Conference in honor of

Willem Haemers, Felix Lazebnik, and Andrew Woldar

August 7 - 10, 2017.

University of Delaware

Eigenvalues and eigenvectors of the perfect matching association
scheme
Murali K. Srinivasan (IIT Bombay)
$\mathcal{M}_{2 n}=$ set of all perfect matchings in the complete graph $K_{2 n}$.
$\left|\mathcal{M}_{2 n}\right|=(2 n-1)!!=1 \cdot 3 \cdot 5 \cdots(2 n-1)$.
$S_{2 n}$ has a natural substitution action on $\mathcal{M}_{2 n}$:

$$
\pi \cdot\left(\left\{\left\{i_{1}, j_{1}\right\}, \ldots,\left\{i_{n}, j_{n}\right\}\right\}\right)=\left\{\left\{\pi\left(i_{1}\right), \pi\left(j_{1}\right)\right\}, \ldots,\left\{\pi\left(i_{n}\right), \pi\left(j_{n}\right)\right\}\right\}
$$

$\mathcal{B}_{2 n}=$ algebra of all complex $\mathcal{M}_{2 n} \times \mathcal{M}_{2 n}$ matrices commuting with the
$S_{2 n}$ action on $\mathcal{M}_{2 n}$, i.e., for a $\mathcal{M}_{2 n} \times \mathcal{M}_{2 n}$ matrix N
$N \in \mathcal{B}_{2 n}$ iff N is constant on the $S_{2 n}$-orbits of $\mathcal{M}_{2 n} \times \mathcal{M}_{2 n}$

$S_{2 n}$-orbits of $\mathcal{M}_{2 n} \times \mathcal{M}_{2 n}$

Even partitions of $2 n$ are partitions of $2 n$ with all parts even. They look
like $2 \lambda=\left(2 \lambda_{1}, \ldots, 2 \lambda_{k}\right)$ where $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \vdash n$.

Let $A, B \in \mathcal{M}_{2 n}$. Think of A as the red edges and B as the blue edges.
Consider $A \cup B$. Each component is an even cycle and the number of vertices of the components gives an even partition $d(A, B) \vdash 2 n$.

Lemma $(A, B),(C, D) \in \mathcal{M}_{2 n} \times \mathcal{M}_{2 n}$ are in the same $S_{2 n}$-orbit if and only if $d(A, B)=d(C, D)$. Moreover, $(A, B),(B, A)$ are in the same $S_{2 n}$-orbit, for all $(A, B) \in \mathcal{M}_{2 n} \times \mathcal{M}_{2 n}$.
$\{N(2 \mu): \mu \vdash n\}$ is the orbital basis of $\mathcal{B}_{2 n}$, where $N(2 \mu) \in \mathcal{B}_{2 n}$ is the symmetric 0,1 matrix with entry in row A, column B equal to 1 iff $d(A, B)=2 \mu$. So $\operatorname{dim}\left(\mathcal{B}_{2 n}\right)=p(n)$, the number of partitions of n.
$\mathcal{B}_{2 n}$ is an algebra of symmetric matrices, so is commutative and thus the
$S_{2 n}$-module $\mathbb{C}\left[\mathcal{M}_{2 n}\right]$ is multiplicity free. $\mathcal{B}_{2 n}$ is called the Bose-Mesner
algebra of the perfect matching association scheme.

What are the $p(n)$ (common) eigenspaces of $\mathcal{B}_{2 n}$? For $\lambda \vdash n$, let V^{λ} denote the S_{n}-irreducible parametrized by λ.

Fundamental Theorem $\mathbb{C}\left[\mathcal{M}_{2 n}\right] \cong \oplus_{\lambda \vdash n} V^{2 \lambda}$, as $S_{2 n}$-modules.

Many proofs. Short proof in James and Kerber and Saxl.

So both the orbital basis and the eigenspaces of $\mathcal{B}_{2 n}$ are indexed by even partitions of $2 n$. For $\lambda, \mu \vdash n$, define
$\theta_{2 \mu}^{2 \lambda}=$ eigenvalue of $N(2 \mu)$ on $V^{2 \lambda}$ (easily shown to be an integer).

We shall now describe our main results: one on eigenvalues and one on
eigenvectors.

Notational convention Let $\mu \vdash m$ with all parts ≥ 2. For $n \geq m$ we can consider μ as a partition of n by adding 1 (the trivial part) $n-m$ times.

We shall write $\left(\mu, 1^{n-m}\right)$ for this partition but pronounce it as μ^{\prime}.

Eigenvalues of $\mathcal{B}_{2 n}$

Motivation In studying a natural Markov chain on perfect matchings,
Diaconis and Holmes considered the matrix

$$
N\left(\left(4,2^{n-2}\right)\right)=N\left(2\left(2,1^{n-2}\right)\right)
$$

and gave a universal formula for $\theta_{2\left(2,1^{n-2}\right)}^{2 \lambda}, \lambda \vdash n$.
We generalize this as follows:

Fix a partition $\mu \vdash m$ with all parts ≥ 2. We give an algorithm that
produces a universal formula for $\theta_{2\left(\mu, 1^{n-m}\right)}^{2 \lambda}, \lambda \vdash n \geq m$.

Eigenvectors of $\mathcal{B}_{2 n}$

Motivation During the course of giving an algebraic proof of the

Erdős-Ko-Rado theorem on intersecting families of perfect matchings,
Godsil and Meagher write down an eigenvector (using a quotient argument) belonging to the eigenspace $V^{(2 n-2,2)}$.

We generalize this by giving an inductive procedure to write down an eigenvector in each of the eigenspaces.

Rest of the talk Universal formula for $\theta_{2\left(\mu, 1^{n-m}\right)}^{2 \lambda}$.

For $\lambda, \mu \vdash n$,
$C_{\mu}=$ conjugacy class in S_{n} of cycle type μ and $c_{\mu}=\sum_{\pi \in C_{\mu}} \pi \in \mathbb{C}\left[S_{n}\right]$,
$\chi^{\lambda}=$ character of $V^{\lambda}, \chi_{\mu}^{\lambda}=\chi^{\lambda}(\pi), \pi \in C_{\mu}$,
$\phi_{\mu}^{\lambda}=$ eigenvalue of c_{μ} on $V^{\lambda}=\frac{\left|C_{\mu}\right| \chi_{\mu}^{\lambda}}{\operatorname{dim}\left(V^{\lambda}\right)}$,
ϕ_{μ}^{λ} is called a central character (can easily be shown to be an integer).
$\Lambda=$ Symmetric functions in $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ with coefficients in $\mathbb{Q}[t]$.

Power sum symmetric function: $p_{0}=1$ and $p_{n}=\sum_{i} x_{i}^{n}, n \geq 1$.
$p_{\lambda}=p_{\lambda_{1}} p_{\lambda_{2}} \cdots$ if $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right) \in \mathcal{P}(=$ all partitions $)$.

The set $\left\{p_{\lambda}: \lambda \in \mathcal{P}\right\}$ is a $\mathbb{Q}[t]$-module basis of Λ.

The content $c(b)$ of a box b of a Young diagram is

$$
y \text {-coordinate of box } b-x \text {-coordinate of box } b \text {. }
$$

Contents in the first row are $0,1,2, \ldots$, second row are $-1,0,1,2, \ldots$ and so on.

Given $f \in \Lambda$ and $\lambda \in \mathcal{Y}_{n}$ ($=$ Young diagrams with n boxes) we define the content evaluation $f(c(\lambda))$ to be the rational number obtained from f by setting $t=n, x_{i}=0$ for $i>n$, and $\left\{x_{1}, \ldots, x_{n}\right\}$ to the multiset of the contents of the n boxes of λ.

Examples of universal formula

Frobenius $\phi_{\left(2,1^{n-2}\right)}^{\lambda}=p_{1}(c(\lambda))=$ Sum of all contents, $\lambda \in \mathcal{Y}_{n}$.
Ingram $\phi_{\left(3,1^{n-3}\right)}^{\lambda}=\left(p_{2}-\frac{t(t-1)}{2}\right)(c(\lambda))$

$$
=\text { Sum of squares of all contents }-\frac{n(n-1)}{2}, \lambda \in \mathcal{Y}_{n} \text {. }
$$

There is a vast generalization. Let $\mathcal{P}(2)$ denote the set of partitions with all parts ≥ 2.

Thm. 1 (Corteel, Goupil, and Schaeffer (2004) and Garsia (2003))
For each $\mu \in \mathcal{P}(2)$ there is an algorithm to compute a symmetric function $W_{\mu} \in \Lambda$ such that
(i) $\left\{W_{\mu}: \mu \in \mathcal{P}(2)\right\}$ is a $\mathbb{Q}[t]$-module basis of Λ.
(ii) Let $\mu \in \mathcal{P}$ (2) with $|\mu|=m$. Let $\lambda \in \mathcal{P}$ with $|\lambda|=n \geq m$. We have

$$
W_{\mu}(c(\lambda))=\phi_{\left(\mu, 1^{n-m}\right)}^{\lambda} .
$$

Example $(|\mu| \leq 4)$. This gives the character tables of S_{1}, \ldots, S_{4} and the first five characters of $S_{n}, n \geq 5$.

$$
\begin{array}{lll}
W_{\emptyset}=1 & W_{2}=p_{1} & W_{3}=p_{2}-\frac{t(t-1)}{2} \\
W_{2,2}=\frac{p_{1}^{2}}{2}-\frac{3 p_{2}}{2}+\frac{t(t-1)}{2} & W_{4}=p_{3}-(2 t-3) p_{1} &
\end{array}
$$

Thm. 2 For each $\mu \in \mathcal{P}(2)$ there is an algorithm to compute a symmetric function $E_{\mu} \in \Lambda$ such that
(i) $\left\{E_{\mu}: \mu \in \mathcal{P}(2)\right\}$ is a $\mathbb{Q}[t]$-module basis of Λ.
(ii) Let $\mu \in \mathcal{P}$ (2) with $|\mu|=m$. Let $\lambda \in \mathcal{P}$ with $|\lambda|=n \geq m$. We have

$$
E_{\mu}(c(2 \lambda))=\theta_{2\left(\mu, 1^{n-m}\right)}^{2 \lambda} .
$$

Example $(|\mu| \leq 4)$ This gives the eigenvalues of $\mathcal{B}_{2}, \ldots, \mathcal{B}_{8}$ and the first five eigenvalues of $\mathcal{B}_{2 n}, n \geq 5$. $E_{\emptyset}=1$ and

$$
\begin{array}{ll}
E_{2}=\frac{p_{1}}{2}-\frac{t}{4} & E_{3}=\frac{p_{2}}{2}-p_{1}+\frac{3 t-t^{2}}{4} \\
E_{2,2}=\frac{p_{1}^{2}}{8}-\frac{3 p_{2}}{4}+\frac{(10-t) p_{1}}{8}+\frac{9 t^{2}-24 t}{32} & E_{4}=\frac{p_{3}}{2}-\frac{9 p_{2}}{4}+\frac{(11-2 t) p_{1}}{2}+\frac{8 t^{2}-23 t}{8}
\end{array}
$$

Two ingredients in the Proof of Theorem 2: Theorem 1 plus a

 combinatorial algorithm that, starting with the central characters of $S_{2}, S_{4}, \ldots, S_{2 n}$ produces the eigenvalues of $\mathcal{B}_{2}, \mathcal{B}_{4}, \ldots, \mathcal{B}_{2 n}$ by solving linear equations of size at most $p(n-1) \times p(n-1)$.Moreover, given $\left\{W_{\mu}| | \mu \mid \leq m\right\}$ this algorithm produces $\left\{E_{\mu}| | \mu \mid \leq m\right\}$ by solving linear equations of size $p(m-1) \times p(m-1)$.

Ongoing project Garsia's paper contains a list of the symmetric functions W_{μ} for $|\mu| \leq 8$. Since $p(7)=15$ the algorithm above needs to solve equations of size at most 15×15 to produce E_{μ} for $|\mu| \leq 8$. This seems feasible, yielding eigenvalues of $\mathcal{B}_{2}, \ldots, \mathcal{B}_{16}$.

THANK YOU

