Conference in honor of

Willem Haemers, Felix Lazebnik, and Andrew Woldar

August 7 - 10, 2017.

University of Delaware

Eigenvalues and eigenvectors of the perfect matching association

scheme

Murali K. Srinivasan (IIT Bombay)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 \mathcal{M}_{2n} = set of all **perfect matchings** in the complete graph K_{2n} .

$$|\mathcal{M}_{2n}| = (2n-1)!! = 1 \cdot 3 \cdot 5 \cdots (2n-1).$$

 S_{2n} has a natural substitution action on \mathcal{M}_{2n} :

$$\pi \cdot (\{\{i_1, j_1\}, \ldots, \{i_n, j_n\}\}) = \{\{\pi(i_1), \pi(j_1)\}, \ldots, \{\pi(i_n), \pi(j_n)\}\}$$

 $\mathcal{B}_{2n} =$ **algebra** of all complex $\mathcal{M}_{2n} \times \mathcal{M}_{2n}$ matrices commuting with the

 S_{2n} action on \mathcal{M}_{2n} , i.e., for a $\mathcal{M}_{2n} \times \mathcal{M}_{2n}$ matrix N

 $N \in \mathcal{B}_{2n}$ iff N is constant on the S_{2n} -orbits of $\mathcal{M}_{2n} \times \mathcal{M}_{2n}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

S_{2n} -orbits of $\mathcal{M}_{2n} \times \mathcal{M}_{2n}$

Even partitions of 2*n* are partitions of 2*n* with all parts even. They look

like
$$2\lambda = (2\lambda_1, \ldots, 2\lambda_k)$$
 where $\lambda = (\lambda_1, \ldots, \lambda_k) \vdash n$.

Let $A, B \in \mathcal{M}_{2n}$. Think of A as the **red** edges and B as the **blue** edges. Consider $A \cup B$. Each component is an even cycle and the number of vertices of the components gives an **even** partition $d(A, B) \vdash 2n$.

Lemma (A, B), $(C, D) \in \mathcal{M}_{2n} \times \mathcal{M}_{2n}$ are in the same S_{2n} -orbit if and only if d(A, B) = d(C, D). Moreover, (A, B), (B, A) are in the same S_{2n} -orbit, for all $(A, B) \in \mathcal{M}_{2n} \times \mathcal{M}_{2n}$.

 $\{N(2\mu) : \mu \vdash n\}$ is the orbital basis of \mathcal{B}_{2n} , where $N(2\mu) \in \mathcal{B}_{2n}$ is the symmetric 0, 1 matrix with entry in row A, column B equal to 1 iff $d(A, B) = 2\mu$. So dim $(\mathcal{B}_{2n}) = p(n)$, the number of partitions of n.

 \mathcal{B}_{2n} is an algebra of symmetric matrices, so is commutative and thus the S_{2n} -module $\mathbb{C}[\mathcal{M}_{2n}]$ is multiplicity free. \mathcal{B}_{2n} is called the **Bose-Mesner** algebra of the perfect matching association scheme.

What are the p(n) (common) eigenspaces of \mathcal{B}_{2n} ? For $\lambda \vdash n$, let V^{λ}

denote the S_n -irreducible parametrized by λ .

Fundamental Theorem $\mathbb{C}[\mathcal{M}_{2n}] \cong \bigoplus_{\lambda \vdash n} V^{2\lambda}$, as S_{2n} -modules.

Many proofs. Short proof in James and Kerber and Saxl.

So both the orbital basis and the eigenspaces of \mathcal{B}_{2n} are indexed by even partitions of 2*n*. For $\lambda, \mu \vdash n$, define

 $\theta_{2\mu}^{2\lambda} =$ **eigenvalue** of $N(2\mu)$ on $V^{2\lambda}$ (easily shown to be an integer).

We shall now describe our main results: one on eigenvalues and one on eigenvectors.

Notational convention Let $\mu \vdash m$ with all parts ≥ 2 . For $n \geq m$ we can consider μ as a partition of n by adding 1 (the trivial part) n - m times. We shall write $(\mu, 1^{n-m})$ for this partition but pronounce it as μ' .

Eigenvalues of \mathcal{B}_{2n}

Motivation In studying a natural Markov chain on perfect matchings,

Diaconis and Holmes considered the matrix

$$N((4, 2^{n-2})) = N(2(2, 1^{n-2}))$$

and gave a **universal formula** for $\theta_{2(2,1^{n-2})}^{2\lambda}$, $\lambda \vdash n$.

We generalize this as follows:

Fix a partition $\mu \vdash m$ with all parts ≥ 2 . We give an algorithm that

produces a **universal formula** for $\theta_{2(\mu,1^{n-m})}^{2\lambda}$, $\lambda \vdash n \geq m$.

Eigenvectors of \mathcal{B}_{2n}

Motivation During the course of giving an algebraic proof of the

Erdős-Ko-Rado theorem on intersecting families of perfect matchings,

Godsil and Meagher write down an eigenvector (using a quotient

argument) belonging to the eigenspace $V^{(2n-2,2)}$.

We generalize this by giving an inductive procedure to write down an

eigenvector in each of the eigenspaces.

Rest of the talk Universal formula for $\theta_{2(\mu,1^{n-m})}^{2\lambda}$.

For $\lambda, \mu \vdash n$,

 $C_{\mu} =$ conjugacy class in S_n of cycle type μ and $c_{\mu} = \sum_{\pi \in C_{\mu}} \pi \in \mathbb{C}[S_n]$, $\chi^{\lambda} =$ character of V^{λ} , $\chi^{\lambda}_{\mu} = \chi^{\lambda}(\pi)$, $\pi \in C_{\mu}$, $\phi^{\lambda}_{\mu} =$ eigenvalue of c_{μ} on $V^{\lambda} = \frac{|C_{\mu}|\chi^{\lambda}_{\mu}}{\dim(V^{\lambda})}$,

 ϕ_{μ}^{λ} is called a **central character** (can easily be shown to be an integer).

 Λ = **Symmetric functions** in { $x_1, x_2, x_3, ...$ } with coefficients in $\mathbb{Q}[t]$.

Power sum symmetric function: $p_0 = 1$ and $p_n = \sum_i x_i^n$, $n \ge 1$.

 $p_{\lambda} = p_{\lambda_1} p_{\lambda_2} \cdots$ if $\lambda = (\lambda_1, \lambda_2, \ldots) \in \mathcal{P}$ (= all partitions).

The set $\{p_{\lambda} : \lambda \in \mathcal{P}\}$ is a $\mathbb{Q}[t]$ -module basis of Λ .

The **content** c(b) of a box b of a Young diagram is

y-coordinate of box b - x-coordinate of box b.

Contents in the first row are $0,1,2,\ldots$, second row are $-1,0,1,2,\ldots$ and

so on.

Given $f \in \Lambda$ and $\lambda \in \mathcal{Y}_n$ (= Young diagrams with *n* boxes) we define the **content evaluation** $f(c(\lambda))$ to be the rational number obtained from *f* by setting t = n, $x_i = 0$ for i > n, and $\{x_1, \ldots, x_n\}$ to the multiset of the contents of the *n* boxes of λ .

Examples of universal formula

Frobenius $\phi_{(2,1^{n-2})}^{\lambda} = p_1(c(\lambda)) =$ Sum of all contents , $\lambda \in \mathcal{Y}_n$. Ingram $\phi_{(3,1^{n-3})}^{\lambda} = (p_2 - \frac{t(t-1)}{2})(c(\lambda))$ = Sum of squares of all contents $-\frac{n(n-1)}{2}$, $\lambda \in \mathcal{Y}_n$.

There is a vast generalization. Let $\mathcal{P}(2)$ denote the set of partitions with all parts ≥ 2 .

Thm. 1 (Corteel, Goupil, and Schaeffer (2004) and Garsia (2003))

For each $\mu \in \mathcal{P}(2)$ there is an algorithm to compute a symmetric

function $W_{\mu} \in \Lambda$ such that

(i) $\{W_{\mu} : \mu \in \mathcal{P}(2)\}$ is a $\mathbb{Q}[t]$ -module basis of Λ .

(ii) Let $\mu \in \mathcal{P}(2)$ with $|\mu| = m$. Let $\lambda \in \mathcal{P}$ with $|\lambda| = n \ge m$. We have

$$W_{\mu}(\boldsymbol{c}(\lambda)) = \phi^{\lambda}_{(\mu,1^{n-m})}$$

Example ($|\mu| \leq 4$). This gives the character tables of S_1, \ldots, S_4 and the

first five characters of S_n , $n \ge 5$.

$$W_{\emptyset} = 1 \qquad \qquad W_{2} = p_{1} \qquad \qquad W_{3} = p_{2} - \frac{t(t-1)}{2}$$
$$W_{2,2} = \frac{p_{1}^{2}}{2} - \frac{3p_{2}}{2} + \frac{t(t-1)}{2} \qquad \qquad W_{4} = p_{3} - (2t-3)p_{1}$$

Thm. 2 For each $\mu \in \mathcal{P}(2)$ there is an algorithm to compute a

symmetric function $E_{\mu} \in \Lambda$ such that

(i) $\{E_{\mu} : \mu \in \mathcal{P}(2)\}$ is a $\mathbb{Q}[t]$ -module basis of Λ .

(ii) Let $\mu \in \mathcal{P}(2)$ with $|\mu| = m$. Let $\lambda \in \mathcal{P}$ with $|\lambda| = n \ge m$. We have

$$egin{array}{rcl} {\cal E}_\mu({\it c}(2\lambda)) &=& heta_{2(\mu,1^{n-m})}^{2\lambda}. \end{array}$$

Example ($|\mu| \leq 4$) This gives the eigenvalues of $\mathcal{B}_2, \ldots, \mathcal{B}_8$ and the first

five eigenvalues of $\mathcal{B}_{2n},\ n\geq 5.$ $E_{\emptyset}=1$ and

$$E_{2} = \frac{p_{1}}{2} - \frac{t}{4} \qquad \qquad E_{3} = \frac{p_{2}}{2} - p_{1} + \frac{3t - t^{2}}{4}$$
$$E_{2,2} = \frac{p_{1}^{2}}{8} - \frac{3p_{2}}{4} + \frac{(10 - t)p_{1}}{8} + \frac{9t^{2} - 24t}{32} \qquad E_{4} = \frac{p_{3}}{2} - \frac{9p_{2}}{4} + \frac{(11 - 2t)p_{1}}{2} + \frac{8t^{2} - 23t}{8}$$

Two ingredients in the **Proof of Theorem 2**: Theorem 1 **plus** a **combinatorial algorithm** that, starting with the central characters of S_2, S_4, \ldots, S_{2n} produces the eigenvalues of $\mathcal{B}_2, \mathcal{B}_4, \ldots, \mathcal{B}_{2n}$ by solving linear equations of size at most $p(n-1) \times p(n-1)$.

Moreover, given $\{W_{\mu} \mid |\mu| \leq m\}$ this algorithm produces $\{E_{\mu} \mid |\mu| \leq m\}$ by solving linear equations of size $p(m-1) \times p(m-1)$.

Ongoing project Garsia's paper contains a list of the symmetric

functions W_μ for $|\mu| \le 8$. Since p(7) = 15 the algorithm above needs to

solve equations of size at most 15 imes 15 to produce E_{μ} for $|\mu| \leq$ 8. This

seems feasible, yielding eigenvalues of $\mathcal{B}_2, \ldots, \mathcal{B}_{16}$.

THANK YOU