A characterization of Q-polynomial distance-regular graphs using the intersection numbers

Supalak Sumalroj

Silpakorn University, Thailand

The Algebraic and Extremal Graph Theory Conference University of Delaware

August 9, 2017

Overview

Let Γ denote a distance-regular graph with diameter $D \geq 3$.
Assume Γ is primitive.
We use the intersection numbers of Γ to find a positive semidefinite matrix G with integer entries.
We show that G has determinant zero if and only if Γ is Q-polynomial.

History

Let Γ denote a distance-regular graph with diameter $D \geq 3$.
In the literature there are a number of characterizations for the Q-polynomial condition on Γ.

- There is the balanced set characterization (Terwilliger 1987, 1995).
- There is a characterization involving the dual distance matrices (Terwilliger 1995).
- There is a characterization involving the intersection numbers a_{i} (Pascasio 2008; cf. Hanson 2013).
- There is a characterization involving a tail in a representation diagram (Jurišić, Terwilliger, and Žitnik, 2010).
- There is a characterization involving a pair of primitive idempotents (Kurihara and Nozaki 2012; cf. Nomura and Terwilliger 2011).

Preliminaries

- $\Gamma=(X, R)$: a finite, undirected, connected graph, without loops or multiple edges
- X : vertex set
- R : edge set
- ∂ : the shortest path-length distance function for Γ.
- $D:=\max \{\partial(x, y) \mid x, y \in X\}$: the diameter of Γ
- $\Gamma_{i}(x)$: the set of vertices at distance i from x

$$
\Gamma_{i}(x)=\{y \in V \mid \partial(x, y)=i\}
$$

- $\Gamma(x)=\Gamma_{1}(x)$
- The graph Γ is called distance-regular whenever for all integers h, i, j $(0 \leq h, i, j \leq D)$ and for all $x, y \in X$ with $\partial(x, y)=h$, the number

$$
p_{i j}^{h}:=\left|\Gamma_{i}(x) \cap \Gamma_{j}(y)\right|
$$

is independent of x and y.

- The integers $p_{i j}^{h}$ are called the intersection numbers of Γ.

From now on we assume Γ is distance-regular with diameter $D \geq 3$. We abbreviate

$$
\begin{array}{rr}
c_{i}:=p_{1, i-1}^{i} & (1 \leq i \leq D), \\
a_{i}:=p_{1 i}^{i} & (1 \leq i \leq D), \\
b_{i}:=p_{1, i+1}^{i} & (0 \leq i \leq D-1), \\
k_{i}:=p_{i i}^{0} & (0 \leq i \leq D), \\
c_{0}=0, & \\
b_{D}=0 . &
\end{array}
$$

Γ is regular with valency $k=b_{0}$ and $c_{i}+a_{i}+b_{i}=k(0 \leq i \leq D)$.

By [BCN] (Brouwer, Cohen, and Neumaier 1989) the following holds for $0 \leq h, i, j \leq D$:
$p_{i j}^{h}= \begin{cases}=0 & \text { if one of } h, i, j \text { is greater than the sum of the other two, }\end{cases}$ if one of h, i, j equals the sum of the other two.

By [BCN] (Brouwer, Cohen, and Neumaier 1989) the following holds for $0 \leq h, i, j \leq D$:
$p_{i j}^{h}= \begin{cases}=0 & \text { if one of } h, i, j \text { is greater than the sum of the other two, } \\ \neq 0 & \text { if one of } h, i, j \text { equals the sum of the other two. }\end{cases}$
For $0 \leq i \leq D$, let A_{i} denote the matrix in $\operatorname{Mat}_{X}(\mathbb{C})$ with (x, y)-entry

$$
\left(A_{i}\right)_{x y}=\left\{\begin{array}{ll}
1 & \text { if } \quad \partial(x, y)=i, \\
0 & \text { if } \quad \partial(x, y) \neq i,
\end{array} \quad x, y \in X\right.
$$

We call A_{i} the i-th distance matrix of Γ.
We call $A=A_{1}$ the adjacency matrix of Γ.
Observe that A_{i} is real and symmetric for $0 \leq i \leq D$.
Note that $A_{0}=I$, where I is the identity matrix.
Observe that

- $\sum_{i=0}^{D} A_{i}=J$, where J is the all-ones matrix in $\operatorname{Mat}_{X}(\mathbb{C})$.
- For $0 \leq i, j \leq D, A_{i} A_{j}=\sum_{h=0}^{D} p_{i j}^{h} A_{h}$.

Let M denote the subalgebra of $\operatorname{Mat}_{X}(\mathbb{C})$ generated by A.
The matrices $A_{0}, A_{1}, \ldots, A_{D}$ form a basis for M.
We call M the Bose-Mesner algebra of Γ.
M has a basis $E_{0}, E_{1}, \ldots, E_{D}$ such that

$$
\begin{array}{ll}
E_{0}=|X|^{-1} J ; \\
\sum_{i=0}^{D} E_{i}=I ; & \\
E_{i}^{t}=E_{i} & (0 \leq i \leq D) ; \\
\overline{E_{i}}=E_{i} & (0 \leq i \leq D) ; \\
E_{i} E_{j}=\delta_{i j} E_{i} & (0 \leq i, j \leq D) .
\end{array}
$$

The matrices $E_{0}, E_{1}, \ldots, E_{D}$ are called the primitive idempotents of Γ, and E_{0} is called the trivial idempotent.
For $0 \leq i \leq D$ let m_{i} denote the rank of E_{i}.

Let λ denote an indeterminate.
Define polynomials $\left\{v_{i}\right\}_{i=0}^{D+1}$ in $\mathbb{C}[\lambda]$ by $v_{0}=1, v_{1}=\lambda$, and

$$
\lambda v_{i}=c_{i+1} v_{i+1}+a_{i} v_{i}+b_{i-1} v_{i-1} \quad(1 \leq i \leq D)
$$

where $c_{D+1}:=1$.
The following hold:

- $\operatorname{deg} v_{i}=i(0 \leq i \leq D+1)$;
- the coefficient of λ^{i} in v_{i} is $\left(c_{1} c_{2} \cdots c_{i}\right)^{-1}(0 \leq i \leq D+1)$;
- $v_{i}(A)=A_{i}(0 \leq i \leq D)$;
- $v_{D+1}(A)=0$;
- the distinct eigenvalues of Γ are precisely the zeros of v_{D+1}; call these $\theta_{0}, \theta_{1}, \ldots, \theta_{D}$.

Let λ denote an indeterminate.
Define polynomials $\left\{v_{i}\right\}_{i=0}^{D+1}$ in $\mathbb{C}[\lambda]$ by $v_{0}=1, v_{1}=\lambda$, and

$$
\lambda v_{i}=c_{i+1} v_{i+1}+a_{i} v_{i}+b_{i-1} v_{i-1} \quad(1 \leq i \leq D)
$$

where $c_{D+1}:=1$.
The following hold:

- deg $v_{i}=i(0 \leq i \leq D+1)$;
- the coefficient of λ^{i} in v_{i} is $\left(c_{1} c_{2} \cdots c_{i}\right)^{-1}(0 \leq i \leq D+1)$;
- $v_{i}(A)=A_{i}(0 \leq i \leq D)$;
- $v_{D+1}(A)=0$;
- the distinct eigenvalues of Γ are precisely the zeros of v_{D+1}; call these $\theta_{0}, \theta_{1}, \ldots, \theta_{D}$.
Define polynomials $\left\{u_{i}\right\}_{i=0}^{D}$ in $\mathbb{C}[\lambda]$ by $u_{0}=1, u_{1}=\lambda / k$, and

$$
\lambda u_{i}=c_{i} u_{i-1}+a_{i} u_{i}+b_{i} u_{i+1} \quad(1 \leq i \leq D-1)
$$

Let λ denote an indeterminate.
Define polynomials $\left\{v_{i}\right\}_{i=0}^{D+1}$ in $\mathbb{C}[\lambda]$ by $v_{0}=1, v_{1}=\lambda$, and

$$
\lambda v_{i}=c_{i+1} v_{i+1}+a_{i} v_{i}+b_{i-1} v_{i-1} \quad(1 \leq i \leq D)
$$

where $c_{D+1}:=1$.
The following hold:

- deg $v_{i}=i(0 \leq i \leq D+1)$;
- the coefficient of λ^{i} in v_{i} is $\left(c_{1} c_{2} \cdots c_{i}\right)^{-1}(0 \leq i \leq D+1)$;
- $v_{i}(A)=A_{i}(0 \leq i \leq D)$;
- $v_{D+1}(A)=0$;
- the distinct eigenvalues of Γ are precisely the zeros of v_{D+1}; call these $\theta_{0}, \theta_{1}, \ldots, \theta_{D}$.
Define polynomials $\left\{u_{i}\right\}_{i=0}^{D}$ in $\mathbb{C}[\lambda]$ by $u_{0}=1, u_{1}=\lambda / k$, and

$$
\lambda u_{i}=c_{i} u_{i-1}+a_{i} u_{i}+b_{i} u_{i+1} \quad(1 \leq i \leq D-1)
$$

Observe that $u_{i}=v_{i} / k_{i}(0 \leq i \leq D)$.

$$
\begin{array}{rlr}
A_{j}=\sum_{i=0}^{D} v_{j}\left(\theta_{i}\right) E_{i} & (0 \leq j \leq D) \\
E_{j}=|X|^{-1} m_{j} \sum_{i=0}^{D} u_{i}\left(\theta_{j}\right) A_{i} & (0 \leq j \leq D) \tag{2}
\end{array}
$$

$$
\begin{array}{rlr}
A_{j}=\sum_{i=0}^{D} v_{j}\left(\theta_{i}\right) E_{i} & (0 \leq j \leq D) \\
E_{j}=|X|^{-1} m_{j} \sum_{i=0}^{D} u_{i}\left(\theta_{j}\right) A_{i} & (0 \leq j \leq D) \tag{2}
\end{array}
$$

Definition 1.

Let $S \in \operatorname{Mat}_{D+1}(\mathbb{C})$ denote the transition matrix from the basis $\left\{A_{i}\right\}_{i=0}^{D}$ of M to the basis $\left\{E_{i}\right\}_{i=0}^{D}$ of M. Thus

$$
E_{j}=\sum_{i=0}^{D} S_{i j} A_{i}, \quad A_{j}=\sum_{i=0}^{D}\left(S^{-1}\right)_{i j} E_{i} \quad(0 \leq j \leq D)
$$

$$
\begin{array}{rlr}
A_{j}=\sum_{i=0}^{D} v_{j}\left(\theta_{i}\right) E_{i} & (0 \leq j \leq D) \\
E_{j}=|X|^{-1} m_{j} \sum_{i=0}^{D} u_{i}\left(\theta_{j}\right) A_{i} & (0 \leq j \leq D) \tag{2}
\end{array}
$$

Definition 1.

Let $S \in \operatorname{Mat}_{D+1}(\mathbb{C})$ denote the transition matrix from the basis $\left\{A_{i}\right\}_{i=0}^{D}$ of M to the basis $\left\{E_{i}\right\}_{i=0}^{D}$ of M. Thus

$$
E_{j}=\sum_{i=0}^{D} S_{i j} A_{i}, \quad A_{j}=\sum_{i=0}^{D}\left(S^{-1}\right)_{i j} E_{i} \quad(0 \leq j \leq D)
$$

For $0 \leq i, j \leq D$,

$$
S_{i j}=|X|^{-1} m_{j} u_{i}\left(\theta_{j}\right), \quad\left(S^{-1}\right)_{i j}=v_{j}\left(\theta_{i}\right)
$$

Let \circ denote the entry-wise multiplication in $\operatorname{Mat}_{X}(\mathbb{C})$.
Note that $A_{i} \circ A_{j}=\delta_{i j} A_{i}$ for $0 \leq i, j \leq D$. So M is closed under \circ.
There exist scalars $q_{i j}^{h} \in \mathbb{C}$ such that

$$
\begin{equation*}
E_{i} \circ E_{j}=|X|^{-1} \sum_{h=0}^{D} q_{i j}^{h} E_{h} \quad(0 \leq i, j \leq D) \tag{3}
\end{equation*}
$$

We call the $q_{i j}^{h}$ the Krein parameters of Γ.
These parameters are real and nonnegative for $0 \leq h, i, j \leq D$.

Let \circ denote the entry-wise multiplication in $\operatorname{Mat}_{X}(\mathbb{C})$.
Note that $A_{i} \circ A_{j}=\delta_{i j} A_{i}$ for $0 \leq i, j \leq D$. So M is closed under \circ.
There exist scalars $q_{i j}^{h} \in \mathbb{C}$ such that

$$
\begin{equation*}
E_{i} \circ E_{j}=|X|^{-1} \sum_{h=0}^{D} q_{i j}^{h} E_{h} \quad(0 \leq i, j \leq D) \tag{3}
\end{equation*}
$$

We call the $q_{i j}^{h}$ the Krein parameters of Γ.
These parameters are real and nonnegative for $0 \leq h, i, j \leq D$.
The graph Γ is said to be Q-polynomial with respect to the ordering $E_{0}, E_{1}, \ldots, E_{D}$ whenever the following hold for $0 \leq h, i, j \leq D$:
$q_{i j}^{h}= \begin{cases}=0 & \text { if one of } h, i, j \text { is greater than the sum of the other two, } \\ \neq 0 & \text { if one of } h, i, j \text { equals the sum of the other two. }\end{cases}$

Let \circ denote the entry-wise multiplication in $\operatorname{Mat}_{X}(\mathbb{C})$.
Note that $A_{i} \circ A_{j}=\delta_{i j} A_{i}$ for $0 \leq i, j \leq D$. So M is closed under \circ.
There exist scalars $q_{i j}^{h} \in \mathbb{C}$ such that

$$
\begin{equation*}
E_{i} \circ E_{j}=|X|^{-1} \sum_{h=0}^{D} q_{i j}^{h} E_{h} \quad(0 \leq i, j \leq D) \tag{3}
\end{equation*}
$$

We call the $q_{i j}^{h}$ the Krein parameters of Γ.
These parameters are real and nonnegative for $0 \leq h, i, j \leq D$.
The graph Γ is said to be Q-polynomial with respect to the ordering $E_{0}, E_{1}, \ldots, E_{D}$ whenever the following hold for $0 \leq h, i, j \leq D$:
$q_{i j}^{h}= \begin{cases}=0 & \text { if one of } h, i, j \text { is greater than the sum of the other two, } \\ \neq 0 & \text { if one of } h, i, j \text { equals the sum of the other two. }\end{cases}$
Let E denote a primitive idempotent of Γ.
We say that Γ is Q-polynomial with respect to E whenever there exists a Q-polynomial ordering $E_{0}, E_{1}, \ldots, E_{D}$ of the primitive idempotents such that $E=E_{1}$.

Fix a vertex $x \in X$.
For $0 \leq i \leq D$ let $E_{i}^{*}=E_{i}^{*}(x)$ denote the diagonal matrix in $\operatorname{Mat}_{X}(\mathbb{C})$ with (y, y)-entry

$$
\left(E_{i}^{*}\right)_{y y}=\left\{\begin{array}{ll}
1 & \text { if } \quad \partial(x, y)=i, \\
0 & \text { if } \quad \partial(x, y) \neq i,
\end{array} \quad y \in X\right.
$$

We call E_{i}^{*} the i-th dual idempotent of Γ with respect to x.

Fix a vertex $x \in X$.
For $0 \leq i \leq D$ let $E_{i}^{*}=E_{i}^{*}(x)$ denote the diagonal matrix in $\operatorname{Mat}_{X}(\mathbb{C})$ with (y, y)-entry

$$
\left(E_{i}^{*}\right)_{y y}=\left\{\begin{array}{ll}
1 & \text { if } \quad \partial(x, y)=i, \\
0 & \text { if } \quad \partial(x, y) \neq i,
\end{array} \quad y \in X\right.
$$

We call E_{i}^{*} the i-th dual idempotent of Γ with respect to x.

$$
\begin{array}{ll}
\sum_{i=0}^{D} E_{i}^{*}=I \\
E_{i}^{* t}=E_{i}^{*} & (0 \leq i \leq D) \\
\overline{E_{i}^{*}}=E_{i}^{*} & (0 \leq i \leq D) \\
E_{i}^{*} E_{j}^{*}=\delta_{i j} E_{i}^{*} & (0 \leq i, j \leq D)
\end{array}
$$

By construction $E_{0}^{*}, E_{1}^{*}, \ldots, E_{D}^{*}$ are linearly independent.

Fix a vertex $x \in X$.
For $0 \leq i \leq D$ let $E_{i}^{*}=E_{i}^{*}(x)$ denote the diagonal matrix in $\operatorname{Mat}_{X}(\mathbb{C})$ with (y, y)-entry

$$
\left(E_{i}^{*}\right)_{y y}=\left\{\begin{array}{ll}
1 & \text { if } \quad \partial(x, y)=i, \\
0 & \text { if } \quad \partial(x, y) \neq i,
\end{array} \quad y \in X\right.
$$

We call E_{i}^{*} the i-th dual idempotent of Γ with respect to x.

$$
\begin{array}{ll}
\sum_{i=0}^{D} E_{i}^{*}=I \\
E_{i}^{* t}=E_{i}^{*} & (0 \leq i \leq D) \\
\overline{E_{i}^{*}}=E_{i}^{*} & (0 \leq i \leq D) \\
E_{i}^{*} E_{j}^{*}=\delta_{i j} E_{i}^{*} & (0 \leq i, j \leq D)
\end{array}
$$

By construction $E_{0}^{*}, E_{1}^{*}, \ldots, E_{D}^{*}$ are linearly independent.
Let $M^{*}=M^{*}(x)$ denote the subalgebra of $\operatorname{Mat}_{X}(\mathbb{C})$ with basis $E_{0}^{*}, E_{1}^{*}, \ldots, E_{D}^{*}$.
We call M^{*} the dual Bose-Mesner algebra of Γ with respect to x.

For $0 \leq i \leq D$ let $A_{i}^{*}=A_{i}^{*}(x)$ denote the diagonal matrix in $\operatorname{Mat}_{X}(\mathbb{C})$ with (y, y)-entry

$$
\begin{equation*}
\left(A_{i}^{*}\right)_{y y}=|X|\left(E_{i}\right)_{x y} \quad y \in X \tag{4}
\end{equation*}
$$

We call A_{i}^{*} the dual distance matrix of Γ with respect to x and E_{i}.

For $0 \leq i \leq D$ let $A_{i}^{*}=A_{i}^{*}(x)$ denote the diagonal matrix in $\operatorname{Mat}_{X}(\mathbb{C})$ with (y, y)-entry

$$
\begin{equation*}
\left(A_{i}^{*}\right)_{y y}=|X|\left(E_{i}\right)_{x y} \quad y \in X \tag{4}
\end{equation*}
$$

We call A_{i}^{*} the dual distance matrix of Γ with respect to x and E_{i}. The matrices $A_{0}^{*}, A_{1}^{*}, \ldots, A_{D}^{*}$ form a basis for M^{*}.

$$
\begin{array}{ll}
A_{0}^{*}=I \\
\sum_{i=0}^{D} A_{i}^{*}=|X| E_{0}^{*} & \\
A_{i}^{* t}=A_{i}^{*} & (0 \leq i \leq D) ; \\
\overline{A_{i}^{*}}=A_{i}^{*} & (0 \leq i \leq D) ; \\
A_{i}^{*} A_{j}^{*}=\sum_{h=0}^{D} q_{i j}^{h} A_{h}^{*} & (0 \leq i, j \leq D) .
\end{array}
$$

From (1), (2) we have

$$
\begin{array}{ll}
A_{j}^{*}=m_{j} \sum_{i=0}^{D} u_{i}\left(\theta_{j}\right) E_{i}^{*} & (0 \leq j \leq D) \\
E_{j}^{*}=|X|^{-1} \sum_{i=0}^{D} v_{j}\left(\theta_{i}\right) A_{i}^{*} & (0 \leq j \leq D) \tag{6}
\end{array}
$$

From (1), (2) we have

$$
\begin{array}{ll}
A_{j}^{*}=m_{j} \sum_{i=0}^{D} u_{i}\left(\theta_{j}\right) E_{i}^{*} & (0 \leq j \leq D) \\
E_{j}^{*}=|X|^{-1} \sum_{i=0}^{D} v_{j}\left(\theta_{i}\right) A_{i}^{*} & (0 \leq j \leq D) \tag{6}
\end{array}
$$

The matrix $|X| S$ is the transition matrix from the basis $\left\{E_{i}^{*}\right\}_{i=0}^{D}$ of M^{*} to the basis $\left\{A_{i}^{*}\right\}_{i=0}^{D}$ of M^{*}.

From (1), (2) we have

$$
\begin{array}{ll}
A_{j}^{*}=m_{j} \sum_{i=0}^{D} u_{i}\left(\theta_{j}\right) E_{i}^{*} & (0 \leq j \leq D) \\
E_{j}^{*}=|X|^{-1} \sum_{i=0}^{D} v_{j}\left(\theta_{i}\right) A_{i}^{*} & (0 \leq j \leq D) \tag{6}
\end{array}
$$

The matrix $|X| S$ is the transition matrix from the basis $\left\{E_{i}^{*}\right\}_{i=0}^{D}$ of M^{*} to the basis $\left\{A_{i}^{*}\right\}_{i=0}^{D}$ of M^{*}.
Thus

$$
\begin{array}{ll}
A_{j}^{*}=|X| \sum_{i=0}^{D} S_{i j} E_{i}^{*} & (0 \leq j \leq D) \\
E_{j}^{*}=|X|^{-1} \sum_{i=0}^{D}\left(S^{-1}\right)_{i j} A_{i}^{*} & (0 \leq j \leq D)
\end{array}
$$

The matrices $S^{\text {alt }},\left(S^{-1}\right)^{a l t}, S^{\prime}$

We now modify the matrices S, S^{-1} to obtain $D \times D$ matrices $S^{\text {alt }},\left(S^{-1}\right)^{\text {alt }}$ as follows:

$$
\begin{array}{ll}
\left(S^{a l t}\right)_{i j}=S_{i j}-S_{0 j} & (1 \leq i, j \leq D), \\
\left(S^{-1}\right)_{i j}^{l t}=\left(S^{-1}\right)_{i j} & (1 \leq i, j \leq D) .
\end{array}
$$

The matrices $S^{\text {alt }},\left(S^{-1}\right)^{a l t}, S^{\prime}$

We now modify the matrices S, S^{-1} to obtain $D \times D$ matrices $S^{\text {alt }},\left(S^{-1}\right)^{\text {alt }}$ as follows:

$$
\begin{array}{ll}
\left(S^{a l t}\right)_{i j}=S_{i j}-S_{0 j} & (1 \leq i, j \leq D), \\
\left(S^{-1}\right)_{i j}^{l t}=\left(S^{-1}\right)_{i j} & (1 \leq i, j \leq D) .
\end{array}
$$

The matrices $S^{\text {alt }},\left(S^{-1}\right)^{\text {alt }}, S^{\prime}$

Lemma 2.

The following (i)-(iv) hold.
(i) $S^{\text {alt }}$ is the transition matrix from $\left\{A_{2} E_{i}^{*} A-A E_{i}^{*} A_{2}\right\}_{i=1}^{D}$ to $\left\{A_{2} A_{i}^{*} A-A A_{i}^{*} A_{2}\right\}_{i=1}^{D}$.
(ii) $S^{\text {alt }}$ is the transition matrix from $\left\{A_{3} E_{i}^{*}-E_{i}^{*} A_{3}\right\}_{i=1}^{D}$ to $\left\{A_{3} A_{i}^{*}-A_{i}^{*} A_{3}\right\}_{i=1}^{D}$.
(iii) $S^{\text {alt }}$ is the transition matrix from $\left\{A_{2} E_{i}^{*}-E_{i}^{*} A_{2}\right\}_{i=1}^{D}$ to $\left\{A_{2} A_{i}^{*}-A_{i}^{*} A_{2}\right\}_{i=1}^{D}$.
(iv) $S^{\text {alt }}$ is the transition matrix from $\left\{A E_{i}^{*}-E_{i}^{*} A\right\}_{i=1}^{D}$ to $\left\{A A_{i}^{*}-A_{i}^{*} A\right\}_{i=1}^{D}$.
(v) $\left(S^{-1}\right)^{\text {alt }}$ and $S^{\text {alt }}$ are inverses.

Define a matrix

$$
S^{\prime}=\left[\begin{array}{cccc}
S^{\text {alt }} & & & \mathbf{0} \\
& S^{\text {alt }} & & \\
& & S^{a l t} & \\
\mathbf{0} & & & S^{a l t}
\end{array}\right]
$$

where $S^{\text {alt }}$ is from (7).
Observe that S^{\prime} is $4 D \times 4 D$.

Define a matrix

$$
S^{\prime}=\left[\begin{array}{cccc}
S^{\text {alt }} & & & \mathbf{0} \\
& S^{\text {alt }} & & \\
& & S^{a l t} & \\
\mathbf{0} & & & S^{a l t}
\end{array}\right]
$$

where $S^{\text {alt }}$ is from (7).
Observe that S^{\prime} is $4 D \times 4 D$.
Lemma 3.
$\operatorname{det}\left(S^{\prime}\right)=\left(\operatorname{det}\left(S^{a l t}\right)\right)^{4}$. Moreover S^{\prime} is invertible.

Define a matrix

$$
S^{\prime}=\left[\begin{array}{cccc}
S^{\text {alt }} & & & \mathbf{0} \\
& S^{\text {alt }} & & \\
& & S^{a l t} & \\
\mathbf{0} & & & S^{a l t}
\end{array}\right]
$$

where $S^{\text {alt }}$ is from (7).
Observe that S^{\prime} is $4 D \times 4 D$.

Lemma 3.

$\operatorname{det}\left(S^{\prime}\right)=\left(\operatorname{det}\left(S^{\text {alt }}\right)\right)^{4}$. Moreover S^{\prime} is invertible.

Corollary 4.

The matrix S^{\prime} is the transition matrix from $\left\{A_{2} E_{i}^{*} A-A E_{i}^{*} A_{2}\right\}_{i=1}^{D},\left\{A_{3} E_{i}^{*}-E_{i}^{*} A_{3}\right\}_{i=1}^{D},\left\{A_{2} E_{i}^{*}-E_{i}^{*} A_{2}\right\}_{i=1}^{D}$,
$\left\{A E_{i}^{*}-E_{i}^{*} A\right\}_{i=1}^{D}$
to
$\left\{A_{2} A_{i}^{*} A-A A_{i}^{*} A_{2}\right\}_{i=1}^{D},\left\{A_{3} A_{i}^{*}-A_{i}^{*} A_{3}\right\}_{i=1}^{D},\left\{A_{2} A_{i}^{*}-A_{i}^{*} A_{2}\right\}_{i=1}^{D}$, $\left\{A A_{i}^{*}-A_{i}^{*} A\right\}_{i=1}^{D}$.

The bilinear form \langle,

We endow $\operatorname{Mat}_{X}(\mathbb{C})$ with the Hermitean inner product \langle,$\rangle such that$ $\langle R, S\rangle=\operatorname{tr}\left(R^{t} \bar{S}\right)$ for all $R, S \in \operatorname{Mat}_{X}(\mathbb{C})$.
The inner product \langle,$\rangle is positive definite.$

The bilinear form \langle,

We endow $\operatorname{Mat}_{X}(\mathbb{C})$ with the Hermitean inner product \langle,$\rangle such that$ $\langle R, S\rangle=\operatorname{tr}\left(R^{t} \bar{S}\right)$ for all $R, S \in \operatorname{Mat}_{X}(\mathbb{C})$.
The inner product \langle,$\rangle is positive definite.$

Lemma 5.

(See [11, Lemma 3.2].) For $0 \leq h, i, j, r, s, t \leq D$,
(i) $\left\langle E_{i}^{*} A_{j} E_{h}^{*}, E_{r}^{*} A_{s} E_{t}^{*}\right\rangle=\delta_{i r} \delta_{j s} \delta_{h t} k_{h} p_{i j}^{h}$,
(ii) $\left\langle E_{i} A_{j}^{*} E_{h}, E_{r} A_{s}^{*} E_{t}\right\rangle=\delta_{i r} \delta_{j s} \delta_{h t} m_{h} q_{i j}^{h}$.

The bilinear form \langle,

We endow $\operatorname{Mat}_{X}(\mathbb{C})$ with the Hermitean inner product \langle,$\rangle such that$ $\langle R, S\rangle=\operatorname{tr}\left(R^{t} \bar{S}\right)$ for all $R, S \in \operatorname{Mat}_{X}(\mathbb{C})$.
The inner product \langle,$\rangle is positive definite.$

Lemma 5.

(See [11, Lemma 3.2].) For $0 \leq h, i, j, r, s, t \leq D$,
(i) $\left\langle E_{i}^{*} A_{j} E_{h}^{*}, E_{r}^{*} A_{s} E_{t}^{*}\right\rangle=\delta_{i r} \delta_{j s} \delta_{h t} k_{h} p_{i j}^{h}$,
(ii) $\left\langle E_{i} A_{j}^{*} E_{h}, E_{r} A_{s}^{*} E_{t}\right\rangle=\delta_{i r} \delta_{j s} \delta_{h t} m_{h} q_{i j}^{h}$.

Lemma 6.

For $0 \leq h, i, j, r, s, t \leq D$ we have

$$
\left\langle A_{i} E_{j}^{*} A_{h}, A_{r} E_{s}^{*} A_{t}\right\rangle=\sum_{\ell=0}^{D} k_{\ell} p_{i r}^{\ell} p_{j s}^{\ell} p_{h t}^{\ell}
$$

Definition 7.

Let G denote the matrix of inner products for

$$
A_{2} E_{i}^{*} A-A E_{i}^{*} A_{2}, A_{3} E_{i}^{*}-E_{i}^{*} A_{3}, A_{2} E_{i}^{*}-E_{i}^{*} A_{2}, A E_{i}^{*}-E_{i}^{*} A,
$$

where $1 \leq i \leq D$. Thus the matrix G is $4 D \times 4 D$.

Theorem 8.

The entries of G are as follows: For $1 \leq i, j \leq D$,

$\langle\rangle$,	$A_{2} E_{j}^{*} A-A E_{j}^{*} A_{2}$	$A_{3} E_{j}^{*}-E_{j}^{*} A_{3}$	$A_{2} E_{j}^{*}-E_{j}^{*} A_{2}$	$A E_{j}^{*}-E_{j}^{*} A$
$A_{2} E_{i}^{*} A-A E_{i}^{*} A_{2}$	ϕ	$2 k_{2} b_{2}\left(p_{i j}^{1}-p_{i j}^{2}\right)$	$2 k_{2} a_{2}\left(p_{i j}^{1}-p_{i j}^{2}\right)$	$2 k_{2} c_{2}\left(p_{i j}^{1}-p_{i j}^{2}\right)$
$A_{3} E_{i}^{*}-E_{i}^{*} A_{3}$	$2 k_{2} b_{2}\left(p_{i j}^{1}-p_{i j}^{2}\right)$	$2 k_{3}\left(\delta_{i j} k_{i}-p_{i j}^{3}\right)$	0	0
$A_{2} E_{i}^{*}-E_{i}^{*} A_{2}$	$2 k_{2} a_{2}\left(p_{i j}^{1}-p_{i j}^{2}\right)$	0	$2 k_{2}\left(\delta_{i j} k_{i}-p_{i j}^{2}\right)$	0
$A E_{i}^{*}-E_{i}^{*} A$	$2 k_{2} c_{2}\left(p_{i j}^{1}-p_{i j}^{2}\right)$	0	0	$2 k\left(\delta_{i j} k_{i}-p_{i j}^{1}\right)$

where $\phi / 2$ is a weighted sum involving the following terms and coefficients:

term	coefficient
$p_{i j}^{0}$	$k k_{2}$
$p_{i j}^{1}$	$k_{2} a_{1} a_{2}-k b_{1}^{2}$
$p_{i j}^{2}$	$k_{2}\left(c_{2}\left(b_{1}-1\right)-a_{2}\left(a_{1}+1\right)+b_{2}\left(c_{3}-1\right)\right)$
$p_{i j}^{3}$	$-k_{3} c_{3}^{2}$

Definition 9.

For $1 \leq i \leq D$ let B_{i} denote the matrix of inner products for

$$
A_{2} A_{i}^{*} A-A A_{i}^{*} A_{2}, A_{3} A_{i}^{*}-A_{i}^{*} A_{3}, A_{2} A_{i}^{*}-A_{i}^{*} A_{2}, A A_{i}^{*}-A_{i}^{*} A
$$

So the matrix B_{i} is 4×4.

Definition 9.

For $1 \leq i \leq D$ let B_{i} denote the matrix of inner products for

$$
A_{2} A_{i}^{*} A-A A_{i}^{*} A_{2}, A_{3} A_{i}^{*}-A_{i}^{*} A_{3}, A_{2} A_{i}^{*}-A_{i}^{*} A_{2}, A A_{i}^{*}-A_{i}^{*} A
$$

So the matrix B_{i} is 4×4.

Definition 10.

Let \widetilde{G} denote the matrix of inner products for

$$
A_{2} A_{i}^{*} A-A A_{i}^{*} A_{2}, A_{3} A_{i}^{*}-A_{i}^{*} A_{3}, A_{2} A_{i}^{*}-A_{i}^{*} A_{2}, A A_{i}^{*}-A_{i}^{*} A
$$

where $1 \leq i \leq D$. Thus the matrix \widetilde{G} is $4 D \times 4 D$.

Lemma 11.

The matrix \widetilde{G} has the form

$$
\widetilde{G}=\left[\begin{array}{cccc}
B_{1} & & & \mathbf{0} \\
& B_{2} & & \\
& & \ddots & \\
\mathbf{0} & & & B_{D}
\end{array}\right]
$$

where $B_{1}, B_{2}, \ldots, B_{D}$ are from Definition 9 .

Lemma 11.

The matrix \widetilde{G} has the form

$$
\widetilde{G}=\left[\begin{array}{cccc}
B_{1} & & & 0 \\
& B_{2} & & \\
& & \ddots & \\
\mathbf{0} & & & B_{D}
\end{array}\right]
$$

where $B_{1}, B_{2}, \ldots, B_{D}$ are from Definition 9 .
Lemma 12.
(i) $\operatorname{det}(\widetilde{G})=\prod_{i=1}^{D} \operatorname{det}\left(B_{i}\right)$.
(ii) $\widetilde{G}=\left(S^{\prime}\right)^{t} G S^{\prime}$.
(iii) $\operatorname{det}(G)=\left(\operatorname{det}\left(S^{\prime}\right)\right)^{-2} \operatorname{det}(\widetilde{G})$.
(iv) $\operatorname{det}(G)=\left(\operatorname{det}\left(S^{\text {alt }}\right)\right)^{-8} \prod^{D} \operatorname{det}\left(B_{i}\right)$.

The main result

For $1 \leq i \leq D$ let Γ_{i} denote the graph with vertex set X where vertices are adjacent in Γ_{i} whenever they are at distance i in Γ.

The graph Γ is said to be primitive whenever Γ_{i} is connected for $1 \leq i \leq D$.

The main result

For $1 \leq i \leq D$ let Γ_{i} denote the graph with vertex set X where vertices are adjacent in Γ_{i} whenever they are at distance i in Γ.

The graph Γ is said to be primitive whenever Γ_{i} is connected for $1 \leq i \leq D$.

Theorem 13.

Let Γ denote a primitive distance-regular graph with diameter $D \geq 3$. Then Γ is Q-polynomial if and only if $\operatorname{det}(G)=0$.

In Theorem 13 we assume Γ is primitive in order to invoke Terwilliger's dual distance matrix characterization of the Q-polynomial property [10, Theorem 3.3].

The main result

For $1 \leq i \leq D$ let Γ_{i} denote the graph with vertex set X where vertices are adjacent in Γ_{i} whenever they are at distance i in Γ.

The graph Γ is said to be primitive whenever Γ_{i} is connected for $1 \leq i \leq D$.

Theorem 13.

Let Γ denote a primitive distance-regular graph with diameter $D \geq 3$. Then Γ is Q-polynomial if and only if $\operatorname{det}(G)=0$.

In Theorem 13 we assume Γ is primitive in order to invoke Terwilliger's dual distance matrix characterization of the Q-polynomial property [10, Theorem 3.3].

Thank you for your attention.

The main result

Lemma 14.

(See [BCN, Proposition 4.4.7].)
Assume Γ is primitive. Then $u_{i}\left(\theta_{j}\right) \neq 1$ for $1 \leq i, j \leq D$.

Theorem 15.

(See [Terwilliger 1995, Theorem 3.3].)
Let Γ denote a distance-regular graph with diameter $D \geq 3$, and let θ denote any eigenvalue of Γ. Let E denote the corresponding primitive idempotent, with dual eigenvalue sequence $\theta_{0}^{*}, \theta_{1}^{*}, \ldots, \theta_{D}^{*}$. Then $A^{*} A_{3}-A_{3} A^{*} \in \operatorname{Span}\left\{A A^{*} A_{2}-A_{2} A^{*} A, A^{*} A_{2}-A_{2} A^{*}, A^{*} A-A A^{*}\right\}$ if and only if Γ is Q-polynomial with respect to E.

The main result

Proof

(\Rightarrow) Assume that Γ is Q-polynomial with respect to the ordering $E_{0}, E_{1}, \ldots, E_{D}$. Write $A^{*}=A_{1}^{*}$.
By Theorem 15 and Lemma 14, we obtain $A^{*} A_{3}-A_{3} A^{*} \in \operatorname{Span}\left\{A A^{*} A_{2}-A_{2} A^{*} A, A^{*} A_{2}-A_{2} A^{*}, A^{*} A-A A^{*}\right\}$. Thus $A A^{*} A_{2}-A_{2} A^{*} A, A^{*} A_{3}-A_{3} A^{*}, A^{*} A_{2}-A_{2} A^{*}, A^{*} A-A A^{*}$ are linearly dependent.
Now the matrix B_{1} from Definition 9 has determinant zero.
Now $\operatorname{det}(G)=0$ by Lemma 12(iii).

Proof

(\Leftarrow) Assume $\operatorname{det}(G)=0$.
By Lemma 12(iii) and since $S^{\text {alt }}$ is invertible, there exists an integer t $(1 \leq t \leq D)$ such that $\operatorname{det}\left(B_{t}\right)=0$.
Now $A A_{t}^{*} A_{2}-A_{2} A_{t}^{*} A, A_{t}^{*} A_{3}-A_{3} A_{t}^{*}, A_{t}^{*} A_{2}-A_{2} A_{t}^{*}, A_{t}^{*} A-A A_{t}^{*}$ are linearly dependent.
We will show that
$A_{t}^{*} A_{3}-A_{3} A_{t}^{*} \in \operatorname{Span}\left\{A A_{t}^{*} A_{2}-A_{2} A_{t}^{*} A, A_{t}^{*} A_{2}-A_{2} A_{t}^{*}, A_{t}^{*} A-A A_{t}^{*}\right\}$.
To do this we show that $A A_{t}^{*} A_{2}-A_{2} A_{t}^{*} A, A_{t}^{*} A_{2}-A_{2} A_{t}^{*}, A_{t}^{*} A-A A_{t}^{*}$ are linearly independent.
Suppose not.
Then there exist scalars a, b, c, not all zero, such that

$$
\begin{equation*}
a\left(A A_{t}^{*} A_{2}-A_{2} A_{t}^{*} A\right)+b\left(A_{t}^{*} A_{2}-A_{2} A_{t}^{*}\right)+c\left(A_{t}^{*} A-A A_{t}^{*}\right)=0 \tag{9}
\end{equation*}
$$

Abbreviate $\theta_{i}^{*}=m_{t} u_{i}\left(\theta_{t}\right)(0 \leq i \leq D)$. So $A_{t}^{*}=\sum_{i=0}^{D} \theta_{i}^{*} E_{i}^{*}$.
By Lemma 14,

$$
\begin{equation*}
\theta_{i}^{*} \neq \theta_{0}^{*} \quad(1 \leq i \leq D) \tag{10}
\end{equation*}
$$

Proof

For $1 \leq h \leq 3$ pick $z \in X$ such that $\partial(x, z)=h$.
Compute the (x, z)-entry in (9).
For $h=3$ we get $a c_{3}\left(\theta_{1}^{*}-\theta_{2}^{*}\right)=0$.
For $h=2$ we get $a a_{2}\left(\theta_{1}^{*}-\theta_{2}^{*}\right)+b\left(\theta_{0}^{*}-\theta_{2}^{*}\right)=0$.
For $h=1$ we get $a b_{1}\left(\theta_{1}^{*}-\theta_{2}^{*}\right)+c\left(\theta_{0}^{*}-\theta_{1}^{*}\right)=0$.
Solving these equations we obtain $a\left(\theta_{1}^{*}-\theta_{2}^{*}\right)=0$ and $b=0, c=0$.
Recall that a, b, c are not all zero, so $a \neq 0$ and $\theta_{1}^{*}=\theta_{2}^{*}$.
Now (9) becomes $A A_{t}^{*} A_{2}-A_{2} A_{t}^{*} A=0$.
Recall $c_{2} A_{2}=A^{2}-a_{1} A-k I$.
We have $A A_{t}^{*} A^{2}+k A_{t}^{*} A=A^{2} A_{t}^{*} A+k A A_{t}^{*}$.
Thus $\left[A, A A_{t}^{*} A+k A_{t}^{*}\right]=0$.
For $0 \leq i, j \leq D$ such that $i \neq j$ we have $E_{i} A_{t}^{*} E_{j}\left(\theta_{i} \theta_{j}+k\right)=0$.
Recall $E_{i} A_{j}^{*} E_{h}=0$ if and only if $q_{i j}^{h}=0$ for $0 \leq h, i, j \leq D$.
So $E_{i} A_{t}^{*} E_{j} \neq 0$ if and only if $q_{i j}^{t} \neq 0$, and in this case $\theta_{i} \theta_{j}+k=0$.
Since $q_{0 t}^{t}=1$ and $\theta_{0}=k$, we have $k \theta_{t}+k=0$ and hence $\theta_{t}=-1$.

Proof.

Define a diagram with nodes $0,1, \ldots, D$.
There exists an arc between nodes i, j if and only if $i \neq j$ and $q_{i j}^{t} \neq 0$. Observe that node 0 is connected to node t and no other nodes.
By [BCN, Proposition 2.11.1] and Lemma 14, the diagram is connected.
Thus there exists a node s with $s \neq 0$ and $s \neq t$ that is connected to node t by an arc.
In other words $q_{s t}^{t} \neq 0$.
So $\theta_{s} \theta_{t}+k=0$ and hence $\theta_{s}=k$, a contradiction.
Therefore $A A_{t}^{*} A_{2}-A_{2} A_{t}^{*} A, A_{t}^{*} A_{2}-A_{2} A_{t}^{*}, A_{t}^{*} A-A A_{t}^{*}$ are linearly independent.
So
$A_{t}^{*} A_{3}-A_{3} A_{t}^{*} \in \operatorname{Span}\left\{A A_{t}^{*} A_{2}-A_{2} A_{t}^{*} A, A_{t}^{*} A_{2}-A_{2} A_{t}^{*}, A_{t}^{*} A-A A_{t}^{*}\right\}$.
Now by Theorem 15 and (10), Γ is a Q-polynomial with respect to $E=E_{t}$.
E. Bannai, T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin/Cummings, London, 1984.
A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-regular graphs, Springer-Verlag, Berlin, Heidelberg, 1989.
E. Hanson, A characterization of Leonard pairs using the parameters $\left\{a_{i}\right\}_{i=0}^{d}$, Linear Algebra Appl. 438 (2013), 2289-2305.
(it Ito, K. Tanabe, and P. Terwilliger, Some algebra related to P - and Q-polynomial association schemes, In Codes and Association Schemes (Piscataway NJ, 1999), Amer. Math. Soc., Providence RI, 2001, pp.167-192; arXiv:math. CO/0406556.
(in A. Jurišić, P. Terwilliger, and A. Žitnik, The Q-polynomial idempotents of a distance-regular graph, J. Combin. Theory Ser. B 100 (2010), 683-690.
H. Kurihara and H. Nozaki, A characterization of Q-polynomial association schemes, J. Combin. Theory Ser. A 119 (2012), 57-62.

㞒 K. Nomura and P. Terwilliger, Tridiagonal matrices with nonnegative entries, Linear Algebra Appl. 434 (2011), 2527-2538.
A.A. Pascasio, A characterization of Q-polynomial distance-regular graphs, Discrete Math. 308 (2008), 3090-3096.
P. Terwilliger, A characterization of P - and Q-polynomial association schemes, J. Combin. Theory Ser. A 45 (1987), 8-26.

目 P. Terwilliger, A new inequality for distance-regular graphs, Discrete Math. 137 (1995), 319-332.
P. Terwilliger, The subconstituent algebra of an association scheme I, J. Algebraic Combin. 1 (1992), 363-388.

