The Graphs $C D(k, q)$ and Their Relatives

Jason Williford
University of Wyoming

August 9th, 2017

Turán Type Problems

Definition

Let v be a positive integer and H a graph. We define ex (v, H) to be the largest number of edges in a graph with v vertices which contains no copy of H as a subgraph.

For H of chromatic number 3 or greater, the asymptotic value is known.

Theorem

(Erdős, Stone, Simonovits)
ex $(v, H) \sim\left(1-\frac{1}{\chi-1}\right) \frac{v^{2}}{2}$, where $\chi>2$ is the chromatic number of H.

Much less is known in the case where H is bipartite.

Even Cycles

Theorem (Bondy, Simonovits '74)

$$
e x\left(v, C_{2 h}\right) \leq 90 h v^{1+\frac{1}{h}}
$$

Theorem (Verstraëte 2000)

$$
e x\left(v, C_{2 h}\right) \leq 8(h-1) v^{1+\frac{1}{h}}
$$

Theorem (Pikhurko 2012)

$$
e x\left(v, C_{2 h}\right) \leq(h-1) v^{1+\frac{1}{h}}+O(v)
$$

Theorem (Bukh, Jiang 2017)

$$
e x\left(v, C_{2 h}\right) \leq 80 \sqrt{h} \log (h) v^{1+\frac{1}{h}}+O(v)
$$

Lower bounds and Generalized Polygons

Definition

A generalized n-gon is a biregular bipartite graph of girth $2 n$ and diameter n.

The only n for which a generalized n-gon that is also a regular graph exists is $n=2,3,4,6$, due to a theorem of Feit and Higman.

A generalized 3-gon is the incidence graph of a projective plane, generalized 4-gon the incidence graph of a generalized quadrangle, and a generalized 6 -gon is the incidence graph of a generalized hexagon.

Constructive Lower Bounds

The best lower bounds (up to a constant) come from graphs known as generalized polygons:

Theorem

$e x\left(v, C_{2 h}\right) \geq \frac{1}{2^{1+1 / h}} v^{1+1 / h}$ for $I=2,3,5$.
Note that the exponent is optimal.

Theorem

(Lubotzky, Phillips, Sarnak 1988)
$e x\left(v, C_{2 h}\right) \geq c_{h} v^{1+\frac{2}{3 h+3}}$

Theorem

(Lazebnik, Ustimenko, Woldar 1995)
ex $\left(v, C_{2 h}\right) \geq c_{h} v^{1+\frac{2}{3 h-3+\epsilon}}$, where $\epsilon=0,1$ depending on whether h is odd or even.

Vertices: Two copies of F_{q}^{k}, one called "Points", the other "Lines".
We have $p \sim 1$ if and only if the following hold:
$p_{2}+l_{2}=p_{1} l_{1}$
$p_{3}+l_{3}=p_{1} l_{2}$
$p_{4}+I_{4}=-p_{2} I_{1}$
$p_{i}+l_{i}=-p_{i-1} l_{1}$ if $i \equiv 0,1 \bmod 4$
$p_{i}+l_{i}=p_{1} l_{i-1}$ if $i \equiv 2,3 \bmod 4$
The components of these graphs give the graphs $C D(k, q)$, which in turn yield ex $\left(n, C_{2 h}\right) \geq c_{h} v^{1+\frac{2}{3 h-3+\epsilon}}$, where $\epsilon=0,1$ depending on whether h is odd or even.

The Architects of $C D(k, q)$

From left to right: Felix Lazebnik, Vasyl Ustimenko, Andrew Woldar.

The series of graphs $C D(k, q)$

Best known lower bounds on extremal problems for even cycles $\neq 10,14$.

Best known lower bounds on extremal problems for fixed girth $\neq 12$.

Valid for all characteristics.
Motivated by Ustimenko's embeddings of generalized polygons into respective Lie algebras.

Automorphism group is transitive on unordered 3-paths.
The end of the road?

Algebraically Defined Graphs of Lazebnik, Woldar

Let R be a ring and k a positive integer. Let $f_{i}: R^{k} \times R^{k} \rightarrow R^{k}$ be a sequence of functions, $i=2,3, \ldots, k-1$, such that $f_{i}(p, I)$ depends only on the first $i-1$ coordinates of p and I.

We define a bipartite graph $\Gamma\left(R, k,\left\{f_{2}, \ldots, f_{k}\right\}\right)$ to have vertex set equal to the union of two copies P and L of R^{k}. We refer to elements of P as points, and elements of L as lines.
For $p \in P$ and $I \in L$ we have $p \sim I$ if and only if
$p_{i}+l_{i}=f_{i}(p, l)$ for all $i \in\{2,3, \ldots, k\}$

Affine Parts of Generalized n-gons

Let F_{q} be a finite field. The affine part of a classical projective plane is given as an ADG by:
$p_{2}+l_{2}=p_{1} l_{1}$
The affine part of a classical generalized quadrangle is given as an ADG by:
$p_{2}+l_{2}=p_{1} l_{1}$
$p_{3}+l_{3}=p_{1} l_{2}$

Affine Parts of Generalized n-gons

The affine part of a classical generalized hexagon is given as an ADG by:

$$
\begin{aligned}
& p_{2}+I_{2}=p_{1} I_{1} \\
& p_{3}+l_{3}=p_{1} I_{2} \\
& p_{4}+I_{4}=p_{1} I_{3} \\
& p_{5}+I_{5}=p_{3} I_{2}-p_{2} I_{3}
\end{aligned}
$$

The automorphism group of each corresponding graph is transitive on unordered 3 -paths.

Wenger Graphs

A series of graphs based on a graph of Wenger:
$p_{2}+l_{2}=p_{1} l_{1}$
$p_{3}+l_{3}=p_{1} l_{2}$
$p_{4}+l_{4}=p_{1} l_{3}$
$p_{k}+I_{k}=p_{1} I_{k-1}$
Similarly the automorphism group of each corresponding graph is transitive on 3 -paths. For $k=2,3$ these graphs have girth 6,8 , and are isomorphic to affine parts of projective planes and generalized quadrangles. For $k=5$, this graph has no 10 cycles, but has 8 cycles.

Algebraically Defined Graphs

The graph $\Gamma\left(R, k,\left\{f_{2}, \ldots, f_{k}\right\}\right)$ is $|R|$-regular and has $2\left|R^{k}\right|$ vertices.

In particular, given a vertex p and an $x \in F$, there is a unique neighbor of p with first coordinate x. This can be found by recursively computing the coordinates of the neighbor from the equations $p_{i}+l_{i}=f_{i}(p, I)$.

Theorem

(Lazebnik, Woldar '01) Let $\Gamma_{1}=\Gamma\left(R, k,\left\{f_{2}, \ldots, f_{k}\right\}\right)$ and $\Gamma_{2}=\Gamma\left(R, k-1,\left\{f_{2}, \ldots, f_{k-1}\right\}\right)$. There is a surjective, locally injective homomorphism from Γ_{1} to Γ_{2} given by puncturing the last coordinate of every vertex of Γ_{1}. In particular, the girth of Γ_{1} is greater than or equal to the girth of Γ_{2}.

The following ADG has $2 q^{2}$ vertices, q^{3} edges and girth 6 :
$p_{2}+l_{2}=p_{1} l_{1}$

Algebraically Defined Graphs

Theorem

(Lazebnik, Woldar '01) Let $\Gamma_{1}=\Gamma\left(R, k,\left\{f_{2}, \ldots, f_{k}\right\}\right)$ and $\Gamma_{2}=\Gamma\left(R, k-1,\left\{f_{2}, \ldots, f_{k-1}\right\}\right)$. There is a surjective, locally injective homomorphism from Γ_{1} to Γ_{2} given by puncturing the last coordinate of every vertex of Γ_{1}. In particular, the girth of Γ_{1} is greater than or equal to the girth of Γ_{2}.

The following ADG has $2 q^{3}$ vertices, q^{4} edges and girth 8:

$$
\begin{aligned}
& p_{2}+l_{2}=p_{1} I_{1} \\
& p_{3}+l_{3}=p_{1} I_{2}
\end{aligned}
$$

Algebraically Defined Graphs

Theorem

(Lazebnik, Woldar '01) Let $\Gamma_{1}=\Gamma\left(R, k,\left\{f_{2}, \ldots, f_{k}\right\}\right)$ and
$\Gamma_{2}=\Gamma\left(R, k,\left\{f_{2}, \ldots, f_{k-1}\right\}\right)$. There is a surjective, locally injective homomorphism from Γ_{1} to Γ_{2} given by puncturing the last coordinate of every vertex of Γ_{1}. In particular, the girth of Γ_{1} is greater than or equal to the girth of Γ_{2}.

The following ADG has $2 q^{4}$ vertices, q^{5} edges and girth 8:
$p_{2}+l_{2}=p_{1} l_{1}$
$p_{3}+l_{3}=p_{1} l_{2}$
$p_{4}+l_{4}=p_{1} l_{3}$

Algebraically Defined Graphs

Theorem

(Lazebnik, Woldar '01) Let $\Gamma_{1}=\Gamma\left(R, k,\left\{f_{2}, \ldots, f_{k}\right\}\right)$ and $\Gamma_{2}=\Gamma\left(R, k,\left\{f_{2}, \ldots, f_{k-1}\right\}\right)$. There is a surjective, locally injective homomorphism from Γ_{1} to Γ_{2} given by puncturing the last coordinate of every vertex of Γ_{1}. In particular, the girth of Γ_{1} is greater than or equal to the girth of Γ_{2}.

The following ADG has $2 q^{5}$ vertices, q^{6} edges and girth 12 :
$p_{2}+l_{2}=p_{1} l_{1}$
$p_{3}+l_{3}=p_{1} l_{2}$
$p_{4}+l_{4}=p_{1} l_{3}$
$p_{5}+l_{5}=p_{3} I_{2}-p_{2} I_{3}$

Cycles and Gröbner Bases

Suppose there is a cycle of length $2 k$ is in some ADG Г. We can describe this cycle as a system of polynomial equations. If we show the associated variety is empty, then there is no such cycle.

For example, to show $p_{2}+I_{2}=p_{1} I_{1}$ has no 4-cycles, we can solve:

$$
\begin{aligned}
& p_{2}+l_{2}-p_{1} l_{1}=0 \\
& p_{2}+m_{2}-p_{1} m_{1}=0 \\
& q_{2}+l_{2}-q_{1} l_{1}=0 \\
& q_{2}+m_{2}-q_{1} m_{1}=0 \\
& 1-k\left(p_{1}-q_{1}\right)\left(l_{1}-m_{1}\right)=0
\end{aligned}
$$

ADG's

Pros: Contains all known examples, big family, lots of room for things to exist.

Con: Big family, unclear how we find the "good graphs"?
Woldar: Go back to the Lie algebraic connections.

Background on Lie Algebras

A Lie algebra \mathcal{L} is a vector space V together with a product [,]: $V \times V \rightarrow V$ that satisfies:
(1) [,] is bilinear
(2) $[x, x]=0$ for all vectors x
(3) (Jacobi identity) $[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0$

Note that the first two axioms imply that $[x, y]=-[y, x]$.
If $[x, y]=0$, we say x and y "commute".

Examples of Lie Algebras

Example 1: The cross product in \mathbb{R}^{3}.
Example 2: $M_{n}(\mathbb{F})$ with $[A, B]=A B-B A$.
Example 3: Given a vector space $V, \mathfrak{g l}(V)$ consists of all linear operators on V with Lie bracket $[S, T]=S T-T S$

Example 4: $\mathfrak{s l}(V)$ is the subalgebra of $\mathfrak{g l}(V)$ consisting of all elements with trace zero.

Example 5: An associative algebra with $[x, y]=x y-y x$.

Adjoint Representations

Given an element x of a Lie algebra \mathcal{L}, we can define the adjoint $\operatorname{map} \operatorname{ad}(x): \mathcal{L} \rightarrow \mathcal{L}$ via $\operatorname{ad}(x)(y)=[x, y]$.

Adjoints give a convenient way to represent repeated Lie products: $[x,[x,[x, y]]]=\operatorname{ad}(x)^{3}(y)$

The map $\operatorname{ad}(x)$ is a linear operator on V.
The adjoint map has the property: $[\operatorname{ad}(x), \operatorname{ad}(y)](z)=\operatorname{ad}([x, y])(z)$, where $[\operatorname{ad}(x), \operatorname{ad}(y)]=\operatorname{ad}(x) \circ \operatorname{ad}(y)-\operatorname{ad}(y) \circ \operatorname{ad}(x)$.

The implies that the map ad : $\mathcal{L} \rightarrow \mathfrak{g l}(\mathcal{L})$ is a Lie algebra homomorphism. The kernel of this homomorphism is the center of \mathcal{L}.

Nilpotent elements

An element x of a Lie algebra is called nilpotent provided that there is an integer n such that $\operatorname{ad}(x)^{n}=0$.

If x is nilpotent and $\delta=\operatorname{ad}(x)$, and the characteristic of the field is zero or sufficiently large, then the exponential map $\exp (x)=\sum_{k=0}^{\infty} \frac{\delta^{k}}{k!}$ is well-defined, invertible, and is an automorphism of \mathcal{L}.

We have $\exp (x)([y, z])=[\exp (x)(y), \exp (x)(z)]$.

Example

The Lie algebra $\mathfrak{s l}\left(\mathbb{F}^{3}\right)$ is spanned by:
$h_{1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right) h_{2}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right)$
$e_{1}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) e_{2}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right) e_{3}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
$f_{1}=\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) f_{2}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right) f_{3}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$
We have $\left[e_{1}, e_{2}\right]=e_{3},\left[f_{1}, f_{2}\right]=-f_{3}$,
$\left[h_{1}, h_{2}\right]=\left[e_{1}, f_{2}\right]=\left[e_{2}, f_{1}\right]=0,\left[e_{1}, f_{1}\right]=h_{1},\left[e_{2}, f_{2}\right]=h_{2}$,
$\left[h_{1}, e_{1}\right]=2 e_{1},\left[h_{2}, e_{2}\right]=2 e_{2},\left[h_{1}, e_{2}\right]=-e_{2},\left[h_{2}, e_{1}\right]=-e_{2}$.
Also $\left[e_{1},\left[e_{1}, e_{2}\right]\right]=\operatorname{ad}\left(e_{1}\right)^{2}\left(e_{2}\right)=0, \operatorname{ad}\left(f_{1}\right)^{2}\left(f_{2}\right)=0$.

A Family of Generalized Kac-Moody Algebras

Let C be a 2 by 2 generalized Cartan matrix, i.e. an integral matrix with $C_{11}=C_{22}=2$ and $C_{12}, C_{21}<0$. We let $\mathcal{F}(F)$ be the free Lie algebra generated by the variables $h_{1}, h_{2}, e_{1}, e_{2}$ over the field F. Let \mathcal{L} to be the quotient of \mathcal{F} by the relations:
(1) $\left[h_{i}, h_{j}\right]=0$
(2) $\left[h_{i}, e_{j}\right]=\delta_{i j} e_{j}$
(3) $\operatorname{ad}\left(e_{i}\right)^{1-C_{i j}}\left(e_{j}\right)=0$

If C is not positive definite, the Lie algebra will be infinite dimensional.

Cartan Matrices

The following are the positive definite 2×2 Cartan matrices:
$M_{1}=\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right), M_{2}=\left(\begin{array}{cc}2 & -2 \\ -1 & 2\end{array}\right), M_{3}=\left(\begin{array}{cc}2 & -3 \\ -1 & 2\end{array}\right)$
One can drop the condition that C is positive definite, however the resulting Lie algebra is infinite dimensional.

$$
M_{1}=\left(\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right) M_{2}=\left(\begin{array}{cc}
2 & -4 \\
-1 & 2
\end{array}\right)
$$

These Lie algebras, called Kac-Moody algebras, have many finite dimensional quotients.

Example

If we take $M_{2}=\left(\begin{array}{cc}2 & -2 \\ -1 & 2\end{array}\right)$, we obtain a Lie algebra spanned by $h_{1}, h_{2}, e_{1}, e_{2}, e_{3}=\left[e_{1}, e_{2}\right], e_{4}=\left[e_{1},\left[e_{1}, e_{2}\right]\right]$.

The multiplication table for this algebra is:

	h_{1}	h_{2}	e_{1}	e_{2}	e_{3}	e_{4}
h_{1}	0	0	$2 e_{1}$	$-2 e_{2}$	0	$2 e_{4}$
h_{2}	0	0	$-e_{1}$	$2 e_{2}$	e_{3}	0
e_{1}	$-2 e_{1}$	e_{1}	0	e_{3}	e_{4}	0
e_{2}	$2 e_{2}$	$-2 e_{2}$	$-e_{3}$	0	0	0
e_{3}	0	e_{3}	$-e_{4}$	0	0	0
e_{4}	$-2 e_{4}$	0	0	0	0	0

Let \mathcal{L}^{+}be the subalgebra generated by e_{1}, e_{2}.
We define a word in \mathcal{L}^{+}to be an expression involving the generators e_{1}, e_{2} and the Lie bracket. The length of the word is the number of generators it contains.

We can define a basis $\left\{w_{1}, w_{2}, \ldots\right\}$ of nonzero words algebra \mathcal{L}^{+} such that the length of the words w_{i} is nondecreasing. To obtain a finite dimensional Lie algebra, we may quotient by all words w_{i} for $i \geq n$ for some fixed n. We will denote this by \mathcal{L}_{n}.

Lie Graphs

Let \mathcal{L}_{n} be a finite dimensional quotient algebra of \mathcal{F}, satisfying the previous relations.

We let \mathcal{L}_{n}^{+}be the subalgebra generated by e_{1}, e_{2}, and let \mathcal{A}, \mathcal{B} be the ideals of \mathcal{L}_{n} generated by e_{1} and e_{2}, respectively.

Let P to be the set of vectors of \mathcal{L} in the coset $-h_{1}+\mathcal{A}$ and L be the set of vectors n the coset $-h_{2}+\mathcal{B}$.

We define the bipartite graph $\Gamma\left(\mathcal{L}_{n}\right)$ to have bipartition P and L with $p \in P, I \in L$ adjacent if and only if $[p, l]=0$.

Lie Graphs and Generalized Polygons

If one takes the following matrices:
$M_{1}=\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right), M_{2}=\left(\begin{array}{cc}2 & -2 \\ -1 & 2\end{array}\right), M_{3}=\left(\begin{array}{cc}2 & -3 \\ -1 & 2\end{array}\right)$
the corresponding Lie graphs are isomorphic to the affine parts of the generalized triangles (projective planes), generalized quadrangles and generalized hexagons, for fields of large enough characteristic.

If we take $M_{2}=\left(\begin{array}{cc}2 & -2 \\ -1 & 2\end{array}\right)$, we obtain a Lie algebra spanned by $h_{1}, h_{2}, e_{1}, e_{2}, e_{3}=\left[e_{1}, e_{2}\right], e_{4}=\left[e_{1},\left[e_{1}, e_{2}\right]\right]$.

The multiplication table for this algebra is:

	h_{1}	h_{2}	e_{1}	e_{2}	e_{3}	e_{4}
h_{1}	0	0	e_{1}	0	e_{3}	$2 e_{4}$
h_{2}	0	0	0	e_{2}	e_{3}	e_{4}
e_{1}	$-e_{1}$	0	0	e_{3}	e_{4}	0
e_{2}	0	$-e_{2}$	$-e_{3}$	0	0	0
e_{3}	$-e_{3}$	$-e_{3}$	$-e_{4}$	0	0	0
e_{4}	$-2 e_{4}$	$-e_{4}$	0	0	0	0

Points: $-h_{1}+p_{1} e_{1}+p_{2} e_{3}+p_{3} e_{4}$
Lines: $-h_{2}+l_{1} e_{2}+I_{2} e_{3}+l_{3} e_{4}$
We have p adjacent to I iff $[p, I]=0$, which occurs when $\left(p_{2}-l_{2}+p_{1} l_{1}\right) e_{3}+\left(p_{3}-2 l_{3}+p_{1} l_{2}\right) e_{4}=0$. This gives the equations:

$$
\begin{aligned}
& p_{2}-I_{2}+p_{1} I_{1}=0 \\
& p_{3}-2 /_{3}+p_{1} I_{2}=0
\end{aligned}
$$

After some changes of variables, we obtain the following ADG:
$p_{2}+l_{2}=p_{1} l_{1}$
$p_{3}+l_{3}=p_{1} l_{2}$

Automorphisms of Lie Graphs

Points: $-h_{1}+p_{1} e_{1}+p_{2} e_{3}+p_{3} e_{4}$
Lines: $-h_{2}+l_{1} e_{2}+l_{2} e_{3}+l_{3} e_{4}$
The element e_{1} is nilpotent in \mathcal{L}_{n}, in particular $\operatorname{ad}\left(e_{1}\right)=\delta$ satisfies $\delta^{3}=0$. So the map $\alpha=1+\delta+\frac{\delta^{2}}{2}$ is an automorphism of \mathcal{L}_{n}.

We have
$\alpha\left(-h_{1}+p_{1} e_{1}+p_{2} e_{3}+p_{3} e_{4}\right)=-h_{1}+\left(p_{1}+1\right) e_{1}+p_{2} e_{3}+\left(p_{2}+p_{3}\right) e_{4}$, so α preserves points. A similar calculations shows that lines are preserved as well.

Lie Graphs

Theorem (Terlep, W 2012)

Suppose there is no nonzero word w in the subalgebra \mathcal{L}_{n}^{+}which satisfies $\left[h_{1}, w\right]=0$ or $\left[h_{2}, w\right]=0$. Then the corresponding Lie Graph are ADG's. Furthermore the automorphism group of this graph is transitive on unordered 3-paths for sufficiently large characteristic p and characteristic zero.

Graphs from Lie Algebras

Suppose we take the following matrix and construct the associated Lie graphs:

$$
M_{4}=\left(\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right)
$$

$$
p_{2}-l_{2}=p_{1} l_{1}
$$

$$
2 p_{3}-l_{3}=p_{2} l_{1}
$$

$$
p_{4}-2 l_{4}=-p_{1} I_{2}
$$

$$
2 p_{5}-2 /_{5}=-p_{1} l_{3}+p_{4} l_{1}
$$

$$
3 p_{6}-2 I_{6}=-p_{2} I_{3}+p_{3} I_{2}+p_{5} I_{1}
$$

$$
2 p_{7}-3 /_{7}=-p_{1} I_{5}+p_{2} I_{4}-p_{4} I_{2}
$$

$$
3 p_{8}-3 I_{8}=-p_{1} I_{6}+p_{3} I_{4}-p_{4} I_{3}+p_{7} I_{1}
$$

Graphs from Lie Algebras

Suppose we take the following matrix and construct the associated Lie graphs
$M_{4}=\left(\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right)$

Conjecture

For each $n, t \geq 1$ and sufficiently large prime $p, \Gamma\left(\mathcal{L}_{n}, p^{t}\right)$ is isomorphic to $C D\left(k, p^{t}\right)$ for an appropriate choice of k.

Graphs from Lie Algebras

Now suppose we take the matrix $M_{4}=\left(\begin{array}{cc}2 & -4 \\ -1 & 2\end{array}\right)$ We consider $\Gamma\left(\mathcal{L}_{8}\right)$, and obtain the equations:

$$
\begin{gathered}
p_{2}+I_{2}=p_{1} I_{1} \\
p_{3}+l_{3}=p_{1} I_{2} \\
p_{4}+I_{4}=p_{1} l_{3} \\
p_{5}+l_{5}=p_{1} I_{4} \\
p_{6}+I_{6}=p_{2} l_{3}-2 p_{3} I_{2}+p_{4} I_{1} \\
p_{7}+I_{7}=p_{1} I_{6}+p_{2} I_{4}-3 p_{4} I_{2}+2 p_{5} I_{1} \\
p_{8}+I_{8}=2 p_{2} I_{6}-3 p_{6} I_{2}+p_{7} I_{1}
\end{gathered}
$$

A Lie Graph With No Cycles of Length Fourteen

Theorem (Terlep, W 2012)

For sufficiently large primes p and all q which are powers of p,

$$
\text { ex }\left(n, C_{14}\right) \geq \frac{1}{2^{9 / 8}} n^{1+\frac{1}{8}}, \text { where } n=2 q^{8} .
$$

We note that these graphs have girth 12. The lack of 14 -cycles was shown by a computer using Groebner bases.

The previous bound was ex $\left(n, C_{14}\right) \geq \frac{1}{2^{10 / 9}} n^{1+\frac{1}{9}}$, achieved by $C D(12, q)$ and by a group theoretic construction of Ustimenko and Woldar.

Open Questions

- Computer free proof of C_{14} result? Other missing cycles in this or other families?
- Proof that first matrix gives $C D(k, q)$ for sufficiently large q relative to k ?
- Direct use of Lie algebra in computation of cycle spectrum?
- More direct use of Lie algebra in computation of cycle spectrum?
- Classify ADG's that are transitive on ordered 3-paths?
- More direct use of Lie algebra in computation of cycle spectrum?

The End

Thank You!

