The Graphs CD(k, q) and Their Relatives

Jason Williford University of Wyoming

August 9th, 2017

Jason Williford University of Wyoming The Graphs CD(k, q) and Their Relatives

回 と く ヨ と く ヨ と

Definition

Let v be a positive integer and H a graph. We define ex(v, H) to be the largest number of edges in a graph with v vertices which contains no copy of H as a subgraph.

For H of chromatic number 3 or greater, the asymptotic value is known.

Theorem

(Erdős, Stone, Simonovits) $ex(v, H) \sim \left(1 - \frac{1}{\chi - 1}\right) \frac{v^2}{2}$, where $\chi > 2$ is the chromatic number of H.

Much less is known in the case where H is bipartite.

イロト イヨト イヨト イヨト

Even Cycles

Theorem (Bondy, Simonovits '74)

 $ex(v, C_{2h}) \leq 90hv^{1+\frac{1}{h}}$

Theorem (Verstraëte 2000)

$$ex(v, C_{2h}) \leq 8(h-1)v^{1+\frac{1}{h}}$$

Theorem (Pikhurko 2012)

$$ex(v, C_{2h}) \leq (h-1)v^{1+\frac{1}{h}} + O(v).$$

Theorem (Bukh, Jiang 2017)

$$ex(v, C_{2h}) \leq 80\sqrt{h}log(h)v^{1+\frac{1}{h}} + O(v)$$

・ロト ・回ト ・ヨト ・ヨト

Э

Definition

A generalized *n*-gon is a biregular bipartite graph of girth 2n and diameter *n*.

The only *n* for which a generalized *n*-gon that is also a regular graph exists is n = 2, 3, 4, 6, due to a theorem of Feit and Higman.

A generalized 3-gon is the incidence graph of a projective plane, generalized 4-gon the incidence graph of a generalized quadrangle, and a generalized 6-gon is the incidence graph of a generalized hexagon.

向下 イヨト イヨト

Constructive Lower Bounds

The best lower bounds (up to a constant) come from graphs known as generalized polygons:

Theorem

$$ex(v, C_{2h}) \geq \frac{1}{2^{1+1/h}}v^{1+1/h}$$
 for $l = 2, 3, 5$.

Note that the exponent is optimal.

Theorem

(Lubotzky, Phillips, Sarnak 1988)
$$ex(v, C_{2h}) \ge c_h v^{1+\frac{2}{3h+3}}$$

Theorem

(Lazebnik, Ustimenko, Woldar 1995) ex $(v, C_{2h}) \ge c_h v^{1+\frac{2}{3h-3+\epsilon}}$, where $\epsilon = 0, 1$ depending on whether h is odd or even.

イロン 不同と 不同と 不同と

Vertices: Two copies of F_q^k , one called "Points", the other "Lines".

We have $p \sim l$ if and only if the following hold:

 $p_{2} + l_{2} = p_{1}l_{1}$ $p_{3} + l_{3} = p_{1}l_{2}$ $p_{4} + l_{4} = -p_{2}l_{1}$... $p_{i} + l_{i} = -p_{i-1}l_{1} \text{ if } i \equiv 0, 1 \mod 4$ $p_{i} + l_{i} = p_{1}l_{i-1} \text{ if } i \equiv 2, 3 \mod 4$

The components of these graphs give the graphs CD(k, q), which in turn yield $ex(n, C_{2h}) \ge c_h v^{1+\frac{2}{3h-3+\epsilon}}$, where $\epsilon = 0, 1$ depending on whether *h* is odd or even.

伺い イヨト イヨト

The Architects of CD(k, q)

From left to right: Felix Lazebnik, Vasyl Ustimenko, Andrew Woldar.

白 ト イヨト イヨト

Best known lower bounds on extremal problems for even cycles \neq 10, 14.

Best known lower bounds on extremal problems for fixed girth \neq 12.

Valid for all characteristics.

Motivated by Ustimenko's embeddings of generalized polygons into respective Lie algebras.

Automorphism group is transitive on unordered 3-paths.

The end of the road?

伺い イヨト イヨト

Let R be a ring and k a positive integer. Let $f_i : R^k \times R^k \to R^k$ be a sequence of functions, i = 2, 3, ..., k - 1, such that $f_i(p, l)$ depends only on the first i - 1 coordinates of p and l.

We define a bipartite graph $\Gamma(R, k, \{f_2, \ldots, f_k\})$ to have vertex set equal to the union of two copies P and L of R^k . We refer to elements of P as points, and elements of L as lines. For $p \in P$ and $I \in L$ we have $p \sim I$ if and only if

 $p_i + l_i = f_i(p, l)$ for all $i \in \{2, 3, ..., k\}$

Let F_q be a finite field. The affine part of a classical projective plane is given as an ADG by:

 $p_2 + l_2 = p_1 l_1$

The affine part of a classical generalized quadrangle is given as an ADG by:

 $p_2 + l_2 = p_1 l_1$ $p_3 + l_3 = p_1 l_2$

白 と く ヨ と く ヨ と …

The affine part of a classical generalized hexagon is given as an ADG by:

$$p_{2} + l_{2} = p_{1}l_{1}$$

$$p_{3} + l_{3} = p_{1}l_{2}$$

$$p_{4} + l_{4} = p_{1}l_{3}$$

$$p_{5} + l_{5} = p_{3}l_{2} - p_{2}l_{3}$$

The automorphism group of each corresponding graph is transitive on unordered 3-paths.

回 と く ヨ と く ヨ と

A series of graphs based on a graph of Wenger:

 $p_{2} + l_{2} = p_{1}l_{1}$ $p_{3} + l_{3} = p_{1}l_{2}$ $p_{4} + l_{4} = p_{1}l_{3}$... $p_{k} + l_{k} = p_{1}l_{k-1}$

Similarly the automorphism group of each corresponding graph is transitive on 3-paths. For k = 2, 3 these graphs have girth 6, 8, and are isomorphic to affine parts of projective planes and generalized quadrangles. For k = 5, this graph has no 10 cycles, but has 8 cycles.

伺 とう ヨン うちょう

The graph $\Gamma(R, k, \{f_2, \dots, f_k\})$ is |R|-regular and has $2|R^k|$ vertices.

In particular, given a vertex p and an $x \in F$, there is a unique neighbor of p with first coordinate x. This can be found by recursively computing the coordinates of the neighbor from the equations $p_i + l_i = f_i(p, l)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

(Lazebnik, Woldar '01) Let $\Gamma_1 = \Gamma(R, k, \{f_2, \ldots, f_k\})$ and $\Gamma_2 = \Gamma(R, k - 1, \{f_2, \ldots, f_{k-1}\})$. There is a surjective, locally injective homomorphism from Γ_1 to Γ_2 given by puncturing the last coordinate of every vertex of Γ_1 . In particular, the girth of Γ_1 is greater than or equal to the girth of Γ_2 .

The following ADG has $2q^2$ vertices, q^3 edges and girth 6: $p_2 + l_2 = p_1 l_1$

▲□→ ▲注→ ▲注→

(Lazebnik, Woldar '01) Let $\Gamma_1 = \Gamma(R, k, \{f_2, \ldots, f_k\})$ and $\Gamma_2 = \Gamma(R, k - 1, \{f_2, \ldots, f_{k-1}\})$. There is a surjective, locally injective homomorphism from Γ_1 to Γ_2 given by puncturing the last coordinate of every vertex of Γ_1 . In particular, the girth of Γ_1 is greater than or equal to the girth of Γ_2 .

The following ADG has $2q^3$ vertices, q^4 edges and girth 8: $p_2 + l_2 = p_1 l_1$ $p_3 + l_3 = p_1 l_2$

・ 回 と ・ ヨ と ・ ヨ と

(Lazebnik, Woldar '01) Let $\Gamma_1 = \Gamma(R, k, \{f_2, ..., f_k\})$ and $\Gamma_2 = \Gamma(R, k, \{f_2, ..., f_{k-1}\})$. There is a surjective, locally injective homomorphism from Γ_1 to Γ_2 given by puncturing the last coordinate of every vertex of Γ_1 . In particular, the girth of Γ_1 is greater than or equal to the girth of Γ_2 .

The following ADG has $2q^4$ vertices, q^5 edges and girth 8: $p_2 + l_2 = p_1 l_1$ $p_3 + l_3 = p_1 l_2$ $p_4 + l_4 = p_1 l_3$

・ 回 ト ・ ヨ ト ・ ヨ ト

(Lazebnik, Woldar '01) Let $\Gamma_1 = \Gamma(R, k, \{f_2, ..., f_k\})$ and $\Gamma_2 = \Gamma(R, k, \{f_2, ..., f_{k-1}\})$. There is a surjective, locally injective homomorphism from Γ_1 to Γ_2 given by puncturing the last coordinate of every vertex of Γ_1 . In particular, the girth of Γ_1 is greater than or equal to the girth of Γ_2 .

The following ADG has $2q^5$ vertices, q^6 edges and girth 12: $p_2 + l_2 = p_1 l_1$ $p_3 + l_3 = p_1 l_2$ $p_4 + l_4 = p_1 l_3$ $p_5 + l_5 = p_3 l_2 - p_2 l_3$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Suppose there is a cycle of length 2k is in some ADG Γ . We can describe this cycle as a system of polynomial equations. If we show the associated variety is empty, then there is no such cycle.

For example, to show $p_2 + l_2 = p_1 l_1$ has no 4-cycles, we can solve:

$$p_{2} + l_{2} - p_{1}l_{1} = 0$$

$$p_{2} + m_{2} - p_{1}m_{1} = 0$$

$$q_{2} + l_{2} - q_{1}l_{1} = 0$$

$$q_{2} + m_{2} - q_{1}m_{1} = 0$$

$$1 - k(p_{1} - q_{1})(l_{1} - m_{1}) = 0$$

伺 とう ヨン うちょう

Pros: Contains all known examples, big family, lots of room for things to exist.

Con: Big family, unclear how we find the "good graphs"?

Woldar: Go back to the Lie algebraic connections.

・回 ・ ・ ヨ ・ ・ ヨ ・

æ

A Lie algebra \mathcal{L} is a vector space V together with a product $[,]: V \times V \to V$ that satisfies:

- [,] is bilinear
- 2 [x, x] = 0 for all vectors x
- **3** (Jacobi identity) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

Note that the first two axioms imply that [x, y] = -[y, x].

If
$$[x, y] = 0$$
, we say x and y "commute".

Example 1: The cross product in \mathbb{R}^3 .

Example 2: $M_n(\mathbb{F})$ with [A, B] = AB - BA.

Example 3: Given a vector space V, $\mathfrak{gl}(V)$ consists of all linear operators on V with Lie bracket [S, T] = ST - TS

Example 4: $\mathfrak{sl}(V)$ is the subalgebra of $\mathfrak{gl}(V)$ consisting of all elements with trace zero.

Example 5: An associative algebra with [x, y] = xy - yx.

- 사례가 사용가 사용가 구용

Given an element x of a Lie algebra \mathcal{L} , we can define the adjoint map $ad(x) : \mathcal{L} \to \mathcal{L}$ via ad(x)(y) = [x, y].

Adjoints give a convenient way to represent repeated Lie products: $[x, [x, [x, y]]] = ad(x)^3(y)$

The map ad(x) is a linear operator on V.

The adjoint map has the property: [ad(x), ad(y)](z) = ad([x, y])(z), where $[ad(x), ad(y)] = ad(x) \circ ad(y) - ad(y) \circ ad(x)$.

The implies that the map $ad : \mathcal{L} \to \mathfrak{gl}(\mathcal{L})$ is a Lie algebra homomorphism. The kernel of this homomorphism is the center of \mathcal{L} .

An element x of a Lie algebra is called nilpotent provided that there is an integer n such that $ad(x)^n = 0$.

If x is nilpotent and $\delta = ad(x)$, and the characteristic of the field is zero or sufficiently large, then the exponential map $exp(x) = \sum_{k=0}^{\infty} \frac{\delta^k}{k!}$ is well-defined, invertible, and is an automorphism of \mathcal{L} .

We have exp(x)([y, z]) = [exp(x)(y), exp(x)(z)].

Example

The Lie algebra $\mathfrak{sl}(\mathbb{F}^3)$ is spanned by:

$$h_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} h_{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$e_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} e_{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} e_{3} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$f_{1} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} f_{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} f_{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
We have $[e_{1}, e_{2}] = e_{3}, [f_{1}, f_{2}] = -f_{3},$

$$\begin{bmatrix} h_1, h_2 \end{bmatrix} = \begin{bmatrix} e_1, f_2 \end{bmatrix} = \begin{bmatrix} e_2, f_1 \end{bmatrix} = 0, \ \begin{bmatrix} e_1, f_1 \end{bmatrix} = h_1, \ \begin{bmatrix} e_2, f_2 \end{bmatrix} = h_2, \\ \begin{bmatrix} h_1, e_1 \end{bmatrix} = 2e_1, \ \begin{bmatrix} h_2, e_2 \end{bmatrix} = 2e_2, \ \begin{bmatrix} h_1, e_2 \end{bmatrix} = -e_2, \ \begin{bmatrix} h_2, e_1 \end{bmatrix} = -e_2. \\ Also \ \begin{bmatrix} e_1, [e_1, e_2] \end{bmatrix} = ad(e_1)^2(e_2) = 0, \ ad(f_1)^2(f_2) = 0. \\ \end{bmatrix}$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Э

Let *C* be a 2 by 2 generalized Cartan matrix, i.e. an integral matrix with $C_{11} = C_{22} = 2$ and $C_{12}, C_{21} < 0$. We let $\mathcal{F}(F)$ be the free Lie algebra generated by the variables h_1, h_2, e_1, e_2 over the field *F*. Let \mathcal{L} to be the quotient of \mathcal{F} by the relations:

•
$$[h_i, h_j] = 0$$

• $[h_i, e_j] = \delta_{ij} e_j$
• $ad(e_i)^{1-C_{ij}}(e_j) = 0$

If C is not positive definite, the Lie algebra will be infinite dimensional.

ヨット イヨット イヨッ

The following are the positive definite 2×2 Cartan matrices:

$$M_1 = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$
, $M_2 = \begin{pmatrix} 2 & -2 \\ -1 & 2 \end{pmatrix}$, $M_3 = \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix}$

One can drop the condition that C is positive definite, however the resulting Lie algebra is infinite dimensional.

$$M_1 = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix} M_2 = \begin{pmatrix} 2 & -4 \\ -1 & 2 \end{pmatrix},$$

These Lie algebras, called Kac-Moody algebras, have many finite dimensional quotients.

伺 と く き と く き と

Example

If we take
$$M_2 = \begin{pmatrix} 2 & -2 \\ -1 & 2 \end{pmatrix}$$
, we obtain a Lie algebra spanned by $h_1, h_2, e_1, e_2, e_3 = [e_1, e_2], e_4 = [e_1, [e_1, e_2]].$

The multiplication table for this algebra is:

	h_1	h ₂	e ₁	e ₂	e ₃	e ₄
h_1	0	0	2 <i>e</i> 1	-2 <i>e</i> ₂	0	2 <i>e</i> 4
h_2	0	0	$-e_1$	2 <i>e</i> 2	e ₃	0
e_1	$-2e_{1}$	e_1	0	e ₃	e_4	0
e ₂	2 <i>e</i> ₂	-2 <i>e</i> ₂	$-e_3$	0	0	0
e ₃	0	e ₃	$-e_4$	0	0	0
e ₄	-2 <i>e</i> ₄	0	0	0	0	0

Let \mathcal{L}^+ be the subalgebra generated by e_1, e_2 .

We define a word in \mathcal{L}^+ to be an expression involving the generators e_1, e_2 and the Lie bracket. The length of the word is the number of generators it contains.

We can define a basis $\{w_1, w_2, ...\}$ of nonzero words algebra \mathcal{L}^+ such that the length of the words w_i is nondecreasing. To obtain a finite dimensional Lie algebra, we may quotient by all words w_i for $i \ge n$ for some fixed n. We will denote this by \mathcal{L}_n .

・ 同 ト ・ ヨ ト ・ ヨ ト

Let \mathcal{L}_n be a finite dimensional quotient algebra of \mathcal{F} , satisfying the previous relations.

We let \mathcal{L}_n^+ be the subalgebra generated by e_1, e_2 , and let \mathcal{A}, \mathcal{B} be the ideals of \mathcal{L}_n generated by e_1 and e_2 , respectively.

Let P to be the set of vectors of \mathcal{L} in the coset $-h_1 + \mathcal{A}$ and L be the set of vectors n the coset $-h_2 + \mathcal{B}$.

We define the bipartite graph $\Gamma(\mathcal{L}_n)$ to have bipartition P and L with $p \in P$, $l \in L$ adjacent if and only if [p, l] = 0.

・ 同 ト ・ ヨ ト ・ ヨ ト

If one takes the following matrices:

$$M_1 = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$
, $M_2 = \begin{pmatrix} 2 & -2 \\ -1 & 2 \end{pmatrix}$, $M_3 = \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix}$

the corresponding Lie graphs are isomorphic to the affine parts of the generalized triangles (projective planes), generalized quadrangles and generalized hexagons, for fields of large enough characteristic.

ヨット イヨット イヨッ

The affine part of a generalized quadrangle

If we take $M_2 = \begin{pmatrix} 2 & -2 \\ -1 & 2 \end{pmatrix}$, we obtain a Lie algebra spanned by $h_1, h_2, e_1, e_2, e_3 = [e_1, e_2], e_4 = [e_1, [e_1, e_2]].$

The multiplication table for this algebra is:

	h_1	h ₂	e_1	e ₂	e ₃	e ₄
h_1	0	0	e ₁	0	e ₃	2 <i>e</i> 4
h_2	0	0	0	e ₂	e ₃	e4
e_1	$-e_1$	0	0	e ₃	e4	0
e ₂	0	$-e_2$	$-e_3$	0	0	0
e ₃	$-e_3$	$-e_3$	$-e_4$	0	0	0
<i>e</i> ₄	-2 <i>e</i> ₄	$-e_4$	0	0	0	0

□ > < E > < E > < E</p>

Points:
$$-h_1 + p_1e_1 + p_2e_3 + p_3e_4$$

Lines: $-h_2 + l_1e_2 + l_2e_3 + l_3e_4$

We have p adjacent to l iff [p, l] = 0, which occurs when $(p_2 - l_2 + p_1 l_1)e_3 + (p_3 - 2l_3 + p_1 l_2)e_4 = 0$. This gives the equations:

$$p_2 - l_2 + p_1 l_1 = 0$$

$$p_3 - 2l_3 + p_1 l_2 = 0$$

After some changes of variables, we obtain the following ADG: $p_2 + l_2 = p_1 l_1$ $p_3 + l_3 = p_1 l_2$

¬<</p>

Points: $-h_1 + p_1e_1 + p_2e_3 + p_3e_4$ Lines: $-h_2 + l_1e_2 + l_2e_3 + l_3e_4$

The element e_1 is nilpotent in \mathcal{L}_n , in particular $ad(e_1) = \delta$ satisfies $\delta^3 = 0$. So the map $\alpha = 1 + \delta + \frac{\delta^2}{2}$ is an automorphism of \mathcal{L}_n .

We have

 $\alpha(-h_1+p_1e_1+p_2e_3+p_3e_4) = -h_1+(p_1+1)e_1+p_2e_3+(p_2+p_3)e_4$, so α preserves points. A similar calculations shows that lines are preserved as well.

向下 イヨト イヨト

Theorem (Terlep, W 2012)

Suppose there is no nonzero word w in the subalgebra \mathcal{L}_n^+ which satisfies $[h_1, w] = 0$ or $[h_2, w] = 0$. Then the corresponding Lie Graph are ADG's. Furthermore the automorphism group of this graph is transitive on unordered 3-paths for sufficiently large characteristic p and characteristic zero.

▲圖▶ ▲屋▶ ▲屋▶ ---

Suppose we take the following matrix and construct the associated Lie graphs:

$$M_4 = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$$

$$p_{2} - l_{2} = p_{1}l_{1}$$

$$2p_{3} - l_{3} = p_{2}l_{1}$$

$$p_{4} - 2l_{4} = -p_{1}l_{2}$$

$$2p_{5} - 2l_{5} = -p_{1}l_{3} + p_{4}l_{1}$$

$$3p_{6} - 2l_{6} = -p_{2}l_{3} + p_{3}l_{2} + p_{5}l_{1}$$

$$2p_{7} - 3l_{7} = -p_{1}l_{5} + p_{2}l_{4} - p_{4}l_{2}$$

$$3p_{8} - 3l_{8} = -p_{1}l_{6} + p_{3}l_{4} - p_{4}l_{3} + p_{7}l_{1}$$

(本部) (本語) (本語) (語)

Suppose we take the following matrix and construct the associated Lie graphs

$$M_4 = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$$

Conjecture

For each $n, t \ge 1$ and sufficiently large prime p, $\Gamma(\mathcal{L}_n, p^t)$ is isomorphic to $CD(k, p^t)$ for an appropriate choice of k.

(4回) (4回) (4回)

Graphs from Lie Algebras

Now suppose we take the matrix $M_4 = \begin{pmatrix} 2 & -4 \\ -1 & 2 \end{pmatrix}$ We consider $\Gamma(\mathcal{L}_8)$, and obtain the equations:

$$p_{2} + l_{2} = p_{1}l_{1}$$

$$p_{3} + l_{3} = p_{1}l_{2}$$

$$p_{4} + l_{4} = p_{1}l_{3}$$

$$p_{5} + l_{5} = p_{1}l_{4}$$

$$p_{6} + l_{6} = p_{2}l_{3} - 2p_{3}l_{2} + p_{4}l_{1}$$

$$p_{7} + l_{7} = p_{1}l_{6} + p_{2}l_{4} - 3p_{4}l_{2} + 2p_{5}l_{1}$$

$$p_{8} + l_{8} = 2p_{2}l_{6} - 3p_{6}l_{2} + p_{7}l_{1}$$

回 と く ヨ と く ヨ と …

Theorem (Terlep, W 2012)

For sufficiently large primes p and all q which are powers of p, $ex(n, C_{14}) \ge \frac{1}{2^{9/8}}n^{1+\frac{1}{8}}$, where $n = 2q^8$.

We note that these graphs have girth 12. The lack of 14-cycles was shown by a computer using Groebner bases.

The previous bound was $ex(n, C_{14}) \ge \frac{1}{2^{10/9}}n^{1+\frac{1}{9}}$, achieved by CD(12, q) and by a group theoretic construction of Ustimenko and Woldar.

・回 ・ ・ ヨ ・ ・ ヨ ・ ・

Open Questions

- Computer free proof of *C*₁₄ result? Other missing cycles in this or other families?
- Proof that first matrix gives CD(k, q) for sufficiently large q relative to k?
- Direct use of Lie algebra in computation of cycle spectrum?
- More direct use of Lie algebra in computation of cycle spectrum?
- Classify ADG's that are transitive on ordered 3-paths?
- More direct use of Lie algebra in computation of cycle spectrum?

Thank You!

Jason Williford University of Wyoming The Graphs CD(k, q) and Their Relatives

æ