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Turán Type Problems

Definition

Let v be a positive integer and H a graph. We define ex(v ,H) to
be the largest number of edges in a graph with v vertices which
contains no copy of H as a subgraph.

For H of chromatic number 3 or greater, the asymptotic value is
known.

Theorem

(Erdős, Stone, Simonovits)

ex(v ,H) ∼
(

1− 1
χ−1

)
v2

2 , where χ > 2 is the chromatic number

of H.

Much less is known in the case where H is bipartite.
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Even Cycles

Theorem (Bondy, Simonovits ’74)

ex(v ,C2h) ≤ 90hv1+ 1
h

Theorem (Verstraëte 2000)

ex(v ,C2h) ≤ 8(h − 1)v1+ 1
h

Theorem (Pikhurko 2012)

ex(v ,C2h) ≤ (h − 1)v1+ 1
h + O(v).

Theorem (Bukh, Jiang 2017)

ex(v ,C2h) ≤ 80
√

hlog(h)v1+ 1
h + O(v)
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Lower bounds and Generalized Polygons

Definition

A generalized n-gon is a biregular bipartite graph of girth 2n and
diameter n.

The only n for which a generalized n-gon that is also a regular
graph exists is n = 2, 3, 4, 6, due to a theorem of Feit and Higman.

A generalized 3-gon is the incidence graph of a projective plane,
generalized 4-gon the incidence graph of a generalized quadrangle,
and a generalized 6-gon is the incidence graph of a generalized
hexagon.
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Constructive Lower Bounds

The best lower bounds (up to a constant) come from graphs
known as generalized polygons:

Theorem

ex(v ,C2h) ≥ 1
21+1/h v1+1/h for l = 2, 3, 5.

Note that the exponent is optimal.

Theorem

(Lubotzky, Phillips, Sarnak 1988)

ex(v ,C2h) ≥ chv1+ 2
3h+3

Theorem

(Lazebnik, Ustimenko, Woldar 1995)

ex(v ,C2h) ≥ chv1+ 2
3h−3+ε , where ε = 0, 1 depending on whether h

is odd or even.

Jason Williford University of Wyoming The Graphs CD(k, q) and Their Relatives



The series of graphs D(k , q)

Vertices: Two copies of F k
q , one called “Points”, the other “Lines”.

We have p ∼ l if and only if the following hold:

p2 + l2 = p1l1
p3 + l3 = p1l2
p4 + l4 = −p2l1
. . .
pi + li = −pi−1l1 if i ≡ 0, 1 mod 4
pi + li = p1li−1 if i ≡ 2, 3 mod 4

The components of these graphs give the graphs CD(k , q), which

in turn yield ex(n,C2h) ≥ chv1+ 2
3h−3+ε , where ε = 0, 1 depending

on whether h is odd or even.
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The Architects of CD(k , q)

From left to right: Felix Lazebnik, Vasyl Ustimenko, Andrew
Woldar.
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The series of graphs CD(k , q)

Best known lower bounds on extremal problems for even cycles
6= 10, 14.

Best known lower bounds on extremal problems for fixed girth
6= 12.

Valid for all characteristics.

Motivated by Ustimenko’s embeddings of generalized polygons into
respective Lie algebras.

Automorphism group is transitive on unordered 3-paths.

The end of the road?
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Algebraically Defined Graphs of Lazebnik, Woldar

Let R be a ring and k a positive integer. Let fi : Rk ×Rk → Rk be
a sequence of functions, i = 2, 3, . . . , k − 1, such that fi (p, l)
depends only on the first i − 1 coordinates of p and l .

We define a bipartite graph Γ(R, k , {f2, . . . , fk}) to have vertex set
equal to the union of two copies P and L of Rk . We refer to
elements of P as points, and elements of L as lines.
For p ∈ P and l ∈ L we have p ∼ l if and only if

pi + li = fi (p, l) for all i ∈ {2, 3, . . . , k}
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Affine Parts of Generalized n-gons

Let Fq be a finite field. The affine part of a classical projective
plane is given as an ADG by:

p2 + l2 = p1l1

The affine part of a classical generalized quadrangle is given as an
ADG by:

p2 + l2 = p1l1
p3 + l3 = p1l2
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Affine Parts of Generalized n-gons

The affine part of a classical generalized hexagon is given as an
ADG by:

p2 + l2 = p1l1
p3 + l3 = p1l2
p4 + l4 = p1l3
p5 + l5 = p3l2 − p2l3

The automorphism group of each corresponding graph is transitive
on unordered 3-paths.
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Wenger Graphs

A series of graphs based on a graph of Wenger:

p2 + l2 = p1l1
p3 + l3 = p1l2
p4 + l4 = p1l3
. . .
pk + lk = p1lk−1

Similarly the automorphism group of each corresponding graph is
transitive on 3-paths. For k = 2, 3 these graphs have girth 6, 8,
and are isomorphic to affine parts of projective planes and
generalized quadrangles. For k = 5, this graph has no 10 cycles,
but has 8 cycles.
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Algebraically Defined Graphs

The graph Γ(R, k , {f2, . . . , fk}) is |R|-regular and has 2|Rk |
vertices.

In particular, given a vertex p and an x ∈ F , there is a unique
neighbor of p with first coordinate x . This can be found by
recursively computing the coordinates of the neighbor from the
equations pi + li = fi (p, l).
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Algebraically Defined Graphs

Theorem

(Lazebnik, Woldar ’01) Let Γ1 = Γ(R, k, {f2, . . . , fk}) and
Γ2 = Γ(R, k − 1, {f2, . . . , fk−1}). There is a surjective, locally
injective homomorphism from Γ1 to Γ2 given by puncturing the last
coordinate of every vertex of Γ1. In particular, the girth of Γ1 is
greater than or equal to the girth of Γ2.

The following ADG has 2q2 vertices, q3 edges and girth 6:
p2 + l2 = p1l1
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Algebraically Defined Graphs

Theorem

(Lazebnik, Woldar ’01) Let Γ1 = Γ(R, k, {f2, . . . , fk}) and
Γ2 = Γ(R, k − 1, {f2, . . . , fk−1}). There is a surjective, locally
injective homomorphism from Γ1 to Γ2 given by puncturing the last
coordinate of every vertex of Γ1. In particular, the girth of Γ1 is
greater than or equal to the girth of Γ2.

The following ADG has 2q3 vertices, q4 edges and girth 8:
p2 + l2 = p1l1
p3 + l3 = p1l2
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Algebraically Defined Graphs

Theorem

(Lazebnik, Woldar ’01) Let Γ1 = Γ(R, k, {f2, . . . , fk}) and
Γ2 = Γ(R, k , {f2, . . . , fk−1}). There is a surjective, locally injective
homomorphism from Γ1 to Γ2 given by puncturing the last
coordinate of every vertex of Γ1. In particular, the girth of Γ1 is
greater than or equal to the girth of Γ2.

The following ADG has 2q4 vertices, q5 edges and girth 8:
p2 + l2 = p1l1
p3 + l3 = p1l2
p4 + l4 = p1l3
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Algebraically Defined Graphs

Theorem

(Lazebnik, Woldar ’01) Let Γ1 = Γ(R, k, {f2, . . . , fk}) and
Γ2 = Γ(R, k , {f2, . . . , fk−1}). There is a surjective, locally injective
homomorphism from Γ1 to Γ2 given by puncturing the last
coordinate of every vertex of Γ1. In particular, the girth of Γ1 is
greater than or equal to the girth of Γ2.

The following ADG has 2q5 vertices, q6 edges and girth 12:
p2 + l2 = p1l1
p3 + l3 = p1l2
p4 + l4 = p1l3
p5 + l5 = p3l2 − p2l3
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Cycles and Gröbner Bases

Suppose there is a cycle of length 2k is in some ADG Γ. We can
describe this cycle as a system of polynomial equations. If we show
the associated variety is empty, then there is no such cycle.

For example, to show p2 + l2 = p1l1 has no 4-cycles, we can solve:

p2 + l2 − p1l1 = 0
p2 + m2 − p1m1 = 0
q2 + l2 − q1l1 = 0
q2 + m2 − q1m1 = 0
1− k(p1 − q1)(l1 −m1) = 0
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ADG’s

Pros: Contains all known examples, big family, lots of room for
things to exist.

Con: Big family, unclear how we find the “good graphs”?

Woldar: Go back to the Lie algebraic connections.
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Background on Lie Algebras

A Lie algebra L is a vector space V together with a product
[, ] : V × V → V that satisfies:

1 [, ] is bilinear

2 [x , x ] = 0 for all vectors x

3 (Jacobi identity) [x , [y , z ]] + [y , [z , x ]] + [z , [x , y ]] = 0

Note that the first two axioms imply that [x , y ] = −[y , x ].

If [x , y ] = 0, we say x and y “commute”.
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Examples of Lie Algebras

Example 1: The cross product in R3.

Example 2: Mn(F) with [A,B] = AB − BA.

Example 3: Given a vector space V , gl(V ) consists of all linear
operators on V with Lie bracket [S ,T ] = ST − TS

Example 4: sl(V ) is the subalgebra of gl(V ) consisting of all
elements with trace zero.

Example 5: An associative algebra with [x , y ] = xy − yx .
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Adjoint Representations

Given an element x of a Lie algebra L, we can define the adjoint
map ad(x) : L → L via ad(x)(y) = [x , y ].

Adjoints give a convenient way to represent repeated Lie products:
[x , [x , [x , y ]]] = ad(x)3(y)

The map ad(x) is a linear operator on V .

The adjoint map has the property:
[ad(x), ad(y)](z) = ad([x , y ])(z), where
[ad(x), ad(y)] = ad(x) ◦ ad(y)− ad(y) ◦ ad(x).

The implies that the map ad : L → gl(L) is a Lie algebra
homomorphism. The kernel of this homomorphism is the center of
L.
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Nilpotent elements

An element x of a Lie algebra is called nilpotent provided that
there is an integer n such that ad(x)n = 0.

If x is nilpotent and δ = ad(x), and the characteristic of the field is

zero or sufficiently large, then the exponential map exp(x) =
∞∑

k=0

δk

k!

is well-defined, invertible, and is an automorphism of L.

We have exp(x)([y , z ]) = [exp(x)(y), exp(x)(z)].
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Example

The Lie algebra sl(F3) is spanned by:

h1 =

0@1 0 0
0 −1 0
0 0 0

1A h2 =

0@0 0 0
0 −1 0
0 0 1

1A

e1 =

0@0 1 0
0 0 0
0 0 0

1A e2 =

0@0 0 0
0 0 1
0 0 0

1A e3 =

0@0 0 1
0 0 0
0 0 0

1A

f1 =

0@0 0 0
1 0 0
0 0 0

1A f2 =

0@0 0 0
0 0 0
0 1 0

1A f3 =

0@0 0 0
0 0 0
1 0 0

1A

We have [e1, e2] = e3, [f1, f2] = −f3,
[h1, h2] = [e1, f2] = [e2, f1] = 0, [e1, f1] = h1, [e2, f2] = h2,
[h1, e1] = 2e1, [h2, e2] = 2e2, [h1, e2] = −e2, [h2, e1] = −e2.
Also [e1, [e1, e2]] = ad(e1)2(e2) = 0, ad(f1)2(f2) = 0.
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A Family of Generalized Kac-Moody Algebras

Let C be a 2 by 2 generalized Cartan matrix, i.e. an integral
matrix with C11 = C22 = 2 and C12,C21 < 0. We let F(F ) be the
free Lie algebra generated by the variables h1, h2, e1, e2 over the
field F . Let L to be the quotient of F by the relations:

1 [hi , hj ] = 0

2 [hi , ej ] = δijej

3 ad(ei )
1−Cij (ej) = 0

If C is not positive definite, the Lie algebra will be infinite
dimensional.
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Cartan Matrices

The following are the positive definite 2× 2 Cartan matrices:

M1 =

(
2 −1
−1 2

)
, M2 =

(
2 −2
−1 2

)
, M3 =

(
2 −3
−1 2

)
One can drop the condition that C is positive definite, however the
resulting Lie algebra is infinite dimensional.

M1 =

(
2 −2
−2 2

)
M2 =

(
2 −4
−1 2

)
,

These Lie algebras, called Kac-Moody algebras, have many finite
dimensional quotients.
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Example

If we take M2 =

(
2 −2
−1 2

)
, we obtain a Lie algebra spanned by

h1, h2, e1, e2, e3 = [e1, e2], e4 = [e1, [e1, e2]].

The multiplication table for this algebra is:
h1 h2 e1 e2 e3 e4

h1 0 0 2e1 −2e2 0 2e4

h2 0 0 −e1 2e2 e3 0
e1 −2e1 e1 0 e3 e4 0
e2 2e2 −2e2 −e3 0 0 0
e3 0 e3 −e4 0 0 0
e4 −2e4 0 0 0 0 0

Jason Williford University of Wyoming The Graphs CD(k, q) and Their Relatives



The subalgebra L+

Let L+ be the subalgebra generated by e1, e2.

We define a word in L+ to be an expression involving the
generators e1, e2 and the Lie bracket. The length of the word is the
number of generators it contains.

We can define a basis {w1,w2, . . . } of nonzero words algebra L+

such that the length of the words wi is nondecreasing. To obtain a
finite dimensional Lie algebra, we may quotient by all words wi for
i ≥ n for some fixed n. We will denote this by Ln.
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Lie Graphs

Let Ln be a finite dimensional quotient algebra of F , satisfying the
previous relations.

We let L+
n be the subalgebra generated by e1, e2, and let A,B be

the ideals of Ln generated by e1 and e2, respectively.

Let P to be the set of vectors of L in the coset −h1 +A and L be
the set of vectors n the coset −h2 + B.

We define the bipartite graph Γ(Ln) to have bipartition P and L
with p ∈ P, l ∈ L adjacent if and only if [p, l ] = 0.
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Lie Graphs and Generalized Polygons

If one takes the following matrices:

M1 =

(
2 −1
−1 2

)
, M2 =

(
2 −2
−1 2

)
, M3 =

(
2 −3
−1 2

)
the corresponding Lie graphs are isomorphic to the affine parts of
the generalized triangles (projective planes), generalized
quadrangles and generalized hexagons, for fields of large enough
characteristic.
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The affine part of a generalized quadrangle

If we take M2 =

(
2 −2
−1 2

)
, we obtain a Lie algebra spanned by

h1, h2, e1, e2, e3 = [e1, e2], e4 = [e1, [e1, e2]].

The multiplication table for this algebra is:
h1 h2 e1 e2 e3 e4

h1 0 0 e1 0 e3 2e4

h2 0 0 0 e2 e3 e4

e1 −e1 0 0 e3 e4 0
e2 0 −e2 −e3 0 0 0
e3 −e3 −e3 −e4 0 0 0
e4 −2e4 −e4 0 0 0 0
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The affine part of a generalized quadrangle

Points: −h1 + p1e1 + p2e3 + p3e4

Lines: −h2 + l1e2 + l2e3 + l3e4

We have p adjacent to l iff [p, l ] = 0, which occurs when
(p2 − l2 + p1l1)e3 + (p3 − 2l3 + p1l2)e4 = 0. This gives the
equations:

p2 − l2 + p1l1 = 0
p3 − 2l3 + p1l2 = 0

After some changes of variables, we obtain the following ADG:
p2 + l2 = p1l1
p3 + l3 = p1l2
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Automorphisms of Lie Graphs

Points: −h1 + p1e1 + p2e3 + p3e4

Lines: −h2 + l1e2 + l2e3 + l3e4

The element e1 is nilpotent in Ln, in particular ad(e1) = δ satisfies

δ3 = 0. So the map α = 1 + δ + δ2

2 is an automorphism of Ln.

We have
α(−h1 +p1e1 +p2e3 +p3e4) = −h1 +(p1 +1)e1 +p2e3 +(p2 +p3)e4,
so α preserves points. A similar calculations shows that lines are
preserved as well.
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Lie Graphs

Theorem (Terlep, W 2012)

Suppose there is no nonzero word w in the subalgebra L+
n which

satisfies [h1,w ] = 0 or [h2,w ] = 0. Then the corresponding Lie
Graph are ADG’s. Furthermore the automorphism group of this
graph is transitive on unordered 3-paths for sufficiently large
characteristic p and characteristic zero.
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Graphs from Lie Algebras

Suppose we take the following matrix and construct the associated
Lie graphs:

M4 =

(
2 −2
−2 2

)
p2 − l2 = p1l1
2p3 − l3 = p2l1
p4 − 2l4 = −p1l2
2p5 − 2l5 = −p1l3 + p4l1
3p6 − 2l6 = −p2l3 + p3l2 + p5l1
2p7 − 3l7 = −p1l5 + p2l4 − p4l2
3p8 − 3l8 = −p1l6 + p3l4 − p4l3 + p7l1
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Graphs from Lie Algebras

Suppose we take the following matrix and construct the associated
Lie graphs

M4 =

(
2 −2
−2 2

)

Conjecture

For each n, t ≥ 1 and sufficiently large prime p, Γ(Ln, p
t) is

isomorphic to CD(k , pt) for an appropriate choice of k.
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Graphs from Lie Algebras

Now suppose we take the matrix M4 =

(
2 −4
−1 2

)
We consider Γ(L8), and obtain the equations:

p2 + l2 = p1l1

p3 + l3 = p1l2

p4 + l4 = p1l3

p5 + l5 = p1l4

p6 + l6 = p2l3 − 2p3l2 + p4l1

p7 + l7 = p1l6 + p2l4 − 3p4l2 + 2p5l1

p8 + l8 = 2p2l6 − 3p6l2 + p7l1
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A Lie Graph With No Cycles of Length Fourteen

Theorem (Terlep, W 2012)

For sufficiently large primes p and all q which are powers of p,

ex(n,C14) ≥ 1
29/8 n1+ 1

8 , where n = 2q8.

We note that these graphs have girth 12. The lack of 14-cycles
was shown by a computer using Groebner bases.

The previous bound was ex(n,C14) ≥ 1
210/9 n1+ 1

9 , achieved by
CD(12, q) and by a group theoretic construction of Ustimenko and
Woldar.
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Open Questions

Computer free proof of C14 result? Other missing cycles in
this or other families?

Proof that first matrix gives CD(k , q) for sufficiently large q
relative to k?

Direct use of Lie algebra in computation of cycle spectrum?

More direct use of Lie algebra in computation of cycle
spectrum?

Classify ADG’s that are transitive on ordered 3-paths?

More direct use of Lie algebra in computation of cycle
spectrum?
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The End

Thank You!
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