}{(r, r)} \in \mathbb{Z}$
(9) For every $r, s \in \Phi$, one has $s-2 \frac{(r, s)}{(r, r)} r \in \Phi$

Root systems

 definitionLet V be a finite-dimensional Euclidean space with standard inner product (\cdot, \cdot).

A root system Φ is a set of vectors in V such that
(1) $|\Phi|<\infty$
(2) Φ spans V
(3) For every $r, s \in \Phi$, one has $2 \frac{(r, s)}{(r, r)} \in \mathbb{Z}$
(9) For every $r, s \in \Phi$, one has $s-2 \frac{(r, s)}{(r, r)} r \in \Phi$
(0) For every $r \in \Phi$, one has $\{\alpha r \mid \alpha \in \mathbb{R}\} \cap \Phi=\{r,-r\}$

Root systems

Let V be a finite-dimensional Euclidean space with standard inner product (\cdot, \cdot).

A root system Φ is a set of vectors in V such that
(1) $|\Phi|<\infty$
(2) Φ spans V
(3) For every $r, s \in \Phi$, one has $2 \frac{(r, s)}{(r, r)} \in \mathbb{Z}$
(4) For every $r, s \in \Phi$, one has $s-2 \frac{(r, s)}{(r, r)} r \in \Phi$
(6) For every $r \in \Phi$, one has $\{\alpha r \mid \alpha \in \mathbb{R}\} \cap \Phi=\{r,-r\}$

$$
\text { (Hence } \Phi=\Phi^{+} \cup \Phi^{-} \text {where } \Phi^{-}=-\Phi^{+} . \text {) }
$$

Root systems

rank 2 case

The Weyl group definition

Let Φ be a root system with fundamental roots $r_{1}, r_{2}, \ldots, r_{n}$.

The Weyl group definition

Let Φ be a root system with fundamental roots $r_{1}, r_{2}, \ldots, r_{n}$.
Set $\Pi=\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$ (fundamental basis).

Let Φ be a root system with fundamental roots $r_{1}, r_{2}, \ldots, r_{n}$. Set $\Pi=\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$ (fundamental basis).

For each $r_{i} \in \Pi$, denote by w_{i} the reflection in the hyperplane in $V=\mathbb{R}^{n}$ orthogonal to r_{i}, that is,

$$
w_{i}(s)=s-2 \frac{\left(r_{i}, s\right)}{\left(r_{i}, r_{i}\right)} r_{i}
$$

The Weyl group

 definitionLet Φ be a root system with fundamental roots $r_{1}, r_{2}, \ldots, r_{n}$.
Set $\Pi=\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$ (fundamental basis).
For each $r_{i} \in \Pi$, denote by w_{i} the reflection in the hyperplane in $V=\mathbb{R}^{n}$ orthogonal to r_{i}, that is,

$$
w_{i}(s)=s-2 \frac{\left(r_{i}, s\right)}{\left(r_{i}, r_{i}\right)} r_{i} \in \Phi(\text { Axiom } 4 \text { of a root system })
$$

Let Φ be a root system with fundamental roots $r_{1}, r_{2}, \ldots, r_{n}$.
Set $\Pi=\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$ (fundamental basis).
For each $r_{i} \in \Pi$, denote by w_{i} the reflection in the hyperplane in $V=\mathbb{R}^{n}$ orthogonal to r_{i}, that is,

$$
w_{i}(s)=s-2 \frac{\left(r_{i}, s\right)}{\left(r_{i}, r_{i}\right)} r_{i} \in \Phi(\text { Axiom } 4 \text { of a root system) }
$$

Thus each w_{i} permutes the roots of Φ.

Let Φ be a root system with fundamental roots $r_{1}, r_{2}, \ldots, r_{n}$.
Set $\Pi=\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$ (fundamental basis).
For each $r_{i} \in \Pi$, denote by w_{i} the reflection in the hyperplane in $V=\mathbb{R}^{n}$ orthogonal to r_{i}, that is,

$$
w_{i}(s)=s-2 \frac{\left(r_{i}, s\right)}{\left(r_{i}, r_{i}\right)} r_{i} \in \Phi(\text { Axiom } 4 \text { of a root system) }
$$

Thus each w_{i} permutes the roots of Φ.
We call w_{i} a fundamental reflection.

Let Φ be a root system with fundamental roots $r_{1}, r_{2}, \ldots, r_{n}$.
Set $\Pi=\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$ (fundamental basis).
For each $r_{i} \in \Pi$, denote by w_{i} the reflection in the hyperplane in $V=\mathbb{R}^{n}$ orthogonal to r_{i}, that is,

$$
w_{i}(s)=s-2 \frac{\left(r_{i}, s\right)}{\left(r_{i}, r_{i}\right)} r_{i} \in \Phi \text { (Axiom } 4 \text { of a root system) }
$$

Thus each w_{i} permutes the roots of Φ.
We call w_{i} a fundamental reflection.
The Weyl group is generated by all fundamental reflections, i.e.,

$$
W=\left\langle w_{1}, w_{2}, \ldots, w_{n}\right\rangle
$$

product of two reflections

Let $\measuredangle r_{i} r_{j}$ denote the angle between $r_{i}, r_{j} \in \Pi$.

product of two reflections

Let $\measuredangle r_{i} r_{j}$ denote the angle between $r_{i}, r_{j} \in \Pi$.
Then $\measuredangle r_{i} r_{j}=\left(\frac{m-1}{m}\right) \pi$ where $m \in\{2,3,4,6\}$.
product of two reflections

Let $\measuredangle r_{i} r_{j}$ denote the angle between $r_{i}, r_{j} \in \Pi$.
Then $\measuredangle r_{i} r_{j}=\left(\frac{m-1}{m}\right) \pi$ where $m \in\{2,3,4,6\}$.
In fact, m is the order $o\left(w_{i} w_{j}\right)$ of the rotation $w_{i} w_{j}$ in the plane determined by r_{i}, r_{j}.
product of two reflections

Let $\measuredangle r_{i} r_{j}$ denote the angle between $r_{i}, r_{j} \in \Pi$.
Then $\measuredangle r_{i} r_{j}=\left(\frac{m-1}{m}\right) \pi$ where $m \in\{2,3,4,6\}$.
In fact, m is the order $o\left(w_{i} w_{j}\right)$ of the rotation $w_{i} w_{j}$ in the plane determined by r_{i}, r_{j}.

This implies that the Weyl group of every rank 2 root system is a dihedral group of order $2 m$:
product of two reflections

Let $\measuredangle r_{i} r_{j}$ denote the angle between $r_{i}, r_{j} \in \Pi$.
Then $\measuredangle r_{i} r_{j}=\left(\frac{m-1}{m}\right) \pi$ where $m \in\{2,3,4,6\}$.
In fact, m is the order $o\left(w_{i} w_{j}\right)$ of the rotation $w_{i} w_{j}$ in the plane determined by r_{i}, r_{j}.

This implies that the Weyl group of every rank 2 root system is a dihedral group of order $2 m$:

- $W\left(A_{1} \times A_{1}\right) \cong D_{4}(m=2)$

Let $\measuredangle r_{i} r_{j}$ denote the angle between $r_{i}, r_{j} \in \Pi$.
Then $\measuredangle r_{i} r_{j}=\left(\frac{m-1}{m}\right) \pi$ where $m \in\{2,3,4,6\}$.
In fact, m is the order $o\left(w_{i} w_{j}\right)$ of the rotation $w_{i} w_{j}$ in the plane determined by r_{i}, r_{j}.

This implies that the Weyl group of every rank 2 root system is a dihedral group of order $2 m$:

- $W\left(A_{1} \times A_{1}\right) \cong D_{4}(m=2)$
- $W\left(A_{2}\right) \cong D_{6}(m=3)$

Let $\measuredangle r_{i} r_{j}$ denote the angle between $r_{i}, r_{j} \in \Pi$.
Then $\measuredangle r_{i} r_{j}=\left(\frac{m-1}{m}\right) \pi$ where $m \in\{2,3,4,6\}$.
In fact, m is the order $o\left(w_{i} w_{j}\right)$ of the rotation $w_{i} w_{j}$ in the plane determined by r_{i}, r_{j}.

This implies that the Weyl group of every rank 2 root system is a dihedral group of order $2 m$:

- $W\left(A_{1} \times A_{1}\right) \cong D_{4}(m=2)$
- $W\left(A_{2}\right) \cong D_{6}(m=3)$
- $W\left(B_{2}\right) \cong D_{8}(m=4)$

Let $\measuredangle r_{i} r_{j}$ denote the angle between $r_{i}, r_{j} \in \Pi$.
Then $\measuredangle r_{i} r_{j}=\left(\frac{m-1}{m}\right) \pi$ where $m \in\{2,3,4,6\}$.
In fact, m is the order $o\left(w_{i} w_{j}\right)$ of the rotation $w_{i} w_{j}$ in the plane determined by r_{i}, r_{j}.

This implies that the Weyl group of every rank 2 root system is a dihedral group of order $2 m$:

- $W\left(A_{1} \times A_{1}\right) \cong D_{4}(m=2)$
- $W\left(A_{2}\right) \cong D_{6}(m=3)$
- $W\left(B_{2}\right) \cong D_{8}(m=4)$
- $W\left(G_{2}\right) \cong D_{12}(m=6)$

Dynkin diagrams

codifying root systems

A Dynkin diagram consists of nodes and weighted (directed) edges between pairs of nodes.

Dynkin diagrams

codifying root systems

A Dynkin diagram consists of nodes and weighted (directed) edges between pairs of nodes.

It is a useful device for codifying a root system:

Dynkin diagrams

codifying root systems

A Dynkin diagram consists of nodes and weighted (directed) edges between pairs of nodes.

It is a useful device for codifying a root system:
Nodes of diagram \longleftrightarrow fundamental roots edge weights determine angles between pairs of roots

Dynkin diagrams
 codifying root systems

A Dynkin diagram consists of nodes and weighted (directed) edges between pairs of nodes.

It is a useful device for codifying a root system:
Nodes of diagram \longleftrightarrow fundamental roots edge weights determine angles between pairs of roots

It also codifies the action of the Weyl group on a root system:

Dynkin diagrams codifying root systems

A Dynkin diagram consists of nodes and weighted (directed) edges between pairs of nodes.

It is a useful device for codifying a root system:
Nodes of diagram \longleftrightarrow fundamental roots edge weights determine angles between pairs of roots

It also codifies the action of the Weyl group on a root system:
Nodes of diagram \longleftrightarrow fundamental reflections edge weights determine orders of products of pairs of reflections

Dynkin diagrams

Dynkin diagrams

Dynkin diagrams

rank 2 case

Dynkin diagrams

Dynkin diagrams

Dynkin diagrams

Dynkin diagrams

Dynkin diagrams

Recall that for any pair of roots $r, s \in \Phi$, one has

$$
2 \frac{(r, s)}{(r, r)} \in \mathbb{Z} \quad \text { (Axiom } 3 \text { of a root system) }
$$

Recall that for any pair of roots $r, s \in \Phi$, one has

$$
\left.2 \frac{(r, s)}{(r, r)} \in \mathbb{Z} \quad \text { (Axiom } 3 \text { of a root system }\right)
$$

For fundamental roots $r_{i}, r_{j} \in \Pi$, we may express this as

$$
A_{i j}=2 \frac{\left(r_{i}, r_{j}\right)}{\left(r_{i}, r_{i}\right)} \in \mathbb{Z}
$$

Recall that for any pair of roots $r, s \in \Phi$, one has

$$
\left.2 \frac{(r, s)}{(r, r)} \in \mathbb{Z} \quad \text { (Axiom } 3 \text { of a root system }\right)
$$

For fundamental roots $r_{i}, r_{j} \in \Pi$, we may express this as

$$
A_{i j}=2 \frac{\left(r_{i}, r_{j}\right)}{\left(r_{i}, r_{i}\right)} \in \mathbb{Z}
$$

We now define the Cartan matrix for Φ by $\boldsymbol{A}(\Phi)=\left(\boldsymbol{A}_{i j}\right)$.

Recall that for any pair of roots $r, s \in \Phi$, one has

$$
\left.2 \frac{(r, s)}{(r, r)} \in \mathbb{Z} \quad \text { (Axiom } 3 \text { of a root system }\right)
$$

For fundamental roots $r_{i}, r_{j} \in \Pi$, we may express this as

$$
A_{i j}=2 \frac{\left(r_{i}, r_{j}\right)}{\left(r_{i}, r_{i}\right)} \in \mathbb{Z}
$$

We now define the Cartan matrix for Φ by $\boldsymbol{A}(\Phi)=\left(\boldsymbol{A}_{i j}\right)$.

$$
\left.\begin{array}{ccc}
\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) & \left(\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right) & \left(\begin{array}{rr}
2 & -1 \\
-2 & 2
\end{array}\right)
\end{array} \begin{array}{|rr}
2 & -1 \\
-3 & 2
\end{array}\right)
$$

Recall that for any pair of roots $r, s \in \Phi$, one has

$$
\left.2 \frac{(r, s)}{(r, r)} \in \mathbb{Z} \quad \text { (Axiom } 3 \text { of a root system }\right)
$$

For fundamental roots $r_{i}, r_{j} \in \Pi$, we may express this as

$$
A_{i j}=2 \frac{\left(r_{i}, r_{j}\right)}{\left(r_{i}, r_{i}\right)} \in \mathbb{Z}
$$

We now define the Cartan matrix for Φ by $\boldsymbol{A}(\Phi)=\left(\boldsymbol{A}_{i j}\right)$.

$$
\left.\begin{array}{ccc}
\left(\begin{array}{rr}
2 & 0 \\
0 & 2
\end{array}\right) & \left(\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right) & \left(\begin{array}{rr}
2 & -1 \\
-2 & 2
\end{array}\right)
\end{array} \begin{array}{rr}
2 & -1 \\
-3 & 2
\end{array}\right)
$$

Lie algebras definition

A Lie algebra is a vector space \mathfrak{L} over some field \mathbb{F}, endowed with a binary operation $[\cdot, \cdot]: \mathfrak{L} \times \mathfrak{L} \rightarrow \mathfrak{L}$ (Lie product) which is bilinear, anticommutative, and satisfies the Jacobi identity:

$$
[\alpha,[\beta, \gamma]]+[\beta,[\gamma, \alpha]]+[\gamma,[\alpha, \beta]]=0, \quad \forall \alpha, \beta, \gamma \in \mathfrak{L}
$$

Lie algebras definition

A Lie algebra is a vector space \mathfrak{L} over some field \mathbb{F}, endowed with a binary operation $[\cdot, \cdot]: \mathfrak{L} \times \mathfrak{L} \rightarrow \mathfrak{L}$ (Lie product) which is bilinear, anticommutative, and satisfies the Jacobi identity:

$$
[\alpha,[\beta, \gamma]]+[\beta,[\gamma, \alpha]]+[\gamma,[\alpha, \beta]]=0, \quad \forall \alpha, \beta, \gamma \in \mathfrak{L}
$$

Lie algebras are examples of non-associative graded algebras.

Lie algebras definition

A Lie algebra is a vector space \mathfrak{L} over some field \mathbb{F}, endowed with a binary operation $[\cdot, \cdot]: \mathfrak{L} \times \mathfrak{L} \rightarrow \mathfrak{L}$ (Lie product) which is bilinear, anticommutative, and satisfies the Jacobi identity:

$$
[\alpha,[\beta, \gamma]]+[\beta,[\gamma, \alpha]]+[\gamma,[\alpha, \beta]]=0, \quad \forall \alpha, \beta, \gamma \in \mathfrak{L}
$$

Lie algebras are examples of non-associative graded algebras.
Subject to a fixed choice of root system and field, one obtains a unique semisimple Lie algebra.

Cartan decomposition

Let \mathfrak{H} be a self-normalizing nilpotent subalgebra of \mathfrak{L}. We call \mathfrak{H} a Cartan subalgebra of \mathfrak{L}.

Lie algebras

Cartan decomposition

Let \mathfrak{H} be a self-normalizing nilpotent subalgebra of \mathfrak{L}. We call \mathfrak{H} a Cartan subalgebra of \mathfrak{L}.

$$
\mathfrak{L}=\mathfrak{H} \bigoplus_{r \in \Phi} \mathfrak{L}_{r}(\text { Cartan decomposition })
$$

where each root space \mathfrak{L}_{r} is an \mathfrak{H}-invariant subspace of \mathfrak{L}, i.e., $\left[\mathfrak{H}, \mathfrak{L}_{r}\right] \subseteq \mathfrak{L}_{r}$.

Lie algebras

Cartan decomposition

Let \mathfrak{H} be a self-normalizing nilpotent subalgebra of \mathfrak{L}. We call \mathfrak{H} a Cartan subalgebra of \mathfrak{L}.

$$
\mathfrak{L}=\mathfrak{H} \underset{r \in \Phi}{\bigoplus} \mathfrak{L}_{r} \quad(\text { Cartan decomposition })
$$

where each root space \mathfrak{L}_{r} is an \mathfrak{H}-invariant subspace of \mathfrak{L}, i.e., $\left[\mathfrak{H}, \mathfrak{L}_{r}\right] \subseteq \mathfrak{L}_{r}$.

If \mathfrak{L} arises from a root system, then each \mathfrak{L}_{r} is one-dimensional.
We write $\mathfrak{L}_{r}=\left\langle e_{r}\right\rangle$ and refer to e_{r} as a root vector.

Lie algebras

Cartan decomposition

Let \mathfrak{H} be a self-normalizing nilpotent subalgebra of \mathfrak{L}. We call \mathfrak{H} a Cartan subalgebra of \mathfrak{L}.

$$
\mathfrak{L}=\mathfrak{H} \underset{r \in \Phi}{\bigoplus} \mathfrak{L}_{r} \quad(\text { Cartan decomposition })
$$

where each root space \mathfrak{L}_{r} is an \mathfrak{H}-invariant subspace of \mathfrak{L}, i.e., $\left[\mathfrak{H}, \mathfrak{L}_{r}\right] \subseteq \mathfrak{L}_{r}$.

If \mathfrak{L} arises from a root system, then each \mathfrak{L}_{r} is one-dimensional.
We write $\mathfrak{L}_{r}=\left\langle e_{r}\right\rangle$ and refer to e_{r} as a root vector.
For each $r \in \Phi$, one has $\left[h, e_{r}\right]=r(h) e_{r}, h \in \mathfrak{H}$,
i.e., each root $r \in \Phi$ is a linear functional $r: \mathfrak{H} \rightarrow \mathbb{R}$.

Lie algebras

Cartan decomposition

Let \mathfrak{H} be a self-normalizing nilpotent subalgebra of \mathfrak{L}. We call \mathfrak{H} a Cartan subalgebra of \mathfrak{L}.

$$
\mathfrak{L}=\mathfrak{H} \underset{r \in \Phi}{\bigoplus} \mathfrak{L}_{r} \quad(\text { Cartan decomposition })
$$

where each root space \mathfrak{L}_{r} is an \mathfrak{H}-invariant subspace of \mathfrak{L}, i.e., $\left[\mathfrak{H}, \mathfrak{L}_{r}\right] \subseteq \mathfrak{L}_{r}$.

If \mathfrak{L} arises from a root system, then each \mathfrak{L}_{r} is one-dimensional.
We write $\mathfrak{L}_{r}=\left\langle e_{r}\right\rangle$ and refer to e_{r} as a root vector.
For each $r \in \Phi$, one has $\left[h, e_{r}\right]=r(h) e_{r}, h \in \mathfrak{H}$,
i.e., each root $r \in \Phi$ is a linear functional $r: \mathfrak{H} \rightarrow \mathbb{R}$.

This gives $\Phi \hookrightarrow \mathfrak{H}^{*}$, therefore $\Phi^{*} \hookrightarrow \mathfrak{H}$.

Lie algebras

Borel subalgebras

Recall that $\Phi=\Phi^{+} \cup \Phi^{-}$.

Lie algebras

Borel subalgebras

Recall that $\Phi=\Phi^{+} \cup \Phi^{-}$.
It follows that

$$
\bigoplus_{r \in \Phi} \mathfrak{L}_{r}=\mathfrak{L}_{\mathfrak{r}}{ }^{+} \bigoplus \mathfrak{L}_{\mathfrak{r}}^{-}
$$

where

$$
\begin{aligned}
& \mathfrak{L}_{\mathfrak{r}}^{+}=\bigoplus_{r \in \Phi^{+}} \mathfrak{L}_{r} \quad \text { (positive root space) } \\
& \mathfrak{L}_{\mathfrak{r}}^{-}=\bigoplus_{r \in \Phi^{-}} \mathfrak{L}_{r} \text { (negative root space) }
\end{aligned}
$$

Lie algebras
 Borel subalgebras

Recall that $\Phi=\Phi^{+} \cup \Phi^{-}$.
It follows that

$$
\bigoplus_{r \in \Phi} \mathfrak{L}_{r}=\mathfrak{L}_{\mathfrak{r}}{ }^{+} \bigoplus \mathfrak{L}_{\mathfrak{r}}^{-}
$$

where

$$
\begin{aligned}
& \mathfrak{L}_{\mathfrak{r}}^{+}=\bigoplus_{r \in \Phi^{+}} \mathfrak{L}_{r} \quad(\text { positive root space }) \\
& \mathfrak{L}_{\mathfrak{r}}^{-}=\bigoplus_{r \in \Phi^{-}} \mathfrak{L}_{r} \quad \text { (negative root space) }
\end{aligned}
$$

If we now append \mathfrak{H} to each of these subspaces, we obtain

$$
\begin{aligned}
\mathfrak{L}^{U} & \left.=\mathfrak{H} \bigoplus \mathfrak{L}_{r}^{+} \quad \text { (upper Borel subalgebra) }\right) \\
\mathfrak{L}^{L} & =\mathfrak{H} \bigoplus \mathfrak{L}_{r}^{-} \quad \text { (lower Borel subalgebra) }
\end{aligned}
$$

Lie algebras
 Borel subalgebras

Recall that $\Phi=\Phi^{+} \cup \Phi^{-}$.
It follows that

$$
\bigoplus_{r \in \Phi} \mathfrak{L}_{r}=\mathfrak{L}_{\mathfrak{r}}{ }^{+} \bigoplus \mathfrak{L}_{\mathfrak{r}}^{-}
$$

where

$$
\begin{aligned}
& \mathfrak{L}_{\mathfrak{r}}^{+}=\bigoplus_{r \in \Phi^{+}} \mathfrak{L}_{r} \quad \text { (positive root space) } \\
& \mathfrak{L}_{\mathfrak{r}}^{-}=\bigoplus_{r \in \Phi^{-}} \mathfrak{L}_{r} \quad \text { (negative root space) }
\end{aligned}
$$

If we now append \mathfrak{H} to each of these subspaces, we obtain

$$
\begin{aligned}
\mathfrak{L}^{U} & \left.=\mathfrak{H} \bigoplus \mathfrak{L}_{r}^{+} \quad \text { (upper Borel subalgebra) }\right) \\
\mathfrak{L}^{L} & =\mathfrak{H} \bigoplus \mathfrak{L}_{r}^{-} \quad \text { (lower Borel subalgebra) }
\end{aligned}
$$

We are interested in the upper Borel subalgebra $\mathfrak{L}^{U}=\mathfrak{H} \bigoplus \mathfrak{L}_{r}^{+}$.

EXAMPLE. We construct the complex Lie algebra \mathfrak{L} of type A_{2} and identify its upper Borel subalgebra \mathfrak{L}^{U}.

EXAMPLE. We construct the complex Lie algebra \mathfrak{L} of type A_{2} and identify its upper Borel subalgebra \mathfrak{L}^{U}.

First we determine the root system of type A_{2} :

$$
\Phi=\left\{r_{1}, r_{2}, r_{1}+r_{2},-r_{1},-r_{2},-r_{1}-r_{2}\right\}
$$

EXAMPLE. We construct the complex Lie algebra \mathfrak{L} of type A_{2} and identify its upper Borel subalgebra \mathfrak{L}^{U}.

First we determine the root system of type A_{2} :

$$
\Phi=\left\{r_{1}, r_{2}, r_{1}+r_{2},-r_{1},-r_{2},-r_{1}-r_{2}\right\}
$$

Let $\Pi^{*}=\left\{r_{1}^{*}, r_{2}^{*}\right\}$ be the dual basis of the fundamental basis $\Pi=\left\{r_{1}, r_{2}\right\}$.

EXAMPLE. We construct the complex Lie algebra \mathfrak{L} of type A_{2} and identify its upper Borel subalgebra \mathfrak{L}^{U}.

First we determine the root system of type A_{2} :

$$
\Phi=\left\{r_{1}, r_{2}, r_{1}+r_{2},-r_{1},-r_{2},-r_{1}-r_{2}\right\}
$$

Let $\Pi^{*}=\left\{r_{1}^{*}, r_{2}^{*}\right\}$ be the dual basis of the fundamental basis $\Pi=\left\{r_{1}, r_{2}\right\}$.

Then Π^{*} is a basis for $\left\langle\Phi^{*}\right\rangle=\mathfrak{H}$, and we accordingly obtain the following canonical basis for \mathfrak{L} :

Lie algebras type A_{2}

EXAMPLE. We construct the complex Lie algebra \mathfrak{L} of type A_{2} and identify its upper Borel subalgebra \mathfrak{L}^{U}.

First we determine the root system of type A_{2} :

$$
\Phi=\left\{r_{1}, r_{2}, r_{1}+r_{2},-r_{1},-r_{2},-r_{1}-r_{2}\right\}
$$

Let $\Pi^{*}=\left\{r_{1}^{*}, r_{2}^{*}\right\}$ be the dual basis of the fundamental basis $\Pi=\left\{r_{1}, r_{2}\right\}$.

Then Π^{*} is a basis for $\left\langle\Phi^{*}\right\rangle=\mathfrak{H}$, and we accordingly obtain the following canonical basis for \mathfrak{L} :

$$
\{\underbrace{r_{1}^{*}, r_{2}^{*}}_{\mathfrak{H}}, \underbrace{e_{r_{1}}, e_{r_{2}}, e_{r_{1}+r_{2}}}_{\mathfrak{L}^{+}}, \underbrace{e_{-r_{1}}, e_{-r_{2}}, e_{-r_{1}-r_{2}}}_{\mathfrak{L}^{-}}\}
$$

Lie algebras type A_{2}

We may choose our embedding $\Pi^{*} \hookrightarrow \mathfrak{H}$ as follows:

$$
r_{1}^{*}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \quad r_{2}^{*}=\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

We may choose our embedding $\Pi^{*} \hookrightarrow \mathfrak{H}$ as follows:

$$
r_{1}^{*}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \quad r_{2}^{*}=\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Similarly, we obtain matrix representations of the six root vectors:

Lie algebras type A_{2}

We may choose our embedding $\Pi^{*} \hookrightarrow \mathfrak{H}$ as follows:

$$
r_{1}^{*}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \quad r_{2}^{*}=\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Similarly, we obtain matrix representations of the six root vectors:

$$
e_{r_{1}}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad e_{r_{2}}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \quad e_{r_{1}+r_{2}}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Lie algebras type A_{2}

We may choose our embedding $\Pi^{*} \hookrightarrow \mathfrak{H}$ as follows:

$$
r_{1}^{*}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \quad r_{2}^{*}=\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Similarly, we obtain matrix representations of the six root vectors:

$$
\begin{aligned}
& e_{r_{1}}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad e_{r_{2}}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \quad e_{r_{1}+r_{2}}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& e_{-r_{1}}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad e_{-r_{2}}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) e_{-r_{1}-r_{2}}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Lie algebras type A_{2}

A basis for $\mathfrak{L}^{U}=\mathfrak{H} \oplus \mathfrak{L}^{+}$is

$$
\{\underbrace{r_{1}^{*}, r_{2}^{*}}_{\mathfrak{H}}, \underbrace{e_{r_{1}}, e_{r_{2}}, e_{r_{1}+r_{2}}}_{\mathfrak{L}^{+}}\}
$$

Lie algebras type A_{2}

A basis for $\mathfrak{L}^{U}=\mathfrak{H} \oplus \mathfrak{L}^{+}$is

$$
\{\underbrace{r_{1}^{*}, r_{2}^{*}}_{\mathfrak{H}}, \underbrace{e_{r_{1}}, e_{r_{2}}, e_{r_{1}+r_{2}}}_{\mathfrak{L}^{+}}\}
$$

Subject to our matrix representation, this becomes

$$
\mathfrak{L}^{U}=\left\{\left.\left(\begin{array}{ccc}
a & c & d \\
0 & b-a & e \\
0 & 0 & -b
\end{array}\right) \right\rvert\, a, b, c, d, e \in \mathbb{C}\right\}
$$

Finite groups of Lie type

the complex Lie group

Given a complex simple Lie algebra \mathfrak{L}, for each $x \in \mathfrak{L}$ we define the exponentiation map

$$
\exp (\operatorname{ad} x)=\sum_{k=0}^{\infty} \frac{(\operatorname{ad} x)^{k}}{k!}
$$

where

$$
\operatorname{ad} x: \mathfrak{L} \rightarrow \mathfrak{L} \quad(\operatorname{ad} x: y \mapsto[x, y])
$$

Finite groups of Lie type

the complex Lie group

Given a complex simple Lie algebra \mathfrak{L}, for each $x \in \mathfrak{L}$ we define the exponentiation map

$$
\exp (\operatorname{ad} x)=\sum_{k=0}^{\infty} \frac{(\operatorname{ad} x)^{k}}{k!}
$$

where

$$
\operatorname{ad} x: \mathfrak{L} \rightarrow \mathfrak{L} \quad(\operatorname{ad} x: y \mapsto[x, y])
$$

Note: $\exp (\operatorname{ad} x) \exp (\operatorname{ad} y)=\exp (\operatorname{ad}[x, y])$.

Finite groups of Lie type

the complex Lie group

Given a complex simple Lie algebra \mathfrak{L}, for each $x \in \mathfrak{L}$ we define the exponentiation map

$$
\exp (\operatorname{ad} x)=\sum_{k=0}^{\infty} \frac{(\operatorname{ad} x)^{k}}{k!}
$$

where

$$
\operatorname{ad} x: \mathfrak{L} \rightarrow \mathfrak{L} \quad(\operatorname{ad} x: y \mapsto[x, y])
$$

Note: $\exp (\operatorname{ad} x) \exp (\operatorname{ad} y)=\exp (\operatorname{ad}[x, y])$.
As ad x is a nilpotent derivation, we get that each $\exp (\operatorname{ad} x)$ is an inner automorphism of \mathfrak{L}.

Finite groups of Lie type

the complex Lie group

Given a complex simple Lie algebra \mathfrak{L}, for each $x \in \mathfrak{L}$ we define the exponentiation map

$$
\exp (\operatorname{ad} x)=\sum_{k=0}^{\infty} \frac{(\operatorname{ad} x)^{k}}{k!}
$$

where

$$
\operatorname{ad} x: \mathfrak{L} \rightarrow \mathfrak{L} \quad(\operatorname{ad} x: y \mapsto[x, y])
$$

Note: $\exp (\operatorname{ad} x) \exp (\operatorname{ad} y)=\exp (\operatorname{ad}[x, y])$.
As ad x is a nilpotent derivation, we get that each $\exp (\operatorname{ad} x)$ is an inner automorphism of \mathfrak{L}.

We now define the complex Lie group:

$$
G=\{\exp (\operatorname{ad} x) \mid x \in \mathfrak{L}\}
$$

Finite groups of Lie type seminal work of C. Chevalley

Chevalley constructed a basis (Chevalley basis) for the universal enveloping algebra of every complex simple Lie algebra with the property that all structure constants of the enveloping algebra are integral with respect to the basis.

Finite groups of Lie type seminal work of C. Chevalley

Chevalley constructed a basis (Chevalley basis) for the universal enveloping algebra of every complex simple Lie algebra with the property that all structure constants of the enveloping algebra are integral with respect to the basis.

This allows the corresponding algebraic groups to be defined over \mathbb{Z}, which enables their range of definition to be extended to finite fields.

Finite groups of Lie type seminal work of C. Chevalley

Chevalley constructed a basis (Chevalley basis) for the universal enveloping algebra of every complex simple Lie algebra with the property that all structure constants of the enveloping algebra are integral with respect to the basis.

This allows the corresponding algebraic groups to be defined over \mathbb{Z}, which enables their range of definition to be extended to finite fields.

The resulting finite simple groups are termed Chevalley groups in his honor.

Finite groups of Lie type

Chevalley groups

Finite groups of Lie type

Chevalley groups

$\left.\begin{array}{c|c|l}\text { Lie type } & \text { group } & \text { discoverer } \\ \hline \hline A_{n}(q) & L_{n+1}(q) & \text { Dickson } \\ B_{n}(q) & O_{2 n+1}(q) & \text { Dickson } \quad \\ C_{n}(q) & P S p_{2 n}(q) & \text { Dickson } \quad \text { classical* } \\ D_{n}(q) & P \Omega_{2 n}^{+}(q) & \text { Dickson }\end{array}\right\}$

Finite groups of Lie type

Chevalley groups

Lie type	group	discoverer
$A_{n}(q)$	$L_{n+1}(q)$	Dickson \quad
$B_{n}(q)$	$O_{2 n+1}(q)$	Dickson \quad _lassical*
$C_{n}(q)$	$P S p_{2 n}(q)$	Dickson \quad.
$D_{n}(q)$	$P \Omega_{2 n}^{+}(q)$	Dickson \quad
$G_{2}(q)$		Dickson
$F_{4}(q)$		Chevalley
$E_{6}(q)$		Dickson
$E_{7}(q)$		Chevalley
$E_{8}(q)$		Chevalley

* The case " q prime" was treated by C. Jordan.

Finite groups of Lie type

twisted groups

Lie type	group	discoverer

Finite groups of Lie type
twisted groups
$\left.\begin{array}{l|c|ll}\text { Lie type } & \text { group } & \text { discoverer } \\ \hline \hline{ }^{2} A_{n}(q) & U_{n+1}(q) & \text { Steinberg } & \\ { }^{2} D_{n}(q) & P \Omega_{2 n}^{-}(q) & \text { Steinberg }\end{array}\right\}$ classical

Finite groups of Lie type

| Lie type | group | discoverer | |
| :--- | :--- | :--- | :--- | :--- |
| ${ }^{2} A_{n}(q)$ | $U_{n+1}(q)$ | Steinberg | |
| ${ }^{2} D_{n}(q)$ | $P \Omega_{2 n}^{-}(q)$ | Steinberg | classical |
| ${ }^{2} E_{6}(q)$ | | Steinberg* | |
| ${ }^{3} D_{4}(q)$ | | Steinberg | |
| ${ }^{2} B_{2}\left(2^{2 m+1}\right)$ | | Suzuki \quad exceptional | |
| ${ }^{2} G_{2}\left(3^{2 m+1}\right)$ | | Ree \quad | |
| ${ }^{2} F_{4}\left(2^{2 m+1}\right)$ | | Ree \quad | |

* The family ${ }^{2} E_{6}(q)$ was discovered independently by J. Tits.

Finite groups of Lie type

no complex analogues
Among these 16 infinite families of groups of Lie type, four such families have no complex analogues:

Finite groups of Lie type

no complex analogues
Among these 16 infinite families of groups of Lie type, four such families have no complex analogues:

$$
{ }^{3} D_{4}(q),{ }^{2} B_{2}\left(2^{2 m+1}\right),{ }^{2} G_{2}\left(3^{2 m+1}\right),{ }^{2} F_{4}\left(2^{2 m+1}\right)
$$

Finite groups of Lie type

no complex analogues
Among these 16 infinite families of groups of Lie type, four such families have no complex analogues:

$$
{ }^{3} D_{4}(q),{ }^{2} B_{2}\left(2^{2 m+1}\right),{ }^{2} G_{2}\left(3^{2 m+1}\right),{ }^{2} F_{4}\left(2^{2 m+1}\right)
$$

(1) The diagram D_{4} admits an order 3 automorphism, however existence of ${ }^{3} D_{4}(q)$ requires that the field \mathbb{F}_{q} be a cubic extension of a smaller field. This precludes the existence of a complex Lie group of type ${ }^{3} D_{4}$ over \mathbb{C}.

Finite groups of Lie type
 no complex analogues

Among these 16 infinite families of groups of Lie type, four such families have no complex analogues:

$$
{ }^{3} D_{4}(q),{ }^{2} B_{2}\left(2^{2 m+1}\right),{ }^{2} G_{2}\left(3^{2 m+1}\right),{ }^{2} F_{4}\left(2^{2 m+1}\right)
$$

(1) The diagram D_{4} admits an order 3 automorphism, however existence of ${ }^{3} D_{4}(q)$ requires that the field \mathbb{F}_{q} be a cubic extension of a smaller field. This precludes the existence of a complex Lie group of type ${ }^{3} D_{4}$ over \mathbb{C}.
(2) The diagrams B_{2}, G_{2}, F_{4} each admit an order 2 automorphism that interchanges long and short roots. The existence of ${ }^{2} B_{2}(q)$, ${ }^{2} G_{2}(q),{ }^{2} F_{4}(q)$ therefore requires that $B_{2}(q), G_{2}(q), F_{4}(q)$ admit graph-field automorphisms that preserve root length. This occurs only for the fields specifed above, and certainly not for \mathbb{C}.

Finite groups of Lie type

 structure and partial subgroup latticeLet G be a finite group of Lie type of rank n over $\mathbb{F}_{q}, q=p^{a}$.

Finite groups of Lie type

 structure and partial subgroup latticeLet G be a finite group of Lie type of rank n over $\mathbb{F}_{q}, q=p^{a}$.
Fix a Sylow p-subgroup U of G (unipotent subgroup).

Finite groups of Lie type

 structure and partial subgroup latticeLet G be a finite group of Lie type of rank n over $\mathbb{F}_{q}, q=p^{a}$.
Fix a Sylow p-subgroup U of G (unipotent subgroup).
Let $B=N_{G}(U)$ (Borel subgroup).

Finite groups of Lie type

 structure and partial subgroup latticeLet G be a finite group of Lie type of rank n over $\mathbb{F}_{q}, q=p^{a}$.
Fix a Sylow p-subgroup U of G (unipotent subgroup).
Let $B=N_{G}(U)$ (Borel subgroup).
Then the full lattice of subgroups $\{P \mid B \leq P \leq G\}$ is isomorphic to the lattice of all subsets of an n-element set.

Let G be a finite group of Lie type of rank n over $\mathbb{F}_{q}, q=p^{a}$.
Fix a Sylow p-subgroup U of G (unipotent subgroup).
Let $B=N_{G}(U)$ (Borel subgroup).
Then the full lattice of subgroups $\{P \mid B \leq P \leq G\}$ is isomorphic to the lattice of all subsets of an n-element set.

The $2^{n}-1$ proper subgroups in this lattice are called parabolic subgroups of G. Of these, n are maximal subgroups of G. We denote these as $P_{1}, P_{2}, \ldots, P_{n}$ (maximal parabolics).

Finite groups of Lie type recovering the Weyl group

Let G be a finite group of Lie type, and let $B=N_{G}(U)$ be a fixed Borel subgroup of G.

Finite groups of Lie type

 recovering the Weyl groupLet G be a finite group of Lie type, and let $B=N_{G}(U)$ be a fixed Borel subgroup of G.

As B splits over U, there exists a subgroup $T \leq B$ with $T \cong B / U$. We call T a maximal torus.

Finite groups of Lie type

 recovering the Weyl groupLet G be a finite group of Lie type, and let $B=N_{G}(U)$ be a fixed Borel subgroup of G.

As B splits over U, there exists a subgroup $T \leq B$ with $T \cong B / U$. We call T a maximal torus.

The Weyl group $W=W(G)$ now appears as the quotient

$$
W \cong N_{G}(T) / T
$$

Finite groups of Lie type

 recovering the Weyl groupLet G be a finite group of Lie type, and let $B=N_{G}(U)$ be a fixed Borel subgroup of G.

As B splits over U, there exists a subgroup $T \leq B$ with $T \cong B / U$. We call T a maximal torus.

The Weyl group $W=W(G)$ now appears as the quotient

$$
W \cong N_{G}(T) / T
$$

As $N_{G}(T)$ need not split over T, W need not be a subgroup of G.

Finite groups of Lie type

EXAMPLE. We illustrate the case $A_{2}(q)=L_{3}(q)$ in detail.

Finite groups of Lie type

EXAMPLE. We illustrate the case $A_{2}(q)=L_{3}(q)$ in detail.

Note: $B=P_{1} \cap P_{2}$. As such, we may denote B as $P_{1,2}$.

Finite groups of Lie type

We may choose our Sylow p-subgroup to be

$$
U=\left\{\left[\begin{array}{lll}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{array}\right]\right\}
$$

Finite groups of Lie type

We may choose our Sylow p-subgroup to be

$$
U=\left\{\left[\begin{array}{lll}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{array}\right]\right\}
$$

From this, we obtain

$$
B=\left\{\left[\begin{array}{ccc}
* & * & * \\
0 & * & * \\
0 & 0 & *
\end{array}\right]\right\}
$$

Finite groups of Lie type

We may choose our Sylow p-subgroup to be

$$
U=\left\{\left[\begin{array}{lll}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{array}\right]\right\}
$$

From this, we obtain

$$
B=\left\{\left[\begin{array}{ccc}
* & * & * \\
0 & * & * \\
0 & 0 & *
\end{array}\right]\right\} \quad P_{1}=\left\{\left[\begin{array}{ccc}
* & * & * \\
0 & * & * \\
0 & * & *
\end{array}\right]\right\} \quad P_{2}=\left\{\left[\begin{array}{ccc}
* & * & * \\
* & * & * \\
0 & 0 & *
\end{array}\right]\right\}
$$

Finite groups of Lie type

We now recover the Weyl group.

Finite groups of Lie type

We now recover the Weyl group.

$$
U=\left\{\left[\begin{array}{lll}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{array}\right]\right\} \quad B=\left\{\left[\begin{array}{ccc}
* & * & * \\
0 & * & * \\
0 & 0 & *
\end{array}\right]\right\}
$$

Finite groups of Lie type

We now recover the Weyl group.

$$
\begin{gathered}
U=\left\{\left[\begin{array}{lll}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{array}\right]\right\} \quad B=\left\{\left[\begin{array}{ccc}
* & * & * \\
0 & * & * \\
0 & 0 & *
\end{array}\right]\right\} \\
T=\left\{\left[\begin{array}{lll}
* & 0 & 0 \\
0 & * & 0 \\
0 & 0 & *
\end{array}\right]\right\}
\end{gathered}
$$

Finite groups of Lie type

We now recover the Weyl group.

$$
\begin{gathered}
U=\left\{\left[\begin{array}{lll}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{array}\right]\right\} \quad B=\left\{\left[\begin{array}{lll}
* & * & * \\
0 & * & * \\
0 & 0 & *
\end{array}\right]\right\} \\
T=\left\{\left[\begin{array}{lll}
* & 0 & 0 \\
0 & * & 0 \\
0 & 0 & *
\end{array}\right]\right\} \quad N_{G}(T)=\left\langle\left[\begin{array}{lll}
0 & * & 0 \\
* & 0 & 0 \\
0 & 0 & *
\end{array}\right],\left[\begin{array}{ccc}
* & 0 & 0 \\
0 & 0 & * \\
0 & * & 0
\end{array}\right]\right\rangle
\end{gathered}
$$

Finite groups of Lie type

 type A_{2}We now recover the Weyl group.

$$
\begin{gathered}
U=\left\{\left[\begin{array}{lll}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{array}\right]\right\} \quad B=\left\{\left[\begin{array}{lll}
* & * & * \\
0 & * & * \\
0 & 0 & *
\end{array}\right]\right\} \\
T=\left\{\left[\begin{array}{lll}
* & 0 & 0 \\
0 & * & 0 \\
0 & 0 & *
\end{array}\right]\right\} \quad N_{G}(T)=\left\langle\left[\begin{array}{lll}
0 & * & 0 \\
* & 0 & 0 \\
0 & 0 & *
\end{array}\right],\left[\begin{array}{lll}
* & 0 & 0 \\
0 & 0 & * \\
0 & * & 0
\end{array}\right]\right\rangle \\
W(G)=N_{G}(T) / T=\left\langle\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\right\rangle \cong D_{6}
\end{gathered}
$$

Rank 2 buildings
 definition

Let G be a rank 2 group of Lie type with maximal parabolic subgroups P_{1} and P_{2}.

Rank 2 buildings
 definition

Let G be a rank 2 group of Lie type with maximal parabolic subgroups P_{1} and P_{2}.

$$
\mathcal{P}=G / P_{1}=\left\{g P_{1} \mid g \in G\right\}
$$

Rank 2 buildings
 definition

Let G be a rank 2 group of Lie type with maximal parabolic subgroups P_{1} and P_{2}.

$$
\begin{aligned}
& \mathcal{P}=G / P_{1}=\left\{g P_{1} \mid g \in G\right\} \\
& \mathcal{L}=G / P_{2}=\left\{g P_{2} \mid g \in G\right\}
\end{aligned}
$$

Rank 2 buildings definition

Let G be a rank 2 group of Lie type with maximal parabolic subgroups P_{1} and P_{2}.

$$
\begin{aligned}
\mathcal{P} & =G / P_{1}=\left\{g P_{1} \mid g \in G\right\} \\
\mathcal{L} & =G / P_{2}=\left\{g P_{2} \mid g \in G\right\}
\end{aligned}
$$

Now define the incidence relation $\mathcal{I} \subset \mathcal{P} \times \mathcal{L}$

$$
\left(x P_{1}, y P_{2}\right) \in \mathcal{I} \Longleftrightarrow x P_{1} \cap y P_{2} \neq \emptyset
$$

Rank 2 buildings
 definition

Let G be a rank 2 group of Lie type with maximal parabolic subgroups P_{1} and P_{2}.

$$
\begin{aligned}
\mathcal{P} & =G / P_{1}=\left\{g P_{1} \mid g \in G\right\} \\
\mathcal{L} & =G / P_{2}=\left\{g P_{2} \mid g \in G\right\}
\end{aligned}
$$

Now define the incidence relation $\mathcal{I} \subset \mathcal{P} \times \mathcal{L}$

$$
\left(x P_{1}, y P_{2}\right) \in \mathcal{I} \Longleftrightarrow x P_{1} \cap y P_{2} \neq \emptyset
$$

We refer to $(\mathcal{P}, \mathcal{L}, \mathcal{I})$ as a (thick) rank 2 building.

Rank 2 buildings

type A_{2}
EXAMPLE. Recall the linear model for projective plane $P G(2, \mathbb{F})$:

Rank 2 buildings

EXAMPLE. Recall the linear model for projective plane $P G(2, \mathbb{F})$:
points \longleftrightarrow 1-dimensional subspaces of \mathbb{F}^{3}
lines incidence
 2-dimensional subspaces of \mathbb{F}^{3}
\longleftrightarrow containment

Rank 2 buildings

EXAMPLE. Recall the linear model for projective plane $P G(2, \mathbb{F})$:
points \longleftrightarrow 1-dimensional subspaces of \mathbb{F}^{3}
lines \longleftrightarrow 2-dimensional subspaces of \mathbb{F}^{3}
incidence \longleftrightarrow containment
$P_{1}=\left\{\left[\begin{array}{lll}* & * & * \\ 0 & * & * \\ 0 & * & *\end{array}\right]\right\}$

Rank 2 buildings

EXAMPLE. Recall the linear model for projective plane $P G(2, \mathbb{F})$:
points \longleftrightarrow 1-dimensional subspaces of \mathbb{F}^{3}
lines \longleftrightarrow 2-dimensional subspaces of \mathbb{F}^{3}
incidence \longleftrightarrow containment
$P_{1}=\left\{\left[\begin{array}{lll}* & * & * \\ 0 & * & * \\ 0 & * & *\end{array}\right]\right\}=$ stabilizer of the point $\left\langle e_{1}\right\rangle$

Rank 2 buildings

EXAMPLE. Recall the linear model for projective plane $P G(2, \mathbb{F})$:

$$
\begin{aligned}
& \text { points } \longleftrightarrow \text { 1-dimensional subspaces of } \mathbb{F}^{3} \\
& \text { lines } \\
& \text { incidence } \\
& \text { 2-dimensional subspaces of } \mathbb{F}^{3} \\
& \longleftrightarrow \text { containment } \\
& P_{1}=\left\{\left[\begin{array}{lll}
* & * & * \\
0 & * & * \\
0 & * & *
\end{array}\right]\right\}=\text { stabilizer of the point }\left\langle e_{1}\right\rangle \\
& P_{2}=\left\{\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
0 & 0 & *
\end{array}\right]\right\}
\end{aligned}
$$

Rank 2 buildings

EXAMPLE. Recall the linear model for projective plane $P G(2, \mathbb{F})$:
\(\left.$$
\begin{array}{l}\begin{array}{r}\text { points } \\
\text { lines } \\
\text { incidence }\end{array} \longleftrightarrow \begin{array}{l}\text { 1-dimensional subspaces of } \mathbb{F}^{3} \\
\text { 2-dimensional subspaces of } \mathbb{F}^{3}\end{array}
$$

P_{1}=\left\{\left[\begin{array}{lll}* \& * \& *

0 \& * \& *

0 \& * \& *\end{array}\right]\right\}=containment\end{array}\right\}\)| $P_{2}=\left\{\left[\begin{array}{lll}* & * & * \\ * & * & * \\ 0 & 0 & *\end{array}\right]\right\}=$ stabilizer of the point $\left\langle e_{1}\right\rangle$ |
| :--- |

Rank 2 buildings

EXAMPLE. Recall the linear model for projective plane $P G(2, \mathbb{F})$:
\(\left.$$
\begin{array}{l}\begin{array}{r}\text { points } \\
\text { lines } \\
\text { incidence }\end{array} \longleftrightarrow \begin{array}{l}\text { 1-dimensional subspaces of } \mathbb{F}^{3} \\
\text { 2-dimensional subspaces of } \mathbb{F}^{3}\end{array}
$$

P_{1}=\left\{\left[\begin{array}{lll}* \& * \& *

0 \& * \& *

0 \& * \& *\end{array}\right]\right\}=containment\end{array}\right\}\)| stabilizer of the point $\left\langle e_{1}\right\rangle$ |
| :--- |

Thus G / P_{1} and G / P_{2} are the point set and line set of $P G(2, \mathbb{F})$. We conclude that buildings of type A_{2} are nothing more than Desarguesian projective planes.

Embedding buildings in Lie algebras

 general procedureLet G be a group of Lie type with fixed Borel subgroup B, fixed maximal torus $T<B$, maximal parabolics P_{i}, Weyl group W, and Lie algebra \mathfrak{L}.

Embedding buildings in Lie algebras

 general procedureLet G be a group of Lie type with fixed Borel subgroup B, fixed maximal torus $T<B$, maximal parabolics P_{i}, Weyl group W, and Lie algebra \mathfrak{L}.

$$
G=B W B=\coprod_{w \in W} B w B \quad \text { (Bruhat decomposition) }
$$

Embedding buildings in Lie algebras

 general procedureLet G be a group of Lie type with fixed Borel subgroup B, fixed maximal torus $T<B$, maximal parabolics P_{i}, Weyl group W, and Lie algebra \mathfrak{L}.

$$
G=B W B=\underset{w \in W}{ } B w B \quad \text { (Bruhat decomposition) }
$$

This allows the action of G on the coset spaces G / P_{i} to be formulated in terms of a composite action of W and B on these spaces.

Embedding buildings in Lie algebras

 general procedureLet G be a group of Lie type with fixed Borel subgroup B, fixed maximal torus $T<B$, maximal parabolics P_{i}, Weyl group W, and Lie algebra \mathfrak{L}.

$$
G=B W B=\underset{w \in W}{ } B w B \quad \text { (Bruhat decomposition) }
$$

This allows the action of G on the coset spaces G / P_{i} to be formulated in terms of a composite action of W and B on these spaces.

Each Borel orbit on G / P_{i} (Schubert cell) contains a unique T-invariant coset $g P_{i}$ which may be identified with the coset $\alpha=w W_{i} \in W / W_{i}$ where $g \in B w B$ and $P_{i}=B W_{i} B$. Moreover, every $\alpha \in W / W_{i}$ is so realized. We denote this orbit by \mathcal{B}_{α}.

Embedding buildings in Lie algebras

 general procedureLet G be a group of Lie type with fixed Borel subgroup B, fixed maximal torus $T<B$, maximal parabolics P_{i}, Weyl group W, and Lie algebra \mathfrak{L}.

$$
G=B W B=\coprod_{w \in W} B w B \quad \text { (Bruhat decomposition) }
$$

This allows the action of G on the coset spaces G / P_{i} to be formulated in terms of a composite action of W and B on these spaces.

Each Borel orbit on G / P_{i} (Schubert cell) contains a unique T-invariant coset $g P_{i}$ which may be identified with the coset $\alpha=w W_{i} \in W / W_{i}$ where $g \in B w B$ and $P_{i}=B W_{i} B$. Moreover, every $\alpha \in W / W_{i}$ is so realized. We denote this orbit by \mathcal{B}_{α}.

Borel orbits \mathcal{B}_{α} of $G / P_{i} \stackrel{\text { one-to-one }}{\longleftrightarrow}$ cosets $\alpha \in W / W_{i}$

Embedding buildings in Lie algebras

 general procedureThe action of W on W / W_{i} is equivalent to the contragredient action of W on the dual root space $\Phi^{*} \subset \mathfrak{H}$ given by

$$
w\left(r^{*}\right)=\left(w^{-1}(r)\right)^{*}
$$

Embedding buildings in Lie algebras

 general procedureThe action of W on W / W_{i} is equivalent to the contragredient action of W on the dual root space $\Phi^{*} \subset \mathfrak{H}$ given by

$$
w\left(r^{*}\right)=\left(w^{-1}(r)\right)^{*}
$$

Hence we obtain embeddings $\boldsymbol{W} / \boldsymbol{W}_{\boldsymbol{i}} \hookrightarrow \mathfrak{H} \subset \mathfrak{L}^{U}$.

Embedding buildings in Lie algebras

 general procedureThe action of W on W / W_{i} is equivalent to the contragredient action of W on the dual root space $\Phi^{*} \subset \mathfrak{H}$ given by

$$
w\left(r^{*}\right)=\left(w^{-1}(r)\right)^{*}
$$

Hence we obtain embeddings $\boldsymbol{W} / \boldsymbol{W}_{\boldsymbol{i}} \hookrightarrow \mathfrak{H} \subset \mathfrak{L}^{U}$.
But this means we now have an embedded transversal for the Borel orbits \mathcal{B}_{α}.

Embedding buildings in Lie algebras

 general procedureThe action of W on W / W_{i} is equivalent to the contragredient action of W on the dual root space $\Phi^{*} \subset \mathfrak{H}$ given by

$$
w\left(r^{*}\right)=\left(w^{-1}(r)\right)^{*}
$$

Hence we obtain embeddings $\boldsymbol{W} / \boldsymbol{W}_{\boldsymbol{i}} \hookrightarrow \mathfrak{H} \subset \mathfrak{L}^{U}$.
But this means we now have an embedded transversal for the Borel orbits \mathcal{B}_{α}.

Every object in \mathcal{B}_{α} will embed in $\alpha \oplus \mathfrak{L}^{+}$, however very few of the vectors in $\alpha \oplus \mathfrak{L}^{+}$will correspond to such embedded objects.

Embedding buildings in Lie algebras

 general procedureThe action of W on W / W_{i} is equivalent to the contragredient action of W on the dual root space $\Phi^{*} \subset \mathfrak{H}$ given by

$$
w\left(r^{*}\right)=\left(w^{-1}(r)\right)^{*}
$$

Hence we obtain embeddings $\boldsymbol{W} / \boldsymbol{W}_{\boldsymbol{i}} \hookrightarrow \mathfrak{H} \subset \mathfrak{L}^{U}$.
But this means we now have an embedded transversal for the Borel orbits \mathcal{B}_{α}.

Every object in \mathcal{B}_{α} will embed in $\alpha \oplus \mathfrak{L}^{+}$, however very few of the vectors in $\alpha \oplus \mathfrak{L}^{+}$will correspond to such embedded objects.

Hence we need some way of identifying which vectors in $\alpha \oplus \mathfrak{L}^{+}$ represent embedded objects from \mathcal{B}_{α}.

Embedding buildings in Lie algebras

 general procedureFor each $\alpha \in W / W_{i}$ we define the set

$$
\alpha^{\mathrm{neg}}=\left\{r \in \Phi^{+} \mid \alpha(r)<0\right\}
$$

Embedding buildings in Lie algebras

 general procedureFor each $\alpha \in W / W_{i}$ we define the set

$$
\alpha^{\mathrm{neg}}=\left\{r \in \Phi^{+} \mid \alpha(r)<0\right\}
$$

We now define the expanse of α to be

$$
\mathfrak{L}^{+}(\alpha)=\left\{\sum \lambda_{r} e_{r} \in \mathfrak{L}^{+} \mid r \in \alpha^{\mathrm{neg}}\right\}
$$

Embedding buildings in Lie algebras

 general procedureFor each $\alpha \in W / W_{i}$ we define the set

$$
\alpha^{\mathrm{neg}}=\left\{r \in \Phi^{+} \mid \alpha(r)<0\right\}
$$

We now define the expanse of α to be

$$
\mathfrak{L}^{+}(\alpha)=\left\{\sum \lambda_{r} e_{r} \in \mathfrak{L}^{+} \mid r \in \alpha^{\text {neg }}\right\}
$$

Then

$$
\mathcal{B}_{\alpha}=\alpha \oplus \mathfrak{L}^{+}(\boldsymbol{\alpha})
$$

Embedding buildings in Lie algebras

 general procedureFor each $\alpha \in W / W_{i}$ we define the set

$$
\alpha^{\mathrm{neg}}=\left\{r \in \Phi^{+} \mid \alpha(r)<0\right\}
$$

We now define the expanse of α to be

$$
\mathfrak{L}^{+}(\alpha)=\left\{\sum \lambda_{r} e_{r} \in \mathfrak{L}^{+} \mid r \in \alpha^{\mathrm{neg}}\right\}
$$

Then

$$
\mathcal{B}_{\alpha}=\alpha \oplus \mathfrak{L}^{+}(\boldsymbol{\alpha})
$$

Note: This is a group-free description of the objects in each Borel orbit \mathcal{B}_{α}. Thus a full determination of the objects in the embedded building depends only on the action of the Weyl group.

Embedding buildings in Lie algebras

 incidenceIncidence: $\alpha+\mathfrak{a} \in \mathcal{B}_{\alpha}$ is incident to $\beta+\mathfrak{b} \in \mathcal{B}_{\beta}$ if and only if

Embedding buildings in Lie algebras

 incidenceIncidence: $\alpha+\mathfrak{a} \in \mathcal{B}_{\alpha}$ is incident to $\beta+\mathfrak{b} \in \mathcal{B}_{\beta}$ if and only if
(1) $\alpha(r) \beta(r) \geq 0$ for all $r \in \Phi^{+}$(Weyl incidence)

Embedding buildings in Lie algebras

 incidenceIncidence: $\alpha+\mathfrak{a} \in \mathcal{B}_{\alpha}$ is incident to $\beta+\mathfrak{b} \in \mathcal{B}_{\beta}$ if and only if
(1) $\alpha(r) \beta(r) \geq 0$ for all $r \in \Phi^{+}$(Weyl incidence)
(2) the projection of $[\alpha+\mathfrak{a}, \beta+\mathfrak{b}]$ onto $\mathfrak{L}^{+}(\alpha) \cap \mathfrak{L}^{+}(\beta)$ is zero

Embedding buildings in Lie algebras incidence

Incidence: $\alpha+\mathfrak{a} \in \mathcal{B}_{\alpha}$ is incident to $\beta+\mathfrak{b} \in \mathcal{B}_{\beta}$ if and only if
(1) $\alpha(r) \beta(r) \geq 0$ for all $r \in \Phi^{+}$(Weyl incidence)
(2) the projection of $[\alpha+\mathfrak{a}, \beta+\mathfrak{b}]$ onto $\mathfrak{L}^{+}(\alpha) \cap \mathfrak{L}^{+}(\beta)$ is zero

Note: This coincides with the previously defined incidence on the pre-embedded objects of the geometry (nonempty intersection of cosets).

Embedding buildings in Lie algebras

 type A_{2} (projective plane)EXAMPLE. We illustrate the embedding procedure for the classical projective plane $P G(2, q)$.

Embedding buildings in Lie algebras

 type A_{2} (projective plane)EXAMPLE. We illustrate the embedding procedure for the classical projective plane $P G(2, q)$.
α
$\mathcal{P}\left\{\begin{array}{r|c|c}r_{1}^{*} & \mathfrak{a} & \left|\mathcal{B}_{\alpha}\right| \\ \hline-r_{1}^{*}+r_{2}^{*} & \lambda_{r_{1}} e_{r_{1}} & 1 \\ -r_{2}^{*} & \lambda_{r_{2}} e_{r_{2}}+\lambda_{r_{1}+r_{2}} e_{r_{1}+r_{2}} & q \\ \hline \mathcal{L}\left\{\begin{array}{r}r_{2}^{*} \\ r_{1}^{*}-r_{2}^{*}\end{array} \quad 0\right. & 1 \\ -r_{1}^{*} & \lambda_{r_{1}} e_{r_{1}}+\lambda_{r_{1}+r_{2}} e_{r_{1}+r_{2}} & q^{2} \\ \hline\end{array}\right.$

Table: Objects of the embedded building of type A_{2} in $\mathfrak{L}^{U}=\mathfrak{H} \oplus \mathfrak{L}^{+}$ Each embedded object is of the form $\alpha+\mathfrak{a}$ for $\alpha \in \mathfrak{H}$ and $\mathfrak{a} \in \mathfrak{L}^{+}(\alpha)$

Embedding buildings in Lie algebras

 type A_{2} (projective plane)${ }^{\text {points }\{ }\left\{\right.$| | | | |
| :---: | :---: | :---: | :---: |
| r_{2}^{*} | $r_{1}^{*}-r_{2}^{*}+\gamma_{r_{2}} e_{r_{2}}$ | $-r_{1}^{*}+\gamma_{r_{1}} e_{r_{1}}+\gamma_{r_{1}+r_{2}} e_{r_{1}+r_{2}}$ | |
| r_{1}^{*} | 1 | 1 | 0 |
| $-r_{1}^{*}+r_{2}^{*}+\lambda_{r_{1}} e_{r_{1}}$ | 1 | 0 | $\delta_{a b}$ |
| $-r_{2}^{*}+\lambda_{r_{2}} e_{r_{2}}+\lambda_{r_{1}+r_{2}} e_{r_{1}+r_{2}}$ | 0 | $\delta_{c d}$ | $\delta_{e f}$ |

Table: Incidence in the embedded building of type A_{2}.

Each of $\delta_{a b}, \delta_{c d}$ and $\delta_{e f}$ is the kronecker delta function, where $a=2 \lambda_{r_{1}}, b=3 \gamma_{r_{1}} ; c=2 \lambda_{r_{2}}, d=3 \gamma_{r_{2}}$; and $e=\lambda_{r_{1}+r_{2}}$, $f=\gamma_{r_{1}+r_{2}}+\lambda_{r_{1}} \gamma_{r_{2}}$.

Embedding buildings in Lie algebras

 type A_{2} (projective plane)We perform the computation for incidence between points and lines in the largest Borel orbits. These orbits are $\mathcal{B}_{-r_{2}^{*}}$ and $\mathcal{B}_{-r_{1}^{*}}$ respectively.

Embedding buildings in Lie algebras

 type A_{2} (projective plane)We perform the computation for incidence between points and lines in the largest Borel orbits. These orbits are $\mathcal{B}_{-r_{2}^{*}}$ and $\mathcal{B}_{-r_{1}^{*}}$ respectively.

Both orbits have size q^{2} and generate the classical biaffine plane, i.e., the classical affine plane with one parallel class removed.

Embedding buildings in Lie algebras type A_{2} (projective plane)

We perform the computation for incidence between points and lines in the largest Borel orbits. These orbits are $\mathcal{B}_{-r_{2}^{*}}$ and $\mathcal{B}_{-r_{1}^{*}}$ respectively.

Both orbits have size q^{2} and generate the classical biaffine plane, i.e., the classical affine plane with one parallel class removed.

Convention: We denote the scalar multiple of the root vector $e_{i r_{1}+j r_{2}}$ by $p_{i j}$ for each point (p) and by $\ell_{i j}$ for each line $[\ell]$.

Embedding buildings in Lie algebras type A_{2} (projective plane)

We perform the computation for incidence between points and lines in the largest Borel orbits. These orbits are $\mathcal{B}_{-r_{2}^{*}}$ and $\mathcal{B}_{-r_{1}^{*}}$ respectively.

Both orbits have size q^{2} and generate the classical biaffine plane, i.e., the classical affine plane with one parallel class removed.

Convention: We denote the scalar multiple of the root vector $e_{i r_{1}+j r_{2}}$ by $p_{i j}$ for each point (p) and by $\ell_{i j}$ for each line $[\ell]$.

$$
(p)=-r_{2}^{*}+p_{01} e_{r_{2}}+p_{11} e_{r_{1}+r_{2}} \in \mathcal{B}_{-r_{2}^{*}}
$$

Embedding buildings in Lie algebras type A_{2} (projective plane)

We perform the computation for incidence between points and lines in the largest Borel orbits. These orbits are $\mathcal{B}_{-r_{2}^{*}}$ and $\mathcal{B}_{-r_{1}^{*}}$ respectively.

Both orbits have size q^{2} and generate the classical biaffine plane, i.e., the classical affine plane with one parallel class removed.

Convention: We denote the scalar multiple of the root vector $e_{i r_{1}+j r_{2}}$ by $p_{i j}$ for each point (p) and by $\ell_{i j}$ for each line $[\ell]$.

$$
\begin{aligned}
(p) & =-r_{2}^{*}+p_{01} e_{r_{2}}+p_{11} e_{r_{1}+r_{2}} \in \mathcal{B}_{-r_{2}^{*}} \\
{[\ell] } & =-r_{1}^{*}+\ell_{10} e_{r_{1}}+\ell_{11} e_{r_{1}+r_{2}} \in \mathcal{B}_{-r_{1}^{*}}
\end{aligned}
$$

Embedding buildings in Lie algebras

As $\left(-r_{2}^{*}\right)(r)\left(-r_{1}^{*}\right)(r) \geq 0$ for all $r \in \Phi^{+}$we have Weyl incidence.

Embedding buildings in Lie algebras

As $\left(-r_{2}^{*}\right)(r)\left(-r_{1}^{*}\right)(r) \geq 0$ for all $r \in \Phi^{+}$we have Weyl incidence.
Thus point (p) is incident to line [ℓ] precisely when the projection of $[(p),[\ell]]$ onto $\mathfrak{L}^{+}\left(-r_{2}^{*}\right) \cap \mathfrak{L}^{+}\left(-r_{1}^{*}\right)$ is zero.

Embedding buildings in Lie algebras

 type A_{2} (projective plane)As $\left(-r_{2}^{*}\right)(r)\left(-r_{1}^{*}\right)(r) \geq 0$ for all $r \in \Phi^{+}$we have Weyl incidence.
Thus point (p) is incident to line [ℓ] precisely when the projection of $[(p),[\ell]]$ onto $\mathfrak{L}^{+}\left(-r_{2}^{*}\right) \cap \mathfrak{L}^{+}\left(-r_{1}^{*}\right)$ is zero.

$$
\begin{aligned}
{[(p),[\ell]]=} & {\left[-r_{2}^{*},-r_{1}^{*}\right]+\left[p_{01} e_{r_{2}},-r_{1}^{*}\right]+\left[p_{11} e_{r_{1}+r_{2}},-r_{1}^{*}\right]+\left[-r_{2}^{*}, \ell_{10} e_{r_{1}}\right]+} \\
& {\left[p_{01} e_{r_{2}}, \ell_{10} e_{r_{1}}\right]+\left[p_{11} e_{r_{1}+r_{2}}, \ell_{10} e_{r_{1}}\right]+\left[-r_{2}^{*}, \ell_{11} e_{r_{1}+r_{2}}\right]+} \\
& {\left[p_{01} e_{r_{2}}, \ell_{11} e_{r_{1}+r_{2}}\right]+\left[p_{11} e_{r_{1}+r_{2}}, \ell_{11} e_{r_{1}+r_{2}}\right] } \\
= & \left(p_{11}-p_{01} \ell_{10}-\ell_{11}\right) e_{r_{1}+r_{2}}
\end{aligned}
$$

Embedding buildings in Lie algebras

 type A_{2} (projective plane)As $\left(-r_{2}^{*}\right)(r)\left(-r_{1}^{*}\right)(r) \geq 0$ for all $r \in \Phi^{+}$we have Weyl incidence.
Thus point (p) is incident to line [ℓ] precisely when the projection of $[(p),[\ell]]$ onto $\mathfrak{L}^{+}\left(-r_{2}^{*}\right) \cap \mathfrak{L}^{+}\left(-r_{1}^{*}\right)$ is zero.

$$
\begin{aligned}
{[(p),[\ell]]=} & {\left[-r_{2}^{*},-r_{1}^{*}\right]+\left[p_{01} e_{r_{2}},-r_{1}^{*}\right]+\left[p_{11} e_{r_{1}+r_{2}},-r_{1}^{*}\right]+\left[-r_{2}^{*}, \ell_{10} e_{r_{1}}\right]+} \\
& {\left[p_{01} e_{r_{2}}, \ell_{10} e_{r_{1}}\right]+\left[p_{11} e_{r_{1}+r_{2}}, \ell_{10} e_{r_{1}}\right]+\left[-r_{2}^{*}, \ell_{11} e_{r_{1}+r_{2}}\right]+} \\
& {\left[p_{01} e_{r_{2}}, \ell_{11} e_{r_{1}+r_{2}}\right]+\left[p_{11} e_{r_{1}+r_{2}}, \ell_{11} e_{r_{1}+r_{2}}\right] } \\
= & \left(p_{11}-p_{01} \ell_{10}-\ell_{11}\right) e_{r_{1}+r_{2}}
\end{aligned}
$$

As $\mathfrak{L}^{+}\left(-r_{2}^{*}\right) \cap \mathfrak{L}^{+}\left(-r_{1}^{*}\right)=\left\langle e_{r_{1}+r_{2}}\right\rangle$ we conclude that (p) and $[\ell]$ are incident if and only if $p_{11}-p_{01} \ell_{10}-\ell_{11}=0$,

Embedding buildings in Lie algebras

 type A_{2} (projective plane)As $\left(-r_{2}^{*}\right)(r)\left(-r_{1}^{*}\right)(r) \geq 0$ for all $r \in \Phi^{+}$we have Weyl incidence.
Thus point (p) is incident to line [ℓ] precisely when the projection of $[(p),[\ell]]$ onto $\mathfrak{L}^{+}\left(-r_{2}^{*}\right) \cap \mathfrak{L}^{+}\left(-r_{1}^{*}\right)$ is zero.

$$
\begin{aligned}
{[(p),[\ell]]=} & {\left[-r_{2}^{*},-r_{1}^{*}\right]+\left[p_{01} e_{r_{2}},-r_{1}^{*}\right]+\left[p_{11} e_{r_{1}+r_{2}},-r_{1}^{*}\right]+\left[-r_{2}^{*}, \ell_{10} e_{r_{1}}\right]+} \\
& {\left[p_{01} e_{r_{2}}, \ell_{10} e_{r_{1}}\right]+\left[p_{11} e_{r_{1}+r_{2}}, \ell_{10} e_{r_{1}}\right]+\left[-r_{2}^{*}, \ell_{11} e_{r_{1}+r_{2}}\right]+} \\
& {\left[p_{01} e_{r_{2}}, \ell_{11} e_{r_{1}+r_{2}}\right]+\left[p_{11} e_{r_{1}+r_{2}}, \ell_{11} e_{r_{1}+r_{2}}\right] } \\
= & \left(p_{11}-p_{01} \ell_{10}-\ell_{11}\right) e_{r_{1}+r_{2}}
\end{aligned}
$$

As $\mathfrak{L}^{+}\left(-r_{2}^{*}\right) \cap \mathfrak{L}^{+}\left(-r_{1}^{*}\right)=\left\langle e_{r_{1}+r_{2}}\right\rangle$ we conclude that (p) and $[\ell]$ are incident if and only if $p_{11}-p_{01} \ell_{10}-\ell_{11}=0$,

$$
\text { i.e., } p_{11}-\ell_{11}=p_{01} \ell_{10}
$$

Embedding buildings in Lie algebras

 type B_{2} (generalized quadrangle)EXAMPLE. We provide objects of the embedded generalized quadrangle of type B_{2}.

Embedding buildings in Lie algebras

 type B_{2} (generalized quadrangle)EXAMPLE. We provide objects of the embedded generalized quadrangle of type B_{2}.
$\alpha \mid$
$\mathcal{P}\left\{\begin{array}{r|c|c}\alpha & \mathfrak{a} & \left|\mathcal{B}_{\alpha}\right| \\ -r_{1}^{*}+2 r_{2}^{*} & 0 & 1 \\ r_{1}^{*}-2 r_{2}^{*} & \lambda_{r_{1}} e_{r_{1}} & q \\ -r_{1}^{*} & \lambda_{r_{1}} e_{r_{1}}+\lambda_{r_{1}+r_{2}} e_{r_{1}+r_{2}}+\lambda_{2 r_{1}+r_{2}} e_{2 r_{1}+r_{2}} & q^{3} \\ \hline r_{2}^{*} & 0 & 1 \\ \mathcal{L}\left\{\begin{aligned} r_{1}^{*}-r_{2}^{*} & \lambda_{r_{2}} e_{r_{2}} \\ -r_{1}^{*}+r_{2}^{*} & \lambda_{r_{1}} e_{r_{1}}+\lambda_{2 r_{1}+r_{2}} e_{2 r_{1}+r_{2}} \\ -r_{2}^{*} & \lambda_{r_{2}} e_{r_{2}}+\lambda_{r_{1}+r_{2}} e_{r_{1}+r_{2}}+\lambda_{2 r_{1}+r_{2}} e_{2 r_{1}+r_{2}}\end{aligned}\right. & q \\ \hline\end{array}\right.$

Table: Objects in the embedded building of type B_{2}

Our interest in the rank 2 case stems from the fact that rank 2 buildings are examples of generalized polygons.

Objects of type \bar{A}_{1}
 the key to everything

Our interest in the rank 2 case stems from the fact that rank 2 buildings are examples of generalized polygons.

group	polygon

Objects of type \bar{A}_{1}
 the key to everything

Our interest in the rank 2 case stems from the fact that rank 2 buildings are examples of generalized polygons.

group	polygon
$A_{2}(q)$	triangle

Objects of type \bar{A}_{1}
 the key to everything

Our interest in the rank 2 case stems from the fact that rank 2 buildings are examples of generalized polygons.

group	polygon
$A_{2}(q)$	triangle
$B_{2}(q), C_{2}(q)$	quadrangle
${ }^{2} A_{3}(q)$	quadrangle
${ }^{2} A_{4}(q)$	quadrangle

Objects of type \bar{A}_{1}
 the key to everything

Our interest in the rank 2 case stems from the fact that rank 2 buildings are examples of generalized polygons.

group	polygon
$A_{2}(q)$	triangle
$B_{2}(q), C_{2}(q)$	quadrangle
${ }^{2} A_{3}(q)$	quadrangle
${ }^{2} A_{4}(q)$	quadrangle
$G_{2}(q)$	hexagon
${ }^{3} D_{4}(q)$	hexagon

Objects of type \bar{A}_{1}

the key to everything

Our interest in the rank 2 case stems from the fact that rank 2 buildings are examples of generalized polygons.

group	polygon
$A_{2}(q)$	triangle
$B_{2}(q), C_{2}(q)$	quadrangle
${ }^{2} A_{3}(q)$	quadrangle
${ }^{2} A_{4}(q)$	quadrangle
$G_{2}(q)$	hexagon
${ }^{3} D_{4}(q)$	hexagon
${ }^{2} F_{4}\left(2^{2 m+1}\right)$	octagon

In our attempt to construct families whose behavior would resemble that of the balanced generalized polygons, we felt that Dynkin diagrams would provide the most promising pathway.

Objects of type \bar{A}_{1} the key to everything

In our attempt to construct families whose behavior would resemble that of the balanced generalized polygons, we felt that Dynkin diagrams would provide the most promising pathway.

However, the supply is already exhausted:

Objects of type \bar{A}_{1}
 the key to everything

Or is it?

Objects of type \bar{A}_{1}
 the key to everything

Or is it?

\widetilde{A}_{1} is an extended Dynkin diagram obtained by adjoining an imaginary root to the Dynkin diagram of type A_{1}.

Objects of type \bar{A}_{1}
 the key to everything

Or is it?

\widetilde{A}_{1} is an extended Dynkin diagram obtained by adjoining an imaginary root to the Dynkin diagram of type A_{1}.

The Weyl group $W\left(\widetilde{A}_{1}\right)$ is the infinite dihedral group D_{∞}.

Objects of type \bar{A}_{1} the key to everything

Or is it?

\widetilde{A}_{1} is an extended Dynkin diagram obtained by adjoining an imaginary root to the Dynkin diagram of type A_{1}.

The Weyl group $W\left(\widetilde{A}_{1}\right)$ is the infinite dihedral group D_{∞}.
The affine root system $\Phi\left(\widetilde{A}_{1}\right)$ is infinite.

Objects of type \bar{A}_{1} the key to everything

Or is it?

\widetilde{A}_{1} is an extended Dynkin diagram obtained by adjoining an imaginary root to the Dynkin diagram of type A_{1}.

The Weyl group $W\left(\widetilde{A}_{1}\right)$ is the infinite dihedral group D_{∞}.
The affine root system $\Phi\left(\widetilde{A}_{1}\right)$ is infinite.
Hence, the affine Lie algebra $\mathfrak{L}\left(\widetilde{A}_{1}\right)$ is infinite-dimensional (although its Cartan subalgebra is 2-dimensional).

Objects of type \bar{A}_{1}
 the key to everything

In fact, there are two nonisomorphic affine Lie algebras of type \widetilde{A}_{1}, with respective Cartan matrices:

Objects of type \bar{A}_{1}
 the key to everything

In fact, there are two nonisomorphic affine Lie algebras of type \widetilde{A}_{1}, with respective Cartan matrices:

$$
M_{1}=\left(\begin{array}{rr}
2 & -2 \\
-2 & 2
\end{array}\right) \quad M_{2}=\left(\begin{array}{rr}
2 & -1 \\
-4 & 2
\end{array}\right)
$$

Objects of type \bar{A}_{1}
 the key to everything

In fact, there are two nonisomorphic affine Lie algebras of type \widetilde{A}_{1}, with respective Cartan matrices:

$$
M_{1}=\left(\begin{array}{rr}
2 & -2 \\
-2 & 2
\end{array}\right) \quad M_{2}=\left(\begin{array}{rr}
2 & -1 \\
-4 & 2
\end{array}\right)
$$

We decided to work with M_{1}.

Objects of type \bar{A}_{1}

In fact, there are two nonisomorphic affine Lie algebras of type \widetilde{A}_{1}, with respective Cartan matrices:

$$
M_{1}=\left(\begin{array}{rr}
2 & -2 \\
-2 & 2
\end{array}\right) \quad M_{2}=\left(\begin{array}{rr}
2 & -1 \\
-4 & 2
\end{array}\right)
$$

We decided to work with M_{1}.

From here, we generate the set Φ^{+}of positive roots:

$$
\begin{aligned}
& r_{1}, r_{2}, r_{1}+r_{2}, 2 r_{1}+r_{2}, r_{1}+2 r_{2}, 2 r_{1}+2 r_{2}, \ldots \ldots \\
& \quad i r_{1}+(i-1) r_{2},(i-1) r_{1}+i r_{2}, i r_{1}+i r_{2}, \ldots \ldots
\end{aligned}
$$

Note: For each $|i| \geq 2$, the root space \mathfrak{L}_{r} where $r=i r_{1}+i r_{2}$ is isotropic with respect to the Killing form, so is 2-dimensional.

Objects of type \bar{A}_{1}
 the key to everything

Note: For each $|i| \geq 2$, the root space \mathfrak{L}_{r} where $r=i r_{1}+i r_{2}$ is isotropic with respect to the Killing form, so is 2-dimensional.

In this case, we write $\mathfrak{L}_{r}=\left\langle e_{i r_{1}+i r_{2}}, e_{i r_{1}+i r_{2}}^{\prime}\right\rangle$.

Objects of type \widetilde{A}_{1} the key to everything

Note: For each $|i| \geq 2$, the root space \mathfrak{L}_{r} where $r=i r_{1}+i r_{2}$ is isotropic with respect to the Killing form, so is 2-dimensional.

In this case, we write $\mathfrak{L}_{r}=\left\langle e_{i r_{1}+i r_{2}}, e_{i r_{1}+i r_{2}}^{\prime}\right\rangle$.
This cannot occur in the (finite-dimensional) Lie algebras of groups of Lie type, where all root spaces \mathfrak{L}_{r} are 1-dimensional.

Objects of type \bar{A}_{1} the key to everything

Note: For each $|i| \geq 2$, the root space \mathfrak{L}_{r} where $r=i r_{1}+i r_{2}$ is isotropic with respect to the Killing form, so is 2-dimensional.

In this case, we write $\mathfrak{L}_{r}=\left\langle e_{i r_{1}+i r_{2}}, e_{i r_{1}+i r_{2}}^{\prime}\right\rangle$.
This cannot occur in the (finite-dimensional) Lie algebras of groups of Lie type, where all root spaces \mathfrak{L}_{r} are 1-dimensional.

Personally, I believe this to be a plausible explanation as to why there do not exist generalized polygons of arbitrary even girth.

Objects of type \widetilde{A}_{1}

truncating the affine root system

Observe that $\Phi^{+}\left(\widetilde{A}_{1}\right)$ contains $\Phi^{+}\left(A_{2}\right)$ and $\Phi^{+}\left(B_{2}\right)$ as initial segments:

Objects of type \widetilde{A}_{1}

truncating the affine root system
Observe that $\Phi^{+}\left(\widetilde{A}_{1}\right)$ contains $\Phi^{+}\left(A_{2}\right)$ and $\Phi^{+}\left(B_{2}\right)$ as initial segments:

$$
\begin{aligned}
& \boldsymbol{\Phi}^{+}\left(\widetilde{\boldsymbol{A}}_{\mathbf{1}}\right)= \\
& \quad\left\{r_{1}, r_{2}, r_{1}+r_{2}, 2 r_{1}+r_{2}, r_{1}+2 r_{2}, 2 r_{1}+2 r_{2}, \ldots \ldots\right\}
\end{aligned}
$$

Objects of type \widetilde{A}_{1}

truncating the affine root system

Observe that $\Phi^{+}\left(\widetilde{A}_{1}\right)$ contains $\Phi^{+}\left(A_{2}\right)$ and $\Phi^{+}\left(B_{2}\right)$ as initial segments:

$$
\begin{aligned}
& \Phi^{+}\left(\widetilde{\boldsymbol{A}}_{\mathbf{1}}\right)= \\
& \quad\left\{r_{1}, r_{2}, r_{1}+r_{2}, 2 r_{1}+r_{2}, r_{1}+2 r_{2}, 2 r_{1}+2 r_{2}, \ldots \ldots\right\} \\
& \Phi^{+}\left(A_{2}\right)= \\
& \quad\left\{r_{1}, r_{2}, r_{1}+r_{2}\right\}, 2 r_{1}+r_{2}, r_{1}+2 r_{2}, 2 r_{1}+2 r_{2}, \ldots \ldots
\end{aligned}
$$

Objects of type \widetilde{A}_{1}

truncating the affine root system

Observe that $\Phi^{+}\left(\widetilde{A}_{1}\right)$ contains $\Phi^{+}\left(A_{2}\right)$ and $\Phi^{+}\left(B_{2}\right)$ as initial segments:

$$
\begin{aligned}
& \Phi^{+}\left(\widetilde{A}_{1}\right)= \\
& \quad\left\{r_{1}, r_{2}, r_{1}+r_{2}, 2 r_{1}+r_{2}, r_{1}+2 r_{2}, 2 r_{1}+2 r_{2}, \ldots \ldots\right\} \\
& \Phi^{+}\left(A_{2}\right)= \\
& \quad\left\{r_{1}, r_{2}, r_{1}+r_{2}\right\}, 2 r_{1}+r_{2}, r_{1}+2 r_{2}, 2 r_{1}+2 r_{2}, \ldots \ldots \\
& \Phi^{+}\left(B_{2}\right)= \\
& \quad\left\{r_{1}, r_{2}, r_{1}+r_{2}, 2 r_{1}+r_{2}\right\}, r_{1}+2 r_{2}, 2 r_{1}+2 r_{2}, \ldots \ldots
\end{aligned}
$$

Objects of type \widetilde{A}_{1}

truncating the affine root system

Observe that $\Phi^{+}\left(\widetilde{A}_{1}\right)$ contains $\Phi^{+}\left(A_{2}\right)$ and $\Phi^{+}\left(B_{2}\right)$ as initial segments:

$$
\begin{aligned}
& \Phi^{+}\left(\widetilde{A}_{1}\right)= \\
& \quad\left\{r_{1}, r_{2}, r_{1}+r_{2}, 2 r_{1}+r_{2}, r_{1}+2 r_{2}, 2 r_{1}+2 r_{2}, \ldots \ldots\right\} \\
& \Phi^{+}\left(A_{2}\right)= \\
& \quad\left\{r_{1}, r_{2}, r_{1}+r_{2}\right\}, 2 r_{1}+r_{2}, r_{1}+2 r_{2}, 2 r_{1}+2 r_{2}, \ldots \ldots \\
& \Phi^{+}\left(B_{2}\right)= \\
& \quad\left\{r_{1}, r_{2}, r_{1}+r_{2}, 2 r_{1}+r_{2}\right\}, r_{1}+2 r_{2}, 2 r_{1}+2 r_{2}, \ldots \ldots
\end{aligned}
$$

So, what happens if we truncate $\Phi^{+}\left(\widetilde{A}_{1}\right)$ at increasingly larger initial segments?

Objects of type \bar{A}_{1}

group-free formulation

Since we obtain the same asymptotics working with the largest Borel orbits of points and lines, we may restrict our truncated geometries to their affine parts:

Objects of type \tilde{A}_{1}

group-free formulation

Since we obtain the same asymptotics working with the largest Borel orbits of points and lines, we may restrict our truncated geometries to their affine parts:

$$
\text { points : } \mathcal{B}_{-r_{2}^{*}}=-r_{2}^{*} \oplus \mathfrak{L}^{+}\left(-r_{2}^{*}\right)
$$

Objects of type \bar{A}_{1}

group-free formulation

Since we obtain the same asymptotics working with the largest Borel orbits of points and lines, we may restrict our truncated geometries to their affine parts:

$$
\begin{array}{r}
\text { points }: \\
\text { lines }: \mathcal{B}_{-r_{2}^{*}}=-\mathcal{B}_{-r_{1}^{*}}=-r_{1}^{*} \oplus \mathfrak{L}^{+}\left(-r_{2}^{*}\right) \\
\left(-r_{1}^{*}\right)
\end{array}
$$

Objects of type \bar{A}_{1}

 group-free formulationSince we obtain the same asymptotics working with the largest Borel orbits of points and lines, we may restrict our truncated geometries to their affine parts:

$$
\begin{array}{r}
\text { points }: \\
\text { lines }: \mathcal{B}_{-r_{2}^{*}}=-r_{2}^{*} \oplus \mathfrak{L}_{1}^{+}=-r_{1}^{*} \oplus \mathfrak{L}^{+}\left(-r_{1}^{*}\right)
\end{array}
$$

This eliminates dependence on the Weyl group.

Objects of type \bar{A}_{1}

 group-free formulationSince we obtain the same asymptotics working with the largest Borel orbits of points and lines, we may restrict our truncated geometries to their affine parts:

$$
\begin{array}{r}
\text { points }: \mathcal{B}_{-r_{2}^{*}}=-r_{2}^{*} \oplus \mathfrak{L}^{+}\left(-r_{2}^{*}\right) \\
\text { lines }: \mathcal{B}_{-r_{1}^{*}}=-r_{1}^{*} \oplus \mathfrak{L}^{+}\left(-r_{1}^{*}\right)
\end{array}
$$

This eliminates dependence on the Weyl group.
Since the notion of expanse has already eliminated dependence on the Borel subgroup, our affine truncated geometries now have a completely group-free formulation.

$C D(k, q)$

Graphs $C D(k, q)$ arise as connected components of incidence graphs of affine parts of truncated buildings of type \widetilde{A}_{1}.

Graphs $C D(k, q)$ arise as connected components of incidence graphs of affine parts of truncated buildings of type \widetilde{A}_{1}.

Truncating after the initial three positive root vectors gives the classical biaffine plane. After the initial four positive root vectors it gives the affine part of the generalized quadrangle of type B_{2}.

Graphs $C D(k, q)$ arise as connected components of incidence graphs of affine parts of truncated buildings of type \widetilde{A}_{1}.

Truncating after the initial three positive root vectors gives the classical biaffine plane. After the initial four positive root vectors it gives the affine part of the generalized quadrangle of type B_{2}.

The affine part of the generalized hexagon does not appear in our series (perhaps due to the root space $\mathfrak{L}_{2 r_{1}+2 r_{2}}$ being isotropic ??).

The End

Thank you!
Vasya Ustimenko, Ivar Stakgold, Me, Felix, Joe Hemmeter (seated)

