A characterization of Q-polynomial distance-regular graphs using the intersection numbers

Supalak Sumalroj

Silpakorn University, Thailand

The Algebraic and Extremal Graph Theory Conference University of Delaware August 9, 2017 Let Γ denote a distance-regular graph with diameter $D \geq 3$. Assume Γ is primitive.

We use the intersection numbers of Γ to find a positive semidefinite matrix G with integer entries.

We show that G has determinant zero if and only if Γ is Q-polynomial.

History

Let Γ denote a distance-regular graph with diameter $D \geq 3$. In the literature there are a number of characterizations for the Q-polynomial condition on Γ .

- There is the balanced set characterization (Terwilliger 1987, 1995).
- There is a characterization involving the dual distance matrices (Terwilliger 1995).
- There is a characterization involving the intersection numbers a_i (Pascasio 2008; cf. Hanson 2013).
- There is a characterization involving a tail in a representation diagram (Jurišić, Terwilliger, and Žitnik, 2010).
- There is a characterization involving a pair of primitive idempotents (Kurihara and Nozaki 2012; cf. Nomura and Terwilliger 2011).

3

Preliminaries

- $\Gamma = (X,R)$: a finite, undirected, connected graph, without loops or multiple edges
 - ► X : vertex set
 - R : edge set
- ∂ : the shortest path-length distance function for Γ .
- $D := \max\{\partial(x,y)|x,y \in X\}$: the *diameter* of Γ
- $\Gamma_i(x)$: the set of vertices at distance *i* from *x*

 $\Gamma_i(x) = \{y \in V | \partial(x,y) = i\}$

- $\Gamma(x) = \Gamma_1(x)$
- The graph Γ is called distance-regular whenever for all integers h, i, j $(0 \le h, i, j \le D)$ and for all $x, y \in X$ with $\partial(x, y) = h$, the number

$$p_{ij}^h := |\Gamma_i(x) \cap \Gamma_j(y)|$$

is independent of x and y.

• The integers p_{ij}^h are called the intersection numbers of Γ .

From now on we assume Γ is distance-regular with diameter $D \geq 3$. We abbreviate

$$c_{i} := p_{1,i-1}^{i} \qquad (1 \le i \le D),$$

$$a_{i} := p_{1i}^{i} \qquad (1 \le i \le D),$$

$$b_{i} := p_{1,i+1}^{i} \qquad (0 \le i \le D-1),$$

$$k_{i} := p_{ii}^{0} \qquad (0 \le i \le D),$$

$$c_{0} = 0,$$

$$b_{D} = 0.$$

 Γ is regular with valency $k = b_0$ and $c_i + a_i + b_i = k \ (0 \le i \le D)$.

< 🗗 🕨 🔸

3

By [BCN] (Brouwer, Cohen, and Neumaier 1989) the following holds for $0 \le h, i, j \le D$:

 $p_{ij}^{h} = \begin{cases} = 0 & \text{if one of } h, i, j \text{ is greater than the sum of the other two,} \\ \neq 0 & \text{if one of } h, i, j \text{ equals the sum of the other two.} \end{cases}$

By [BCN] (Brouwer, Cohen, and Neumaier 1989) the following holds for $0 \le h, i, j \le D$:

 $p_{ij}^{h} = \begin{cases} = 0 & \text{if one of } h, i, j \text{ is greater than the sum of the other two,} \\ \neq 0 & \text{if one of } h, i, j \text{ equals the sum of the other two.} \end{cases}$

For $0 \leq i \leq D$, let A_i denote the matrix in $Mat_X(\mathbb{C})$ with (x, y)-entry

$$(A_i)_{xy} = \begin{cases} 1 & \text{if } \partial(x,y) = i, \\ 0 & \text{if } \partial(x,y) \neq i, \end{cases} \qquad x, y \in X.$$

We call A_i the *i*-th distance matrix of Γ . We call $A = A_1$ the adjacency matrix of Γ . Observe that A_i is real and symmetric for $0 \le i \le D$. Note that $A_0 = I$, where I is the identity matrix. Observe that

- $\sum_{i=0}^{D} A_i = J$, where J is the all-ones matrix in $Mat_X(\mathbb{C})$.
- For $0 \le i, j \le D$, $A_i A_j = \sum_{h=0}^D p_{ij}^h A_h$.

Let M denote the subalgebra of $Mat_X(\mathbb{C})$ generated by A. The matrices $A_0, A_1, ..., A_D$ form a basis for M. We call M the Bose-Mesner algebra of Γ . M has a basis $E_0, E_1, ..., E_D$ such that

$E_0 = X ^{-1}J;$	
$\sum_{i=1}^{D} E_i = I;$	
$\sum_{i=0}^{t} E_i$	(0 < i < D):
$\frac{E_i}{E_i} = E_i$	$(0 \le i \le D);$ $(0 \le i \le D);$
$E_i E_j = \delta_{ij} E_i$	$(0 \le i, j \le D).$

The matrices $E_0, E_1, ..., E_D$ are called the primitive idempotents of Γ , and E_0 is called the trivial idempotent.

For $0 \leq i \leq D$ let m_i denote the rank of E_i .

Let λ denote an indeterminate. Define polynomials $\{v_i\}_{i=0}^{D+1}$ in $\mathbb{C}[\lambda]$ by $v_0 = 1$, $v_1 = \lambda$, and

$$\lambda v_i = c_{i+1}v_{i+1} + a_iv_i + b_{i-1}v_{i-1} \qquad (1 \le i \le D),$$

where $c_{D+1} := 1$. The following hold:

- $deg \ v_i = i \ (0 \le i \le D + 1);$
- the coefficient of λ^i in v_i is $(c_1c_2\cdots c_i)^{-1}$ $(0 \le i \le D+1)$;

•
$$v_i(A) = A_i \ (0 \le i \le D);$$

- $v_{D+1}(A) = 0;$
- the distinct eigenvalues of Γ are precisely the zeros of v_{D+1} ; call these $\theta_0, \theta_1, ..., \theta_D$.

Let λ denote an indeterminate. Define polynomials $\{v_i\}_{i=0}^{D+1}$ in $\mathbb{C}[\lambda]$ by $v_0 = 1$, $v_1 = \lambda$, and

$$\lambda v_i = c_{i+1}v_{i+1} + a_iv_i + b_{i-1}v_{i-1} \qquad (1 \le i \le D),$$

where $c_{D+1} := 1$. The following hold:

- $deg \ v_i = i \ (0 \le i \le D+1);$
- the coefficient of λ^i in v_i is $(c_1c_2\cdots c_i)^{-1}$ $(0 \le i \le D+1)$;

•
$$v_i(A) = A_i \ (0 \le i \le D);$$

- $v_{D+1}(A) = 0;$
- the distinct eigenvalues of Γ are precisely the zeros of v_{D+1} ; call these $\theta_0, \theta_1, ..., \theta_D$.

Define polynomials $\{u_i\}_{i=0}^D$ in $\mathbb{C}[\lambda]$ by $u_0 = 1$, $u_1 = \lambda/k$, and

$$\lambda u_i = c_i u_{i-1} + a_i u_i + b_i u_{i+1} \qquad (1 \le i \le D - 1).$$

Let λ denote an indeterminate. Define polynomials $\{v_i\}_{i=0}^{D+1}$ in $\mathbb{C}[\lambda]$ by $v_0 = 1$, $v_1 = \lambda$, and

$$\lambda v_i = c_{i+1}v_{i+1} + a_iv_i + b_{i-1}v_{i-1} \qquad (1 \le i \le D),$$

where $c_{D+1} := 1$. The following hold:

•
$$deg \ v_i = i \ (0 \le i \le D+1);$$

• the coefficient of λ^i in v_i is $(c_1c_2\cdots c_i)^{-1}$ $(0 \le i \le D+1)$;

•
$$v_i(A) = A_i \ (0 \le i \le D);$$

- $v_{D+1}(A) = 0;$
- the distinct eigenvalues of Γ are precisely the zeros of v_{D+1} ; call these $\theta_0, \theta_1, ..., \theta_D$.

Define polynomials $\{u_i\}_{i=0}^D$ in $\mathbb{C}[\lambda]$ by $u_0 = 1$, $u_1 = \lambda/k$, and

$$\lambda u_i = c_i u_{i-1} + a_i u_i + b_i u_{i+1} \qquad (1 \le i \le D - 1).$$

Observe that $u_i = v_i/k_i \ (0 \le i \le D)$.

$$A_{j} = \sum_{i=0}^{D} v_{j}(\theta_{i}) E_{i} \qquad (0 \le j \le D), \qquad (1)$$
$$E_{j} = |X|^{-1} m_{j} \sum_{i=0}^{D} u_{i}(\theta_{j}) A_{i} \qquad (0 \le j \le D). \qquad (2)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

$$A_{j} = \sum_{i=0}^{D} v_{j}(\theta_{i}) E_{i} \qquad (0 \le j \le D), \qquad (1)$$
$$E_{j} = |X|^{-1} m_{j} \sum_{i=0}^{D} u_{i}(\theta_{j}) A_{i} \qquad (0 \le j \le D). \qquad (2)$$

Definition 1.

Let $S \in \operatorname{Mat}_{D+1}(\mathbb{C})$ denote the transition matrix from the basis $\{A_i\}_{i=0}^{D}$ of M to the basis $\{E_i\}_{i=0}^{D}$ of M. Thus

$$E_j = \sum_{i=0}^{D} S_{ij} A_i, \qquad A_j = \sum_{i=0}^{D} (S^{-1})_{ij} E_i \qquad (0 \le j \le D).$$

3

< 回 ト < 三 ト < 三 ト

$$A_{j} = \sum_{i=0}^{D} v_{j}(\theta_{i}) E_{i} \qquad (0 \le j \le D), \qquad (1)$$
$$E_{j} = |X|^{-1} m_{j} \sum_{i=0}^{D} u_{i}(\theta_{j}) A_{i} \qquad (0 \le j \le D). \qquad (2)$$

Definition 1.

Let $S \in \operatorname{Mat}_{D+1}(\mathbb{C})$ denote the transition matrix from the basis $\{A_i\}_{i=0}^D$ of M to the basis $\{E_i\}_{i=0}^D$ of M. Thus

$$E_j = \sum_{i=0}^{D} S_{ij} A_i, \qquad A_j = \sum_{i=0}^{D} (S^{-1})_{ij} E_i \qquad (0 \le j \le D).$$

For $0 \le i, j \le D$,

$$S_{ij} = |X|^{-1} m_j u_i(\theta_j),$$
 $(S^{-1})_{ij} = v_j(\theta_i).$

3

くほと くほと くほと

Let \circ denote the entry-wise multiplication in $\operatorname{Mat}_X(\mathbb{C})$. Note that $A_i \circ A_j = \delta_{ij}A_i$ for $0 \le i, j \le D$. So M is closed under \circ . There exist scalars $q_{ij}^h \in \mathbb{C}$ such that

$$E_i \circ E_j = |X|^{-1} \sum_{h=0}^{D} q_{ij}^h E_h \qquad (0 \le i, j \le D).$$
(3)

We call the q_{ij}^h the Krein parameters of Γ .

These parameters are real and nonnegative for $0 \le h, i, j \le D$.

Let \circ denote the entry-wise multiplication in $\operatorname{Mat}_X(\mathbb{C})$. Note that $A_i \circ A_j = \delta_{ij}A_i$ for $0 \le i, j \le D$. So M is closed under \circ . There exist scalars $q_{ij}^h \in \mathbb{C}$ such that

$$E_i \circ E_j = |X|^{-1} \sum_{h=0}^{D} q_{ij}^h E_h \qquad (0 \le i, j \le D).$$
(3)

We call the q_{ij}^h the Krein parameters of Γ . These parameters are real and nonnegative for $0 \le h, i, j \le D$. The graph Γ is said to be *Q*-polynomial with respect to the ordering $E_0, E_1, ..., E_D$ whenever the following hold for $0 \le h, i, j \le D$:

 $q_{ij}^{h} = \begin{cases} = 0 & \text{if one of } h, i, j \text{ is greater than the sum of the other two,} \\ \neq 0 & \text{if one of } h, i, j \text{ equals the sum of the other two.} \end{cases}$

Let \circ denote the entry-wise multiplication in $\operatorname{Mat}_X(\mathbb{C})$. Note that $A_i \circ A_j = \delta_{ij}A_i$ for $0 \le i, j \le D$. So M is closed under \circ . There exist scalars $q_{ij}^h \in \mathbb{C}$ such that

$$E_i \circ E_j = |X|^{-1} \sum_{h=0}^{D} q_{ij}^h E_h \qquad (0 \le i, j \le D).$$
(3)

We call the q_{ij}^h the Krein parameters of Γ . These parameters are real and nonnegative for $0 \le h, i, j \le D$. The graph Γ is said to be *Q*-polynomial with respect to the ordering $E_0, E_1, ..., E_D$ whenever the following hold for $0 \le h, i, j \le D$:

 $q_{ij}^{h} = \begin{cases} = 0 & \text{if one of } h, i, j \text{ is greater than the sum of the other two,} \\ \neq 0 & \text{if one of } h, i, j \text{ equals the sum of the other two.} \end{cases}$

Let E denote a primitive idempotent of Γ .

We say that Γ is *Q*-polynomial with respect to *E* whenever there exists a *Q*-polynomial ordering $E_0, E_1, ..., E_D$ of the primitive idempotents such that $E = E_1$.

Fix a vertex $x \in X$.

For $0 \le i \le D$ let $E_i^* = E_i^*(x)$ denote the diagonal matrix in $Mat_X(\mathbb{C})$ with (y, y)-entry

$$(E_i^*)_{yy} = \begin{cases} 1 & \text{if } \partial(x,y) = i, \\ 0 & \text{if } \partial(x,y) \neq i, \end{cases} \qquad y \in X.$$

We call E_i^* the *i*-th dual idempotent of Γ with respect to x.

1

Fix a vertex $x \in X$.

For $0 \le i \le D$ let $E_i^* = E_i^*(x)$ denote the diagonal matrix in $Mat_X(\mathbb{C})$ with (y, y)-entry

$$(E_i^*)_{yy} = \begin{cases} 1 & \text{if } \partial(x,y) = i, \\ 0 & \text{if } \partial(x,y) \neq i, \end{cases} \qquad y \in X.$$

We call E_i^* the *i*-th dual idempotent of Γ with respect to x.

1

$$\sum_{i=0}^{D} E_{i}^{*} = I;$$

$$E_{i}^{*t} = E_{i}^{*} \qquad (0 \le i \le D);$$

$$\overline{E_{i}^{*}} = E_{i}^{*} \qquad (0 \le i \le D);$$

$$E_{i}^{*}E_{j}^{*} = \delta_{ij}E_{i}^{*} \qquad (0 \le i, j \le D)$$

By construction $E_0^{\ast}, E_1^{\ast}, ..., E_D^{\ast}$ are linearly independent.

Fix a vertex $x \in X$.

For $0 \le i \le D$ let $E_i^* = E_i^*(x)$ denote the diagonal matrix in $Mat_X(\mathbb{C})$ with (y, y)-entry

$$(E_i^*)_{yy} = \begin{cases} 1 & \text{if } \partial(x,y) = i, \\ 0 & \text{if } \partial(x,y) \neq i, \end{cases} \qquad y \in X.$$

We call E_i^* the *i*-th dual idempotent of Γ with respect to x.

$$\begin{split} \sum_{i=0}^{D} E_{i}^{*} &= I; \\ E_{i}^{*t} &= E_{i}^{*} \qquad (0 \leq i \leq D); \\ \overline{E_{i}^{*}} &= E_{i}^{*} \qquad (0 \leq i \leq D); \\ E_{i}^{*} E_{j}^{*} &= \delta_{ij} E_{i}^{*} \qquad (0 \leq i, j \leq D) \end{split}$$

By construction $E_0^*, E_1^*, ..., E_D^*$ are linearly independent. Let $M^* = M^*(x)$ denote the subalgebra of $\operatorname{Mat}_X(\mathbb{C})$ with basis $E_0^*, E_1^*, ..., E_D^*$. We call M^* the dual Bose-Mesner algebra of Γ with respect to x.

Supalak Sumalroj

A characterization of Q-polynomial distance

For $0 \le i \le D$ let $A_i^* = A_i^*(x)$ denote the diagonal matrix in $Mat_X(\mathbb{C})$ with (y, y)-entry

$$(A_i^*)_{yy} = |X|(E_i)_{xy}$$
 $y \in X.$ (4)

We call A_i^* the dual distance matrix of Γ with respect to x and E_i .

3

For $0 \le i \le D$ let $A_i^* = A_i^*(x)$ denote the diagonal matrix in $Mat_X(\mathbb{C})$ with (y, y)-entry

$$(A_i^*)_{yy} = |X|(E_i)_{xy}$$
 $y \in X.$ (4)

We call A_i^* the dual distance matrix of Γ with respect to x and E_i . The matrices $A_0^*, A_1^*, ..., A_D^*$ form a basis for M^* .

$$\begin{split} A_0^* &= I; \\ \sum_{i=0}^D A_i^* &= |X| E_0^*; \\ A_i^{*t} &= A_i^* & (0 \leq i \leq D); \\ \overline{A_i^*} &= A_i^* & (0 \leq i \leq D); \\ A_i^* A_j^* &= \sum_{h=0}^D q_{ij}^h A_h^* & (0 \leq i, j \leq D). \end{split}$$

12 / 27

From (1), (2) we have

$$A_{j}^{*} = m_{j} \sum_{i=0}^{D} u_{i}(\theta_{j}) E_{i}^{*} \qquad (0 \le j \le D), \qquad (5)$$
$$E_{j}^{*} = |X|^{-1} \sum_{i=0}^{D} v_{j}(\theta_{i}) A_{i}^{*} \qquad (0 \le j \le D). \qquad (6)$$

3

<ロ> (日) (日) (日) (日) (日)

From (1), (2) we have

$$A_{j}^{*} = m_{j} \sum_{i=0}^{D} u_{i}(\theta_{j}) E_{i}^{*} \qquad (0 \le j \le D), \qquad (5)$$
$$E_{j}^{*} = |X|^{-1} \sum_{i=0}^{D} v_{j}(\theta_{i}) A_{i}^{*} \qquad (0 \le j \le D). \qquad (6)$$

The matrix |X|S is the transition matrix from the basis $\{E_i^*\}_{i=0}^D$ of M^* to the basis $\{A_i^*\}_{i=0}^D$ of M^* .

13 / 27

From (1), (2) we have

$$A_{j}^{*} = m_{j} \sum_{i=0}^{D} u_{i}(\theta_{j}) E_{i}^{*} \qquad (0 \le j \le D), \qquad (5)$$
$$E_{j}^{*} = |X|^{-1} \sum_{i=0}^{D} v_{j}(\theta_{i}) A_{i}^{*} \qquad (0 \le j \le D). \qquad (6)$$

The matrix |X|S is the transition matrix from the basis $\{E^*_i\}_{i=0}^D$ of M^* to the basis $\{A^*_i\}_{i=0}^D$ of $M^*.$ Thus

$$A_{j}^{*} = |X| \sum_{i=0}^{D} S_{ij} E_{i}^{*} \qquad (0 \le j \le D),$$
$$E_{j}^{*} = |X|^{-1} \sum_{i=0}^{D} (S^{-1})_{ij} A_{i}^{*} \qquad (0 \le j \le D).$$

The matrices $S^{alt}, (S^{-1})^{alt}, S'$

We now modify the matrices S, S^{-1} to obtain $D \times D$ matrices $S^{alt}, (S^{-1})^{alt}$ as follows:

$$(S^{alt})_{ij} = S_{ij} - S_{0j} \qquad (1 \le i, j \le D), \qquad (7)$$

$$(S^{-1})^{alt}_{ij} = (S^{-1})_{ij} \qquad (1 \le i, j \le D). \qquad (8)$$

イロト 不得 トイヨト イヨト 二日

The matrices $S^{alt}, (S^{-1})^{alt}, S'$

We now modify the matrices S, S^{-1} to obtain $D \times D$ matrices $S^{alt}, (S^{-1})^{alt}$ as follows:

$$(S^{alt})_{ij} = S_{ij} - S_{0j} \qquad (1 \le i, j \le D), \qquad (7)$$

$$(S^{-1})^{alt}_{ij} = (S^{-1})_{ij} \qquad (1 \le i, j \le D). \qquad (8)$$

イロト 不得 トイヨト イヨト 二日

The matrices $S^{alt}, (S^{-1})^{alt}, S'$

Lemma 2.

The following (i)–(iv) hold. (i) S^{alt} is the transition matrix from $\{A_2E_i^*A - AE_i^*A_2\}_{i=1}^{D}$ to $\{A_2A_i^*A - AA_i^*A_2\}_{i=1}^D$ (ii) S^{alt} is the transition matrix from $\{A_3E_i^* - E_i^*A_3\}_{i=1}^{D}$ to $\{A_3A_i^* - A_i^*A_3\}_{i=1}^D$ (iii) S^{alt} is the transition matrix from $\{A_2E_i^* - E_i^*A_2\}_{i=1}^{D}$ to $\{A_2A_i^* - A_i^*A_2\}_{i=1}^D$ (iv) S^{alt} is the transition matrix from $\{AE_i^* - E_i^*A\}_{i=1}^D$ to $\{AA_{i}^{*} - A_{i}^{*}A\}_{i=1}^{D}$ (v) $(S^{-1})^{alt}$ and S^{alt} are inverses.

- 3

Define a matrix

where S^{alt} is from (7). Observe that S' is $4D \times 4D$. Define a matrix

where S^{alt} is from (7). Observe that S' is $4D \times 4D$.

Lemma 3.

$$det(S') = (det(S^{alt}))^4$$
. Moreover S' is invertible.

Define a matrix

$$S' = \begin{bmatrix} S^{alt} & \mathbf{0} \\ S^{alt} & \\ \mathbf{0} & S^{alt} \end{bmatrix},$$

where S^{alt} is from (7). Observe that S' is $4D \times 4D$.

Lemma 3.

$$det(S') = (det(S^{alt}))^4$$
. Moreover S' is invertible.

Corollary 4.

The matrix S' is the transition matrix from
$$\{A_2E_i^*A - AE_i^*A_2\}_{i=1}^D, \{A_3E_i^* - E_i^*A_3\}_{i=1}^D, \{A_2E_i^* - E_i^*A_2\}_{i=1}^D, \{AE_i^* - E_i^*A_1\}_{i=1}^D$$

to $\{A_2A_i^*A - AA_i^*A_2\}_{i=1}^D, \{A_3A_i^* - A_i^*A_3\}_{i=1}^D, \{A_2A_i^* - A_i^*A_2\}_{i=1}^D, \{AA_i^* - A_i^*A_1\}_{i=1}^D$.

The bilinear form $\langle \;,\;\rangle$

We endow $\operatorname{Mat}_X(\mathbb{C})$ with the Hermitean inner product \langle , \rangle such that $\langle R, S \rangle = tr(R^t\overline{S})$ for all $R, S \in \operatorname{Mat}_X(\mathbb{C})$. The inner product \langle , \rangle is positive definite.

< 47 ▶ <

The bilinear form $\langle \;,\;\rangle$

We endow $\operatorname{Mat}_X(\mathbb{C})$ with the Hermitean inner product \langle , \rangle such that $\langle R, S \rangle = tr(R^t \overline{S})$ for all $R, S \in \operatorname{Mat}_X(\mathbb{C})$. The inner product \langle , \rangle is positive definite.

Lemma 5.

(See [11, Lemma 3.2].) For
$$0 \le h, i, j, r, s, t \le D$$
,
(i) $\langle E_i^* A_j E_h^*, E_r^* A_s E_t^* \rangle = \delta_{ir} \delta_{js} \delta_{ht} k_h p_{ij}^h$,
(ii) $\langle E_i A_j^* E_h, E_r A_s^* E_t \rangle = \delta_{ir} \delta_{js} \delta_{ht} m_h q_{ij}^h$.

< A D > < D >

The bilinear form $\langle \;,\;\rangle$

We endow $\operatorname{Mat}_X(\mathbb{C})$ with the Hermitean inner product \langle , \rangle such that $\langle R, S \rangle = tr(R^t \overline{S})$ for all $R, S \in \operatorname{Mat}_X(\mathbb{C})$. The inner product \langle , \rangle is positive definite.

Lemma 5.

$$\begin{array}{l} \text{(See [11, Lemma 3.2].) } \textit{For } 0 \leq h, i, j, r, s, t \leq D, \\ \text{(i)} & \langle E_i^* A_j E_h^*, E_r^* A_s E_t^* \rangle = \delta_{ir} \delta_{js} \delta_{ht} k_h p_{ij}^h, \\ \text{(ii)} & \langle E_i A_j^* E_h, E_r A_s^* E_t \rangle = \delta_{ir} \delta_{js} \delta_{ht} m_h q_{ij}^h. \end{array}$$

Lemma 6.

For $0 \leq h, i, j, r, s, t \leq D$ we have

$$\langle A_i E_j^* A_h, A_r E_s^* A_t \rangle = \sum_{\ell=0}^D k_\ell p_{ir}^\ell p_{js}^\ell p_{ht}^\ell.$$

< 17 ▶

Definition 7.

Let G denote the matrix of inner products for

$$A_2 E_i^* A - A E_i^* A_2, A_3 E_i^* - E_i^* A_3, A_2 E_i^* - E_i^* A_2, A E_i^* - E_i^* A_2, A E_i^* - E_i^* A_3, A_3 E_i^* - E_i^* A_3, A_4 E_i^* - E_i^* A_3, A_5 E_i^* - E_i^* A_5, A_5 E_i^* - E_i^* - E_i^* A_5, A_5 E_i^* - E_i^* -$$

where $1 \leq i \leq D$. Thus the matrix G is $4D \times 4D$.

(日) (周) (三) (三)

Theorem 8.

The entries of G are as follows: For $1 \le i, j \le D$,

$\langle \ , \ \rangle$	$A_2 E_j^* A - A E_j^* A_2$	$A_3 E_j^* - E_j^* A_3$	$A_2 E_j^* - E_j^* A_2$	$AE_j^* - E_j^*A$
$A_2 E_i^* A - A E_i^* A_2$	ϕ	$2k_2b_2(p_{ij}^1 - p_{ij}^2)$	$2k_2a_2(p_{ij}^1 - p_{ij}^2)$	$2k_2c_2(p_{ij}^1 - p_{ij}^2)$
$A_3 E_i^* - E_i^* A_3$	$2k_2b_2(p_{ij}^1 - p_{ij}^2)$	$2k_3(\delta_{ij}k_i - p_{ij}^3)$	0	0
$A_2 E_i^* - E_i^* A_2$	$2k_2a_2(p_{ij}^1 - p_{ij}^2)$	0	$2k_2(\delta_{ij}k_i - p_{ij}^2)$	0
$AE_i^* - E_i^*A$	$2k_2c_2(p_{ij}^1 - p_{ij}^2)$	0	0	$2k(\delta_{ij}k_i - p_{ij}^1)$

where $\phi/2$ is a weighted sum involving the following terms and coefficients:

term	coefficient
p_{ij}^0	kk_2
p_{ij}^1	$k_2a_1a_2 - kb_1^2$
p_{ij}^2	$k_2(c_2(b_1-1)-a_2(a_1+1)+b_2(c_3-1))$
p_{ij}^3	$-k_{3}c_{3}^{2}$

Definition 9.

For $1 \leq i \leq D$ let B_i denote the matrix of inner products for

 $A_2A_i^*A - AA_i^*A_2, \ A_3A_i^* - A_i^*A_3, \ A_2A_i^* - A_i^*A_2, \ AA_i^* - A_i^*A.$

So the matrix B_i is 4×4 .

くほと くほと くほと

Definition 9.

For $1 \leq i \leq D$ let B_i denote the matrix of inner products for

 $A_2A_i^*A - AA_i^*A_2, \ A_3A_i^* - A_i^*A_3, \ A_2A_i^* - A_i^*A_2, \ AA_i^* - A_i^*A.$

So the matrix B_i is 4×4 .

Definition 10.

Let \widetilde{G} denote the matrix of inner products for

 $A_2A_i^*A - AA_i^*A_2, \ A_3A_i^* - A_i^*A_3, \ A_2A_i^* - A_i^*A_2, \ AA_i^* - A_i^*A,$

where $1 \leq i \leq D$. Thus the matrix \tilde{G} is $4D \times 4D$.

Lemma 11.

The matrix \widetilde{G} has the form

$$\widetilde{G} = \begin{bmatrix} B_1 & \mathbf{0} \\ B_2 & & \\ & \ddots & \\ \mathbf{0} & & B_D \end{bmatrix}.$$

where $B_1, B_2, ..., B_D$ are from Definition 9.

・ロン ・四 ・ ・ ヨン ・ ヨン

Lemma 11.

The matrix \widetilde{G} has the form

$$\widetilde{G} = \begin{bmatrix} B_1 & & \mathbf{0} \\ & B_2 & & \\ & & \ddots & \\ \mathbf{0} & & & B_D \end{bmatrix}$$

where $B_1, B_2, ..., B_D$ are from Definition 9.

Lemma 12.

(i)
$$det(\widetilde{G}) = \prod_{i=1}^{D} det(B_i).$$

(ii) $\widetilde{G} = (S')^t GS'.$
(iii) $det(G) = (det(S'))^{-2} det(\widetilde{G}).$
(iv) $det(G) = (det(S^{alt}))^{-8} \prod_{i=1}^{D} det(B_i).$

For $1 \leq i \leq D$ let Γ_i denote the graph with vertex set X where vertices are adjacent in Γ_i whenever they are at distance i in Γ .

The graph Γ is said to be primitive whenever Γ_i is connected for $1\leq i\leq D.$

3

For $1 \leq i \leq D$ let Γ_i denote the graph with vertex set X where vertices are adjacent in Γ_i whenever they are at distance i in Γ .

The graph Γ is said to be primitive whenever Γ_i is connected for $1 \leq i \leq D$.

Theorem 13.

Let Γ denote a primitive distance-regular graph with diameter $D \ge 3$. Then Γ is Q-polynomial if and only if det(G) = 0.

In Theorem 13 we assume Γ is primitive in order to invoke Terwilliger's dual distance matrix characterization of the Q-polynomial property [10, Theorem 3.3].

- 4 目 ト - 4 日 ト

For $1 \leq i \leq D$ let Γ_i denote the graph with vertex set X where vertices are adjacent in Γ_i whenever they are at distance i in Γ .

The graph Γ is said to be primitive whenever Γ_i is connected for $1 \leq i \leq D$.

Theorem 13.

Let Γ denote a primitive distance-regular graph with diameter $D \ge 3$. Then Γ is Q-polynomial if and only if det(G) = 0.

In Theorem 13 we assume Γ is primitive in order to invoke Terwilliger's dual distance matrix characterization of the Q-polynomial property [10, Theorem 3.3].

Thank you for your attention.

- 4 同 6 4 日 6 4 日 6

Lemma 14.

(See [BCN, Proposition 4.4.7].) Assume Γ is primitive. Then $u_i(\theta_j) \neq 1$ for $1 \leq i, j \leq D$.

Theorem 15.

(See [Terwilliger 1995, Theorem 3.3].)

Let Γ denote a distance-regular graph with diameter $D \geq 3$, and let θ denote any eigenvalue of Γ . Let E denote the corresponding primitive idempotent, with dual eigenvalue sequence $\theta_0^*, \theta_1^*, ..., \theta_D^*$. Then $A^*A_3 - A_3A^* \in Span\{AA^*A_2 - A_2A^*A, A^*A_2 - A_2A^*, A^*A - AA^*\}$ if and only if Γ is Q-polynomial with respect to E.

くほと くほと くほと

Proof

(⇒) Assume that Γ is Q-polynomial with respect to the ordering $E_0, E_1, ..., E_D$. Write $A^* = A_1^*$. By Theorem 15 and Lemma 14, we obtain $A^*A_3 - A_3A^* \in Span\{AA^*A_2 - A_2A^*A, A^*A_2 - A_2A^*, A^*A - AA^*\}$. Thus $AA^*A_2 - A_2A^*A, A^*A_3 - A_3A^*, A^*A_2 - A_2A^*, A^*A - AA^*$ are linearly dependent. Now the matrix B_1 from Definition 9 has determinant zero. Now det(G) = 0 by Lemma 12(iii).

Proof

(\Leftarrow) Assume det(G) = 0. By Lemma 12(iii) and since S^{alt} is invertible, there exists an integer t $(1 \le t \le D)$ such that $det(B_t) = 0$. Now $AA_t^*A_2 - A_2A_t^*A, A_t^*A_3 - A_3A_t^*, A_t^*A_2 - A_2A_t^*, A_t^*A - AA_t^*$ are linearly dependent. We will show that $A_t^*A_3 - A_3A_t^* \in Span\{AA_t^*A_2 - A_2A_t^*A, A_t^*A_2 - A_2A_t^*, A_t^*A - AA_t^*\}.$

To do this we show that $AA_t^*A_2 - A_2A_t^*A, A_t^*A_2 - A_2A_t^*, A_t^*A - AA_t^*$ are linearly independent.

Suppose not.

Then there exist scalars a, b, c, not all zero, such that

$$a(AA_t^*A_2 - A_2A_t^*A) + b(A_t^*A_2 - A_2A_t^*) + c(A_t^*A - AA_t^*) = 0.$$
(9)

Abbreviate $\theta_i^* = m_t u_i(\theta_t) \ (0 \le i \le D)$. So $A_t^* = \sum_{i=0}^D \theta_i^* E_i^*$. By Lemma 14,

$$\theta_i^* \neq \theta_0^* \qquad (1 \le i \le D). \tag{10}$$

Proof

For $1 \le h \le 3$ pick $z \in X$ such that $\partial(x, z) = h$. Compute the (x, z)-entry in (9). For h = 3 we get $ac_3(\theta_1^* - \theta_2^*) = 0$. For h = 2 we get $aa_2(\theta_1^* - \theta_2^*) + b(\theta_0^* - \theta_2^*) = 0$. For h = 1 we get $ab_1(\theta_1^* - \theta_2^*) + c(\theta_0^* - \theta_1^*) = 0$. Solving these equations we obtain $a(\theta_1^* - \theta_2^*) = 0$ and b = 0, c = 0. Recall that a, b, c are not all zero, so $a \neq 0$ and $\theta_1^* = \theta_2^*$. Now (9) becomes $AA_t^*A_2 - A_2A_t^*A = 0$. Recall $c_2 A_2 = A^2 - a_1 A - kI$. We have $AA_{t}^{*}A^{2} + kA_{t}^{*}A = A^{2}A_{t}^{*}A + kAA_{t}^{*}$. Thus $[A, AA_{t}^{*}A + kA_{t}^{*}] = 0.$ For $0 \le i, j \le D$ such that $i \ne j$ we have $E_i A_t^* E_j(\theta_i \theta_j + k) = 0$. Recall $E_i A_i^* E_h = 0$ if and only if $q_{ij}^h = 0$ for $0 \le h, i, j \le D$. So $E_i A_t^* E_j \neq 0$ if and only if $q_{ij}^t \neq 0$, and in this case $\theta_i \theta_j + k = 0$. Since $q_{0t}^t = 1$ and $\theta_0 = k$, we have $k\theta_t + k = 0$ and hence $\theta_t = -1$.

Proof.

Define a diagram with nodes 0, 1, ..., D.

There exists an arc between nodes i, j if and only if $i \neq j$ and $q_{ij}^t \neq 0$.

Observe that node 0 is connected to node t and no other nodes.

By [BCN, Proposition 2.11.1] and Lemma 14, the diagram is connected.

Thus there exists a node s with $s \neq 0$ and $s \neq t$ that is connected to node t by an arc.

In other words $q_{et}^t \neq 0$. So $\theta_s \theta_t + k = 0$ and hence $\theta_s = k$, a contradiction. Therefore $AA_t^*A_2 - A_2A_t^*A, A_t^*A_2 - A_2A_t^*, A_t^*A - AA_t^*$ are linearly independent.

So

 $A_t^*A_3 - A_3A_t^* \in Span\{AA_t^*A_2 - A_2A_t^*A, A_t^*A_2 - A_2A_t^*, A_t^*A - AA_t^*\}.$ Now by Theorem 15 and (10), Γ is a Q-polynomial with respect to $E = E_t$.

イロト イポト イヨト イヨト

- E. Bannai, T. Ito, *Algebraic Combinatorics I: Association Schemes*, Benjamin/Cummings, London, 1984.
- A.E. Brouwer, A.M. Cohen, and A. Neumaier, *Distance-regular graphs*, Springer-Verlag, Berlin, Heidelberg, 1989.
- E. Hanson, A characterization of Leonard pairs using the parameters $\{a_i\}_{i=0}^d$, Linear Algebra Appl. 438 (2013), 2289–2305.
- T. Ito, K. Tanabe, and P. Terwilliger, *Some algebra related to P- and Q-polynomial association schemes*, In Codes and Association Schemes (Piscataway NJ, 1999), Amer. Math. Soc., Providence RI, 2001, pp.167–192; arXiv:math. CO/0406556.
- A. Jurišić, P. Terwilliger, and A. Žitnik, *The Q-polynomial idempotents of a distance-regular graph*, J. Combin. Theory Ser. B 100 (2010), 683–690.
- H. Kurihara and H. Nozaki, *A characterization of Q-polynomial association schemes*, J. Combin. Theory Ser. A 119 (2012), 57–62.

3

・ロト ・ 同ト ・ ヨト ・ ヨト

- K. Nomura and P. Terwilliger, *Tridiagonal matrices with nonnegative entries*, Linear Algebra Appl. 434 (2011), 2527–2538.
- A.A. Pascasio, A characterization of *Q*-polynomial distance-regular graphs, Discrete Math. 308 (2008), 3090–3096.
- P. Terwilliger, A characterization of P- and Q-polynomial association schemes, J. Combin. Theory Ser. A 45 (1987), 8–26.
- P. Terwilliger, *A new inequality for distance-regular graphs*, Discrete Math. 137 (1995), 319–332.
- P. Terwilliger, The subconstituent algebra of an association scheme I, J. Algebraic Combin. 1 (1992), 363–388.

27 / 27