Non-commutative association schemes of rank 6

M. Muzychuk (joint work with A. Herman and B. Xu),

> Netanya Academic College, Israel

Algebraic and Extremal Graph Theory, a conference in honor of
Willem Haemers, Felix Lazebnik and Andrew Woldar, August 2017, University of Delaware, USA

Known results

1. Y. Asaba and A. Hanaki, A construction of integral standard generalized table algebras from parameters of projective geometries, Israel J. Math., 194, (2013), 395-408.
2. A. Hanaki and P.-H. Zieschang, on imprimitive noncommutative association schemes of order 6, Comm. Algebra, 42 (3), (2014), 1151-1199.
3. M. Yoshikawa, On noncommutative integral standard table algebras in dimension 6, Comm. Algebra, 42 (2014), 2046-2060.
4. B. Drabkin and C. French, On a class of noncommutative imprimitive association schemes of rank 6, Comm. Algebra, 43 (9), (2015), 4008-4041.
5. C. French and P.-H. Zieschang, On the normal structure of noncommutative association schemes of rank 6, Comm. Algebra, 44 (3), 2016, 1143-1170.

Known results

1. Y. Asaba and A. Hanaki, A construction of integral standard generalized table algebras from parameters of projective geometries, Israel J. Math., 194, (2013), 395-408.
2. A. Hanaki and P.-H. Zieschang, on imprimitive noncommutative association schemes of order 6, Comm. Algebra, 42 (3), (2014), 1151-1199.
3. M. Yoshikawa, On noncommutative integral standard table algebras in dimension 6, Comm. Algebra, 42 (2014), 2046-2060.
4. B. Drabkin and C. French, On a class of noncommutative imprimitive association schemes of rank 6, Comm. Algebra, 43 (9), (2015), 4008-4041.
5. C. French and P.-H. Zieschang, On the normal structure of noncommutative association schemes of rank 6, Comm. Algebra, 44 (3), 2016, 1143-1170.

In all those papers it was assumed that the scheme is imprimitive.

Notation

Notation

If $R, S \subseteq X^{2}$ are binary relations on a finite set X, then
$1 R(x):=\{y \in X \mid(x, y) \in R\}$;
$2 R^{t}:=\left\{(x, y) \in X^{2} \mid(y, x) \in R\right\}$
$3 R S$ is the relational product of R and S

Notation

If $R, S \subseteq X^{2}$ are binary relations on a finite set X, then
$1 R(x):=\{y \in X \mid(x, y) \in R\}$;
$2 R^{t}:=\left\{(x, y) \in X^{2} \mid(y, x) \in R\right\}$
$3 R S$ is the relational product of R and S
If \mathbb{F} is a field, then
$1 M_{X}(\mathbb{F})$ is the matrix algebra;
$2 I_{X}$ is the identity matrix;
$3 J_{X}$ is all one matrix;
$4{ }^{\top}$ is is matrix transposition;

Association schemes

Association schemes

Definition

A pair $\mathfrak{X}=\left(X, \mathcal{R}=\left\{R_{0}, \ldots, R_{d}\right\}\right)$ is called an association scheme iff

Association schemes

Definition

A pair $\mathfrak{X}=\left(X, \mathcal{R}=\left\{R_{0}, \ldots, R_{d}\right\}\right)$ is called an association scheme iff
$1 \mathcal{R}$ is a partition of X^{2} and $R_{0}=\{(x, x) \mid x \in X\}$;

Association schemes

Definition

A pair $\mathfrak{X}=\left(X, \mathcal{R}=\left\{R_{0}, \ldots, R_{d}\right\}\right)$ is called an association scheme iff
$1 \mathcal{R}$ is a partition of X^{2} and $R_{0}=\{(x, x) \mid x \in X\}$;
$2 \forall_{i \in\{0, \ldots, d\}} \exists_{i^{\prime} \in\{0, \ldots, d\}}$ s.t. $R_{i}^{t}=R_{i^{\prime}}$;

Association schemes

Definition

A pair $\mathfrak{X}=\left(X, \mathcal{R}=\left\{R_{0}, \ldots, R_{d}\right\}\right)$ is called an association scheme iff
$1 \mathcal{R}$ is a partition of X^{2} and $R_{0}=\{(x, x) \mid x \in X\}$;
$2 \forall_{i \in\{0, \ldots, d\}} \exists_{i^{\prime} \in\{0, \ldots, d\}}$ s.t. $R_{i}^{t}=R_{i^{\prime}}$;
3 for any triple $i, j, k \in\{0, \ldots, d\}$ and any pair $(x, y) \in R_{k}$ the intersection number $p_{i j}^{k}:=\left|R_{i}(x) \cap R_{j^{\prime}}(y)\right|$ depends only on i, j, k.

Association schemes

Definition

A pair $\mathfrak{X}=\left(X, \mathcal{R}=\left\{R_{0}, \ldots, R_{d}\right\}\right)$ is called an association scheme iff
$1 \mathcal{R}$ is a partition of X^{2} and $R_{0}=\{(x, x) \mid x \in X\}$;
$2 \forall_{i \in\{0, \ldots, d\}} \exists_{i^{\prime} \in\{0, \ldots, d\}}$ s.t. $R_{i}^{t}=R_{i^{\prime}}$;
3 for any triple $i, j, k \in\{0, \ldots, d\}$ and any pair $(x, y) \in R_{k}$ the intersection number $p_{i j}^{k}:=\left|R_{i}(x) \cap R_{j^{\prime}}(y)\right|$ depends only on i, j, k.
$1\left(X, R_{i}\right)$ - basic (di)graphs of \mathfrak{X},

Association schemes

Definition

A pair $\mathfrak{X}=\left(X, \mathcal{R}=\left\{R_{0}, \ldots, R_{d}\right\}\right)$ is called an association scheme iff
$1 \mathcal{R}$ is a partition of X^{2} and $R_{0}=\{(x, x) \mid x \in X\}$;
$2 \forall_{i \in\{0, \ldots, d\}} \exists_{i^{\prime} \in\{0, \ldots, d\}}$ s.t. $R_{i}^{t}=R_{i^{\prime}}$;
3 for any triple $i, j, k \in\{0, \ldots, d\}$ and any pair $(x, y) \in R_{k}$ the intersection number $p_{i j}^{k}:=\left|R_{i}(x) \cap R_{j^{\prime}}(y)\right|$ depends only on i, j, k.
$1\left(X, R_{i}\right)$ - basic (di)graphs of \mathfrak{X}, regular of valency/degree $\delta_{i}:=p_{i i^{\prime}}^{0} ;$

Association schemes

Definition

A pair $\mathfrak{X}=\left(X, \mathcal{R}=\left\{R_{0}, \ldots, R_{d}\right\}\right)$ is called an association scheme iff
$1 \mathcal{R}$ is a partition of X^{2} and $R_{0}=\{(x, x) \mid x \in X\}$;
$2 \forall_{i \in\{0, \ldots, d\}} \exists_{i^{\prime} \in\{0, \ldots, d\}}$ s.t. $R_{i}^{t}=R_{i^{\prime}}$;
3 for any triple $i, j, k \in\{0, \ldots, d\}$ and any pair $(x, y) \in R_{k}$ the intersection number $p_{i j}^{k}:=\left|R_{i}(x) \cap R_{j^{\prime}}(y)\right|$ depends only on i, j, k.
$1\left(X, R_{i}\right)$ - basic (di)graphs of \mathfrak{X}, regular of valency/degree $\delta_{i}:=p_{i i}^{0} ;$
$2|X|$ - the order/degree of \mathfrak{X};

Association schemes

Definition

A pair $\mathfrak{X}=\left(X, \mathcal{R}=\left\{R_{0}, \ldots, R_{d}\right\}\right)$ is called an association scheme iff
$1 \mathcal{R}$ is a partition of X^{2} and $R_{0}=\{(x, x) \mid x \in X\}$;
$2 \forall_{i \in\{0, \ldots, d\}} \exists_{i^{\prime} \in\{0, \ldots, d\}}$ s.t. $R_{i}^{t}=R_{i^{\prime}}$;
3 for any triple $i, j, k \in\{0, \ldots, d\}$ and any pair $(x, y) \in R_{k}$ the intersection number $p_{i j}^{k}:=\left|R_{i}(x) \cap R_{j^{\prime}}(y)\right|$ depends only on i, j, k.
$1\left(X, R_{i}\right)$ - basic (di)graphs of \mathfrak{X}, regular of valency/degree $\delta_{i}:=p_{i i^{\prime}}^{0} ;$
$2|X|$ - the order/degree of \mathfrak{X};
$3|\mathcal{R}|$ - the rank of \mathfrak{X}.

Adjacency (BM-) algebra of a scheme

Theorem

Let A_{i} be the adjacency matrix of the basic graph $\left(X, R_{i}\right)$. Then the linear span $\mathcal{A}_{\mathbb{F}}:=\left\langle A_{0}, \ldots, A_{d}\right\rangle$ is a subalgebra of the matrix algebra $M_{X}(\mathbb{F})$. Moreover $I_{X}, J_{X} \in \mathcal{A}_{\mathbb{F}}, \mathcal{A}_{\mathbb{F}}^{\top}=\mathcal{A}_{\mathbb{F}}$ and

$$
A_{i} A_{j}=\sum_{k=0}^{d} p_{i j}^{k} A_{k} .
$$

$\mathcal{A}_{\mathbb{F}}$ is called the adjacency / Bose-Mesner algebra of \mathfrak{X}. The basis A_{0}, \ldots, A_{d} is called the standard basis of $\mathcal{A}_{\mathbb{F}}$.

Adjacency (BM-) algebra of a scheme

Theorem

Let A_{i} be the adjacency matrix of the basic graph $\left(X, R_{i}\right)$. Then the linear span $\mathcal{A}_{\mathbb{F}}:=\left\langle A_{0}, \ldots, A_{d}\right\rangle$ is a subalgebra of the matrix algebra $M_{X}(\mathbb{F})$. Moreover $I_{X}, J_{X} \in \mathcal{A}_{\mathbb{F}}, \mathcal{A}_{\mathbb{F}}^{\top}=\mathcal{A}_{\mathbb{F}}$ and

$$
A_{i} A_{j}=\sum_{k=0}^{d} p_{i j}^{k} A_{k} .
$$

$\mathcal{A}_{\mathbb{F}}$ is called the adjacency / Bose-Mesner algebra of \mathfrak{X}. The basis A_{0}, \ldots, A_{d} is called the standard basis of $\mathcal{A}_{\mathbb{F}}$.

A scheme is called commutative if its BM-algebra is commutative.

Adjacency (BM-) algebra of a scheme

Theorem

Let A_{i} be the adjacency matrix of the basic graph $\left(X, R_{i}\right)$. Then the linear span $\mathcal{A}_{\mathbb{F}}:=\left\langle A_{0}, \ldots, A_{d}\right\rangle$ is a subalgebra of the matrix algebra $M_{X}(\mathbb{F})$. Moreover $I_{X}, J_{X} \in \mathcal{A}_{\mathbb{F}}, \mathcal{A}_{\mathbb{F}}^{\top}=\mathcal{A}_{\mathbb{F}}$ and

$$
A_{i} A_{j}=\sum_{k=0}^{d} p_{i j}^{k} A_{k} .
$$

$\mathcal{A}_{\mathbb{F}}$ is called the adjacency / Bose-Mesner algebra of \mathfrak{X}. The basis A_{0}, \ldots, A_{d} is called the standard basis of $\mathcal{A}_{\mathbb{F}}$.

A scheme is called commutative if its BM-algebra is commutative. A scheme is called symmetric (antisymmetric) if all it's non-reflexive relations are symmetric (antisymmetric. resp.).

Adjacency (BM-) algebra of a scheme

Theorem

Let A_{i} be the adjacency matrix of the basic graph $\left(X, R_{i}\right)$. Then the linear span $\mathcal{A}_{\mathbb{F}}:=\left\langle A_{0}, \ldots, A_{d}\right\rangle$ is a subalgebra of the matrix algebra $M_{X}(\mathbb{F})$. Moreover $I_{X}, J_{X} \in \mathcal{A}_{\mathbb{F}}, \mathcal{A}_{\mathbb{F}}^{\top}=\mathcal{A}_{\mathbb{F}}$ and

$$
A_{i} A_{j}=\sum_{k=0}^{d} p_{i j}^{k} A_{k} .
$$

$\mathcal{A}_{\mathbb{F}}$ is called the adjacency / Bose-Mesner algebra of \mathfrak{X}. The basis A_{0}, \ldots, A_{d} is called the standard basis of $\mathcal{A}_{\mathbb{F}}$.

A scheme is called commutative if its BM-algebra is commutative. A scheme is called symmetric (antisymmetric) if all it's non-reflexive relations are symmetric (antisymmetric. resp.).

Proposition

A symmetric scheme is commutative

Adjacency (BM-) algebra of a scheme

Theorem

Let A_{i} be the adjacency matrix of the basic graph $\left(X, R_{i}\right)$. Then the linear span $\mathcal{A}_{\mathbb{F}}:=\left\langle A_{0}, \ldots, A_{d}\right\rangle$ is a subalgebra of the matrix algebra $M_{X}(\mathbb{F})$. Moreover $I_{X}, J_{X} \in \mathcal{A}_{\mathbb{F}}, \mathcal{A}_{\mathbb{F}}^{\top}=\mathcal{A}_{\mathbb{F}}$ and

$$
A_{i} A_{j}=\sum_{k=0}^{d} p_{i j}^{k} A_{k} .
$$

$\mathcal{A}_{\mathbb{F}}$ is called the adjacency / Bose-Mesner algebra of \mathfrak{X}. The basis A_{0}, \ldots, A_{d} is called the standard basis of $\mathcal{A}_{\mathbb{F}}$.

A scheme is called commutative if its BM-algebra is commutative. A scheme is called symmetric (antisymmetric) if all it's non-reflexive relations are symmetric (antisymmetric. resp.).

Proposition

A symmetric scheme is commutative \Rightarrow
A non-commutative scheme contains at least one pair of anti-symmetric relations.

Imprimitive association schemes

Definition

The scheme is imprimitive if there exists a non-reflexive basic graph which is not strongly connected.

Imprimitive association schemes

Definition

The scheme is imprimitive if there exists a non-reflexive basic graph which is not strongly connected.

Proposition

Let $\mathfrak{X}=\left(X, \mathcal{R}=\left\{R_{i}\right\}_{i=0}^{d}\right)$ be an association scheme and $\mathcal{A}_{\mathbb{F}}=\left\langle A_{0}, \ldots, A_{d}\right\rangle$ its BM-algebra, $\operatorname{char}(\mathbb{F})=0$. The following conditions are equivalent
(a) \mathfrak{X} is imprimitive;
(b) $\exists I \subset\{0, \ldots, d\}$ s.t. $1<|I| \leq d$ and $R_{I}:=\bigcup_{i \in I} R_{i}$ is an equivalence relation on X;
(c) $\exists I \subset\{0, \ldots, d\}$ s.t. $I^{\prime}=I$ and $\left\langle A_{i}\right\rangle_{i \in I}$ is a subalgebra of $\mathcal{A}_{\mathbb{F}}, \operatorname{char}(\mathbb{F})=0$.
The subset $\left\{R_{i}\right\}_{i \in I}$ is called a closed subset of \mathcal{R}.

A concrete example (M. Klin and A.Woldar)

$$
A(\mathfrak{X})=\left(\begin{array}{llllllllll}
0 & 1 & 2 & 2 & 1 & 3 & 4 & 5 & 5 & 4 \\
1 & 0 & 1 & 2 & 2 & 4 & 3 & 4 & 5 & 5 \\
2 & 1 & 0 & 1 & 2 & 5 & 4 & 3 & 4 & 5 \\
2 & 2 & 1 & 0 & 1 & 5 & 5 & 4 & 3 & 4 \\
1 & 2 & 2 & 1 & 0 & 4 & 5 & 5 & 4 & 3 \\
3 & 5 & 4 & 4 & 5 & 0 & 2 & 1 & 1 & 2 \\
5 & 3 & 5 & 4 & 4 & 2 & 0 & 2 & 1 & 1 \\
4 & 5 & 3 & 5 & 4 & 1 & 2 & 0 & 2 & 1 \\
4 & 4 & 5 & 3 & 5 & 1 & 1 & 2 & 0 & 2 \\
5 & 4 & 4 & 5 & 3 & 2 & 1 & 1 & 2 & 0
\end{array}\right)
$$

Example (the basic graphs)

Main sources of AS

Main sources of AS

1 group theory;

Main sources of AS

1 group theory;
2 merging of classes;

Main sources of AS

1 group theory;
2 merging of classes;
3 finite geometry and design theory;

Main sources of AS

1 group theory;
2 merging of classes;
3 finite geometry and design theory;
4 the others.

Schemes coming from groups

Let $G \leq \operatorname{Sym}(X)$ be a transitive permutation group, $\Pi: \mathbb{F}[G] \rightarrow M_{X}(\mathbb{F})$ corresponding representation of G, $R_{0}=I_{X}, R_{1}, \ldots, R_{d}$ be the complete set of 2-orbits (orbitals) of G.

Proposition

The set of relations $R_{i}, i=0, \ldots, d$ form an association scheme on X. Its BM-algebra coincides with $C_{M_{X}(\mathbb{F})}(\Pi(\mathbb{F}[G]))$. Association schemes of this type are called Schurian.

Schemes coming from groups

Let $G \leq \operatorname{Sym}(X)$ be a transitive permutation group,
$\Pi: \mathbb{F}[G] \rightarrow M_{X}(\mathbb{F})$ corresponding representation of G,
$R_{0}=I_{X}, R_{1}, \ldots, R_{d}$ be the complete set of 2-orbits (orbitals) of G.

Proposition

The set of relations $R_{i}, i=0, \ldots, d$ form an association scheme on X. Its BM-algebra coincides with $C_{M_{X}(\mathbb{F})}(\Pi(\mathbb{F}[G]))$. Association schemes of this type are called Schurian.

Example

If G acts regularly on X, then the relations R_{i} are permutations of X which form a regular permutation subgroup of $\operatorname{Sym}(X)$ isomorphic to G. All basic relations of this scheme are thin (have valency one).

The BM-algebra of this scheme is isomorphic to $\mathbb{F}[G]$.

Class merging (fusion and fission schemes)

Definition

Let $\mathfrak{X}=\left(X, \mathcal{R}=\left\{R_{i}\right\}_{i=0}^{d}\right)$ and $\mathfrak{X}^{\prime}=\left(X, \mathcal{R}^{\prime}=\left\{R_{i}^{\prime}\right\}_{i=0}^{d^{\prime}}\right)$ be two association schemes with the same point set X. We say that \mathfrak{X}^{\prime} is a fusion of \mathfrak{X} (or \mathfrak{X} is a fission of \mathfrak{X}^{\prime}) iff each R_{i}^{\prime} is a union of some R_{j}.

Class merging (fusion and fission schemes)

Definition

Let $\mathfrak{X}=\left(X, \mathcal{R}=\left\{R_{i}\right\}_{i=0}^{d}\right)$ and $\mathfrak{X}^{\prime}=\left(X, \mathcal{R}^{\prime}=\left\{R_{i}^{\prime}\right\}_{i=0}^{d^{\prime}}\right)$ be two association schemes with the same point set X. We say that \mathfrak{X}^{\prime} is a fusion of \mathfrak{X} (or \mathfrak{X} is a fission of \mathfrak{X}^{\prime}) iff each R_{i}^{\prime} is a union of some R_{j}.

Proposition

$\mathfrak{X}^{\prime}=\left(X, \mathcal{R}^{\prime}=\left\{R_{i}^{\prime}\right\}_{i=0}^{d^{\prime}}\right)$ is a fusion of $\mathfrak{X}=\left(X, \mathcal{R}=\left\{R_{i}\right\}_{i=0}^{d}\right)$ iff there exists a partition $T_{0}, \ldots, T_{d^{\prime}}$ of $\{0,1, \ldots, d\}$ such that
$\| T_{0}=\{0\}$;
$2 \forall i \exists j T_{i}^{\prime}=T_{j}$;
$3 \forall i R_{i}^{\prime}=\bigcup_{j \in T_{i}} R_{i}$.

Flag scheme of a projective plane

Let $\Pi=(P, L)$ be a projective plane of order n. Denote by \mathcal{F} the set of flags (p, ℓ) of the plane Π. Define two relations on \mathcal{F} as following

$$
\begin{aligned}
S & :=\left\{\left(\left(p_{1}, \ell_{1}\right),\left(p_{2}, \ell_{2}\right)\right) \mid p_{1}=p_{2}, \ell_{1} \neq \ell_{2}\right\} \\
T & :=\left\{\left(\left(p_{1}, \ell_{1}\right),\left(p_{2}, \ell_{2}\right)\right) \mid P_{1} \neq p_{2}, \ell_{1}=\ell_{2}\right\} .
\end{aligned}
$$

Then the relations $1_{\mathcal{F}}, S, T, S T, T S, T S T$ form an association scheme of rank 6 on \mathcal{F} called the flag scheme of a projective plane.

Flag scheme of a projective plane

Let $\Pi=(P, L)$ be a projective plane of order n. Denote by \mathcal{F} the set of flags (p, ℓ) of the plane Π. Define two relations on \mathcal{F} as following

$$
\begin{aligned}
S & :=\left\{\left(\left(p_{1}, \ell_{1}\right),\left(p_{2}, \ell_{2}\right)\right) \mid p_{1}=p_{2}, \ell_{1} \neq \ell_{2}\right\} \\
T & :=\left\{\left(\left(p_{1}, \ell_{1}\right),\left(p_{2}, \ell_{2}\right)\right) \mid P_{1} \neq p_{2}, \ell_{1}=\ell_{2}\right\} .
\end{aligned}
$$

Then the relations $1_{\mathcal{F}}, S, T, S T, T S, T S T$ form an association scheme of rank 6 on \mathcal{F} called the flag scheme of a projective plane.

The flag scheme is non-commutative and imprimitive.

AS of small rank

AS of small rank

Proposition

A rank two scheme on a point set X is trivial: $I_{X}, X^{2} \backslash I_{X}$.

AS of small rank

Proposition

A rank two scheme on a point set X is trivial: $I_{X}, X^{2} \backslash I_{X}$.

Schemes of rank three.

$\mathfrak{X}=\left(X,\left\{R_{0}, R_{1}, R_{2}\right\}\right)$ with $1^{\prime}=2,2^{\prime}=1$ (antisymmetric case) or $1^{\prime}=1,2^{\prime}=2$ (symmetric case).

AS of small rank

Proposition

A rank two scheme on a point set X is trivial: $I_{X}, X^{2} \backslash I_{X}$.

Schemes of rank three.

$\mathfrak{X}=\left(X,\left\{R_{0}, R_{1}, R_{2}\right\}\right)$ with $1^{\prime}=2,2^{\prime}=1$ (antisymmetric case) or $1^{\prime}=1,2^{\prime}=2$ (symmetric case).
In the first case the parameters are completely determined by the degree $|X|$. The basic graphs form a pair of doubly regular tournaments.

AS of small rank

Proposition

A rank two scheme on a point set X is trivial: $I_{X}, X^{2} \backslash I_{X}$.

Schemes of rank three.

$\mathfrak{X}=\left(X,\left\{R_{0}, R_{1}, R_{2}\right\}\right)$ with $1^{\prime}=2,2^{\prime}=1$ (antisymmetric case) or $1^{\prime}=1,2^{\prime}=2$ (symmetric case).
In the first case the parameters are completely determined by the degree $|X|$. The basic graphs form a pair of doubly regular tournaments.

In the second case the basic graphs form a complementary pair of strongly regular graphs. The parameters are completely determined by $p_{11}^{0}, p_{11}^{1}, p_{11}^{2}$.

AS of small rank

Proposition

A rank two scheme on a point set X is trivial: $I_{X}, X^{2} \backslash I_{X}$.

Schemes of rank three.

$\mathfrak{X}=\left(X,\left\{R_{0}, R_{1}, R_{2}\right\}\right)$ with $1^{\prime}=2,2^{\prime}=1$ (antisymmetric case) or $1^{\prime}=1,2^{\prime}=2$ (symmetric case).
In the first case the parameters are completely determined by the degree $|X|$. The basic graphs form a pair of doubly regular tournaments.

In the second case the basic graphs form a complementary pair of strongly regular graphs. The parameters are completely determined by $p_{11}^{0}, p_{11}^{1}, p_{11}^{2}$.
In both cases the schemes are commutative.

BM-algebra of an association scheme.

Theorem (B. Weisfeiler \& A. Leman, D. Higman)
Let $\mathfrak{X}=(X, \mathcal{R})$ be a scheme. It's BM-algebra $\mathcal{A}_{\mathbb{F}}$ is semisimple if $\operatorname{char}(\mathbb{F})=0$. If, in addition, \mathbb{F} is algebraically closed, then

$$
\mathcal{A}_{\mathbb{F}} \cong \oplus_{i=0}^{k} M_{m_{i}}(\mathbb{F}), \text { with } m_{0}=1
$$

In particular, $|\mathcal{R}|=\sum_{i=0}^{k} m_{i}^{2}$.

BM-algebra of an association scheme.

Theorem (B. Weisfeiler \& A. Leman, D. Higman)

Let $\mathfrak{X}=(X, \mathcal{R})$ be a scheme. It's BM-algebra $\mathcal{A}_{\mathbb{F}}$ is semisimple if $\operatorname{char}(\mathbb{F})=0$. If, in addition, \mathbb{F} is algebraically closed, then

$$
\mathcal{A}_{\mathbb{F}} \cong \oplus_{i=0}^{k} M_{m_{i}}(\mathbb{F}), \text { with } m_{0}=1
$$

In particular, $|\mathcal{R}|=\sum_{i=0}^{k} m_{i}^{2}$.

Theorem (W-L, H)

A scheme of rank less than 6 is commutative.

BM-algebra of an association scheme.

Theorem (B. Weisfeiler \& A. Leman, D. Higman)

Let $\mathfrak{X}=(X, \mathcal{R})$ be a scheme. It's BM-algebra $\mathcal{A}_{\mathbb{F}}$ is semisimple if $\operatorname{char}(\mathbb{F})=0$. If, in addition, \mathbb{F} is algebraically closed, then

$$
\mathcal{A}_{\mathbb{F}} \cong \oplus_{i=0}^{k} M_{m_{i}}(\mathbb{F}), \text { with } m_{0}=1
$$

In particular, $|\mathcal{R}|=\sum_{i=0}^{k} m_{i}^{2}$.

Theorem (W-L, H)

A scheme of rank less than 6 is commutative.

Corollary

A BM-algebra of a non-commutative rank six scheme over algebraically closed field \mathbb{F} of characteristic zero is isomorphic to $\mathbb{F} \oplus \mathbb{F} \oplus M_{2}(\mathbb{F})$.

Non-commutative association schemes of rank 6

Theorem

Let $\mathfrak{X}=\left(X,\left\{R_{0}, \ldots, R_{5}\right\}\right)$ be a non-commutative rank six association scheme of order n. Let $\mathcal{A}:=\left\langle A_{0}, \ldots, A_{5}\right\rangle_{\mathbb{R}}$ be BM-algebra of \mathfrak{X} defined over the reals. Then
$1 \exists$ an algebra isomorphism $\Theta: \mathcal{A} \rightarrow \mathbb{R} \oplus \mathbb{R} \oplus M_{2}(\mathbb{R})$;
$2 \Theta\left(A^{\top}\right)=\Theta(A)^{\top}$;
$3 A_{i}^{\top}=A_{i}$ if $0 \leq i \leq 3$ and $A_{4}^{\top}=A_{5}$.
Thus $\Theta(A)=(\delta(A), \phi(A), B(A))$ where δ, ϕ and B are three absolutely irreducible real representations of \mathcal{A}. In what follows δ is a degree $\operatorname{map}\left(\delta\left(A_{i}\right)\right.$ equals the valency of $\left.R_{i}\right)$.

The image of the standard basis

The elements $b_{i}:=\Theta\left(A_{i}\right)=\left(\delta_{i}, \phi_{i}, B_{i}\right), i=0, \ldots, 5$ form a basis of $M_{1,1,2}(\mathbf{R}):=\mathbf{R} \oplus \mathbf{R} \oplus M_{2}(\mathbf{R})$ s.t.
$1 b_{0}=\left(1,1, l_{2}\right)$ is the identity of $M_{1,1,2}(\mathbf{R})$;
$2 b_{1}^{\top}=b_{1}, b_{2}^{\top}=b_{2}, b_{3}^{\top}=b_{3}, b_{4}^{\top}=b_{5}, b_{5}^{\top}=b_{4}$;
3 the structure constants $p_{i j}^{k}$ of the basis \mathbf{B} are non-negative integers;
$4 p_{i j}^{0}=0$ if $b_{i}^{\top} \neq b_{j}$ and δ_{i} otherwise.

The image of the standard basis

The elements $b_{i}:=\Theta\left(A_{i}\right)=\left(\delta_{i}, \phi_{i}, B_{i}\right), i=0, \ldots, 5$ form a basis of $M_{1,1,2}(\mathbf{R}):=\mathbf{R} \oplus \mathbf{R} \oplus M_{2}(\mathbf{R})$ s.t.
$1 b_{0}=\left(1,1, I_{2}\right)$ is the identity of $M_{1,1,2}(\mathbf{R})$;
$2 b_{1}^{\top}=b_{1}, b_{2}^{\top}=b_{2}, b_{3}^{\top}=b_{3}, b_{4}^{\top}=b_{5}, b_{5}^{\top}=b_{4}$;
3 the structure constants $p_{i j}^{k}$ of the basis \mathbf{B} are non-negative integers;
$4 p_{i j}^{0}=0$ if $b_{i}^{\top} \neq b_{j}$ and δ_{i} otherwise.
A basis satisfying $1,2,4$ is called a reality basis (H.Blau) of \mathcal{A}. The number $\delta_{0}+\ldots+\delta_{5}$ is called degree/order of \mathbf{B}.

The image of the standard basis

The elements $b_{i}:=\Theta\left(A_{i}\right)=\left(\delta_{i}, \phi_{i}, B_{i}\right), i=0, \ldots, 5$ form a basis of $M_{1,1,2}(\mathbf{R}):=\mathbf{R} \oplus \mathbf{R} \oplus M_{2}(\mathbf{R})$ s.t.
I $b_{0}=\left(1,1, l_{2}\right)$ is the identity of $M_{1,1,2}(\mathbf{R})$;
$2 b_{1}^{\top}=b_{1}, b_{2}^{\top}=b_{2}, b_{3}^{\top}=b_{3}, b_{4}^{\top}=b_{5}, b_{5}^{\top}=b_{4}$;
3 the structure constants $p_{i j}^{k}$ of the basis \mathbf{B} are non-negative integers;
$4 p_{i j}^{0}=0$ if $b_{i}^{\top} \neq b_{j}$ and δ_{i} otherwise.
A basis satisfying $1,2,4$ is called a reality basis (H.Blau) of \mathcal{A}. The number $\delta_{0}+\ldots+\delta_{5}$ is called degree/order of \mathbf{B}.
A reality basis is called a table basis (Z. Arad and H. Blau) if $p_{i j}^{k}$ are non-negative reals.

The image of the standard basis

The elements $b_{i}:=\Theta\left(A_{i}\right)=\left(\delta_{i}, \phi_{i}, B_{i}\right), i=0, \ldots, 5$ form a basis of $M_{1,1,2}(\mathbf{R}):=\mathbf{R} \oplus \mathbf{R} \oplus M_{2}(\mathbf{R})$ s.t.
1 . $b_{0}=\left(1,1, l_{2}\right)$ is the identity of $M_{1,1,2}(\mathbf{R})$;
$2 b_{1}^{\top}=b_{1}, b_{2}^{\top}=b_{2}, b_{3}^{\top}=b_{3}, b_{4}^{\top}=b_{5}, b_{5}^{\top}=b_{4}$;
3 the structure constants $p_{i j}^{k}$ of the basis \mathbf{B} are non-negative integers;
$4 p_{i j}^{0}=0$ if $b_{i}^{\top} \neq b_{j}$ and δ_{i} otherwise.
A basis satisfying $1,2,4$ is called a reality basis (H.Blau) of \mathcal{A}. The number $\delta_{0}+\ldots+\delta_{5}$ is called degree/order of \mathbf{B}.
A reality basis is called a table basis (Z. Arad and H. Blau) if $p_{i j}^{k}$ are non-negative reals.
A reality basis is called integral iff all $p_{i j}^{k}$ are integers.

Enumeration of integral table bases

Definition

Two table bases \mathbf{B} and $\tilde{\mathbf{B}}$ of $M_{1,1,2}(\mathbb{R})$ are equivalent if there exists a^{\top}-permutable automorphism φ of $M_{1,1,2}(\mathbb{R})$ such that $\mathbf{B}^{\varphi}=\tilde{\mathbf{B}}$.

Two tables bases $\mathbf{B}, \tilde{\mathbf{B}}$ of \mathcal{A} are equivalent iff there exists a permutation φ of $\{0,1, \ldots, d\}$ which commutes with ${ }^{\top}$ and satisfies s.t. $\tilde{p}_{i j}^{k}=p_{\varphi(i), \varphi(j)}^{\varphi(k)}$ for all i, j, k.

Problem

Given a number n, find all integral table bases of order n (up to equivalency) of the algebra $M_{1,1,2}(\mathbb{R})$.

Character Table

The algebra $\mathcal{A} \cong M_{1,1,2}(\mathbb{R})$ has three irreducible characters δ, ϕ and $\chi(A):=\operatorname{tr}(B(A))$.
The standard character of $\mathcal{A}: \tau(A):=\operatorname{tr}(A)$.
$\tau=\delta+m_{\phi} \phi+m_{\chi} \chi$, where m_{ϕ} and m_{χ} are the multiplicities.

Character Table

The algebra $\mathcal{A} \cong M_{1,1,2}(\mathbb{R})$ has three irreducible characters δ, ϕ and $\chi(A):=\operatorname{tr}(B(A))$.
The standard character of $\mathcal{A}: \tau(A):=\operatorname{tr}(A)$.
$\tau=\delta+m_{\phi} \phi+m_{\chi} \chi$, where m_{ϕ} and m_{χ} are the multiplicities.
The character table

	b_{0}	b_{1}	b_{2}	b_{3}	b_{4}	b_{5}
δ	1	δ_{1}	δ_{2}	δ_{3}	δ_{4}	$\delta_{5}=\delta_{4}$
ϕ	1	ϕ_{1}	ϕ_{2}	ϕ_{3}	ϕ_{4}	$\phi_{5}=\phi_{4}$
χ	2	χ_{1}	χ_{2}	χ_{3}	χ_{4}	$\chi_{5}=\chi_{4}$

Orthogonality relations

Orthogonality relations

Row orthogonality

$$
\begin{aligned}
1+\delta_{1}+\delta_{2}+\delta_{3}+2 \delta_{4} & =n \\
1+\frac{\phi_{1}^{2}}{\delta_{1}}+\frac{\phi_{2}^{2}}{\delta_{2}}+\frac{\phi_{3}^{2}}{\delta_{3}}+2 \frac{\phi_{4}^{2}}{\delta_{4}} & =\frac{n}{m_{\phi}} \\
4+\frac{\chi_{1}^{2}}{\delta_{1}}+\frac{\chi_{2}^{2}}{\delta_{2}}+\frac{\chi_{3}^{2}}{\delta_{3}}+2 \frac{\chi_{4}^{2}}{\delta_{4}} & =2 \frac{n}{m_{\chi}} \\
1+\phi_{1}+\phi_{2}+\phi_{3}+2 \phi_{4} & =0 \\
2+\chi_{1}+\chi_{2}+\chi_{3}+2 \chi_{4} & =0 \\
2+\frac{\phi_{1} \chi_{1}}{\delta_{1}}+\frac{\phi_{2} \chi_{2}}{\delta_{2}}+\frac{\phi_{3} \chi_{3}}{\delta_{3}}+2 \frac{\phi_{4} \chi_{4}}{\delta_{4}} & =0
\end{aligned}
$$

Orthogonality relations

Row orthogonality

$$
\begin{aligned}
1+\delta_{1}+\delta_{2}+\delta_{3}+2 \delta_{4} & =n \\
1+\frac{\phi_{1}^{2}}{\delta_{1}}+\frac{\phi_{2}^{2}}{\delta_{2}}+\frac{\phi_{3}^{2}}{\delta_{3}}+2 \frac{\phi_{4}^{2}}{\delta_{4}} & =\frac{n}{m_{\phi}} \\
4+\frac{\chi_{1}^{2}}{\delta_{1}}+\frac{\chi_{2}^{2}}{\delta_{2}}+\frac{\chi_{3}^{2}}{\delta_{3}}+2 \frac{\chi_{4}^{2}}{\delta_{4}} & =2 \frac{n}{m_{\chi}} \\
1+\phi_{1}+\phi_{2}+\phi_{3}+2 \phi_{4} & =0 \\
2+\chi_{1}+\chi_{2}+\chi_{3}+2 \chi_{4} & =0 \\
2+\frac{\phi_{1} \chi_{1}}{\delta_{1}}+\frac{\phi_{2} \chi_{2}}{\delta_{2}}+\frac{\phi_{3} \chi_{3}}{\delta_{3}}+2 \frac{\phi_{4} \chi_{4}}{\delta_{4}} & =0
\end{aligned}
$$

Column orthogonality

$$
\begin{aligned}
1+m_{\phi}+2 m_{\chi} & =n ; \\
\forall_{i=1, \ldots, 5} \quad \delta_{i}+m_{\phi} \phi_{i}+m_{\chi} \chi_{i} & =0
\end{aligned}
$$

Necessary conditions

Proposition

If \mathbf{B} is an integral table basis, then $\delta_{i}, \phi_{i}, \chi_{i}, i=1, \ldots 4$ are integers and
$1 \forall_{i} \delta_{i}>0$;
$2\left|\phi_{i}\right| \leq \delta_{i},\left|\chi_{i}\right| \leq 2 \delta_{i}$.

Proposition

If the table basis comes from a scheme, then the multiplicities m_{ϕ}, m_{χ} are positive integers.

Proposition

The set $\left\{\phi_{i} / \delta_{i}\right\}_{i=1}^{4}$ contains at least two numbers. If it contains exactly two numbers, then the center of \mathcal{A} is a BM-algebra of a rank three fusion scheme \mathfrak{X}.

Main Results

Main Results

Proposition

The numbers $\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}, \phi_{1}, \phi_{2}, \phi_{3}$ determine the character table T of $(\mathcal{A}, \mathbf{B})$ uniquely.

Main Results

Proposition

The numbers $\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}, \phi_{1}, \phi_{2}, \phi_{3}$ determine the character table T of $(\mathcal{A}, \mathbf{B})$ uniquely.

Theorem

Given the character table T of $(\mathcal{A}, \mathbf{B})$, there exists a unique (up to an equivalency) reality basis \mathbf{B} with that character table. In particular, the numbers $\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}, \phi_{1}, \phi_{2}, \phi_{3}$ determine the structure constants of the BM-algebra \mathcal{A}.

Main Results

Proposition

The numbers $\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}, \phi_{1}, \phi_{2}, \phi_{3}$ determine the character table T of $(\mathcal{A}, \mathbf{B})$ uniquely.

Theorem

Given the character table T of $(\mathcal{A}, \mathbf{B})$, there exists a unique (up to an equivalency) reality basis \mathbf{B} with that character table. In particular, the numbers $\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}, \phi_{1}, \phi_{2}, \phi_{3}$ determine the structure constants of the BM-algebra \mathcal{A}.

We have enumerated all tuples $\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}, \phi_{1}, \phi_{2}, \phi_{3}$ which provide a character table T with integral entries.
Then for each character table T we construct a table basis \mathbf{B} and check whether the structure constants w.r.t. \mathbf{B} are non-negative integers.

Enumeration results

We obtained all feasible parameters of non-commutative schemes of rank six up to order 150. Among them four parameter sets for primitive schemes were found.

N	n	δ, ϕ	$\left(m_{\phi}, m_{\chi}\right)$
1	81	$[10,10,20,20],[1,1,-7,2]$	$(20,30)$
2	96	$[19,19,19,19],[-5,-5,3,3]$	$(19,38)$
3	96	$[19,19,19,19],[3,3,3,-5]$	$(19,38)$
4	120	$[17,17,51,17],[-3,-3,3,1]$	$(51,34)$

Primitive rank six schemes

Theorem

There is only one feasible parameter set corresponding to primitive non-commutative rank six scheme of order ≤ 150. It has order 81 and the valencies $1,10,10,20,20,20$.

Proof. The second and third algebras have rank three fusion scheme with degrees $1,38,57$. According to Brouwer's table an SRG with such parameters doesn't exists.
The last algebra violates the condition $p_{i j}^{i} \delta_{i} \equiv 0(\bmod 2)$ whenever $i^{\prime}=i, j^{\prime}=j$.

Open problems

Open problems

Problem

Find an example of a primitive non-commutative association scheme of rank 6 (if it exists).

Open problems

Problem

Find an example of a primitive non-commutative association scheme of rank 6 (if it exists).

Problem

Find an example of a schurian primitive non-commutative association scheme of rank 6 (if it exists).

Open problems

Problem

Find an example of a primitive non-commutative association scheme of rank 6 (if it exists).

Problem

Find an example of a schurian primitive non-commutative association scheme of rank 6 (if it exists).

Lemma (Munemasa)

There is no schurian primitive association schemes of rank 6 with less than 1600 points.

Schurian case

Let $G \leq \operatorname{Sym}(X)$ be a transitive permutation group, $\mathfrak{X}=(X, \mathcal{R})$ its 2-orbit scheme.

Schurian case

Let $G \leq \operatorname{Sym}(X)$ be a transitive permutation group, $\mathfrak{X}=(X, \mathcal{R})$ its 2-orbit scheme.

Proposition

\mathfrak{X} is a non-commutative rank six scheme iff $1_{G_{x}}^{G}=1_{G}+\alpha+2 \beta$ where α, β are distinct irreducible characters of G.

Schurian case

Let $G \leq \operatorname{Sym}(X)$ be a transitive permutation group, $\mathfrak{X}=(X, \mathcal{R})$ its 2-orbit scheme.

Proposition

\mathfrak{X} is a non-commutative rank six scheme iff $1_{G_{x}}^{G}=1_{G}+\alpha+2 \beta$ where α, β are distinct irreducible characters of G.

Problem

Classify all transitive (primitive) permutation groups $G \leq \operatorname{Sym}(X)$ satisfying $1_{G_{X}}^{G}=1_{G}+\alpha+2 \beta$.

Schurian case

Let $G \leq \operatorname{Sym}(X)$ be a transitive permutation group, $\mathfrak{X}=(X, \mathcal{R})$ its 2-orbit scheme.

Proposition

\mathfrak{X} is a non-commutative rank six scheme iff $1_{G_{\times}}^{G}=1_{G}+\alpha+2 \beta$ where α, β are distinct irreducible characters of G.

Problem

Classify all transitive (primitive) permutation groups $G \leq \operatorname{Sym}(X)$ satisfying $1_{G_{X}}^{G}=1_{G}+\alpha+2 \beta$.

Theorem (M. Conder and V. Jones)

If \mathfrak{X} has rank 6 and admits two closed subsets $I, J \subseteq\{0,1, \ldots, 5\}$ such that $R_{I} R_{J} \neq R_{J} R_{l}$, then either \mathfrak{X} is a thin scheme isomorphic to S_{3} or \mathfrak{X} is a flag scheme of a Desarguesian plane.

Central rank of a permutation group

Let $G \leq \operatorname{Sym}(X)$ be a permutation group,
$\Pi: \mathbb{C}[G] \rightarrow M_{X}(\mathbb{C})$ is a corresponding representation of G, $\mathfrak{X}=\left(X,\left\{R_{0}, R_{1}, \ldots, R_{d}\right\}\right)$ is the 2 -orbit scheme of G, \mathcal{A} is the BM-algebra of \mathfrak{X}.

Theorem (H. Wielandt)

$\mathcal{A} \cap \Pi(\mathbb{C}[G])=Z(\mathcal{A})=\Pi(Z(\mathbb{C}[G]))$.
In what follows we call $\operatorname{dim}(Z(\mathcal{A}))$ the central rank of G and denote as $c-\operatorname{rank}(G)$.

Proposition

1 The central rank of a permutation group is equal to the number of irreducible constituents in the decomposition of Π;
$22 \leq c-\operatorname{rank}(G) \leq \operatorname{rank}(G)$ where the equality holds iff Π is multiplicity free.

Central rank of a permutation group

It is well-known that $H \leq G \Longrightarrow \operatorname{rank}(H) \geq \operatorname{rank}(G)$.
But $H \leq G \Longleftrightarrow c-\operatorname{rank}(H) \geq c-r a n k(G)$. For example, take H to be a regular subgroup of S_{6} isomorphic to S_{3} and G to be $\mathbb{Z}_{3} \backslash \mathbb{Z}_{2}$ in imprimitive action. Then $c-r a n k(H)=3$ while $c-\operatorname{rank}(G)=4$.

Central rank of a permutation group

It is well-known that $H \leq G \Longrightarrow \operatorname{rank}(H) \geq \operatorname{rank}(G)$.
But $H \leq G \Longleftrightarrow c-r a n k(H) \geq c-r a n k(G)$. For example, take H to be a regular subgroup of S_{6} isomorphic to S_{3} and G to be $\mathbb{Z}_{3} \backslash \mathbb{Z}_{2}$ in imprimitive action. Then $c-\operatorname{rank}(H)=3$ while $c-\operatorname{rank}(G)=4$.

Proposition

Let \mathcal{P} be G-invariant partition of X. Then $c-\operatorname{rank}\left(G^{\mathcal{P}}\right) \leq c-\operatorname{rank}(G)$.

Central rank of a permutation group

It is well-known that $H \leq G \Longrightarrow \operatorname{rank}(H) \geq \operatorname{rank}(G)$.
But $H \leq G \Longleftrightarrow c-\operatorname{rank}(H) \geq c-\operatorname{rank}(G)$. For example, take H to be a regular subgroup of S_{6} isomorphic to S_{3} and G to be $\mathbb{Z}_{3} \backslash \mathbb{Z}_{2}$ in imprimitive action. Then $c-\operatorname{rank}(H)=3$ while $c-\operatorname{rank}(G)=4$.

Proposition

Let \mathcal{P} be G-invariant partition of X. Then
$c-\operatorname{rank}\left(G^{\mathcal{P}}\right) \leq c-\operatorname{rank}(G)$.

Theorem

If G is transitive and $c-\operatorname{rank}(G)=2$ then $\operatorname{rank}(G)=2$, that is G acts 2-transitively on X.

The result is not true if G is intransitive (for example, $\operatorname{c-rank}\left(S_{2} \boxplus S_{2}\right)=2$, but $\left.\operatorname{rank}\left(S_{2} \boxplus S_{2}\right)=8\right)$.

Primitive permutation group of central rank three

Each rank three group is a c-rank three group, but not versa.

Example

The group $P G L_{3}(q)$ acting on the flags of the projective plane has rank six and c-rank three.

Primitive permutation group of central rank three

Each rank three group is a c-rank three group, but not versa.

Example

The group $P G L_{3}(q)$ acting on the flags of the projective plane has rank six and c-rank three.

Theorem

Let $G \leq \operatorname{Sym}(X)$ be a primitive group of c-rank three. If $\operatorname{rank}(G)>3$, then the socle of G is a non-abelian simple group.

Primitive permutation group of central rank three

Each rank three group is a c-rank three group, but not versa.

Example

The group $P G L_{3}(q)$ acting on the flags of the projective plane has rank six and c-rank three.

Theorem

Let $G \leq \operatorname{Sym}(X)$ be a primitive group of c-rank three. If $\operatorname{rank}(G)>3$, then the socle of G is a non-abelian simple group.

Theorem

If one of the groups A_{n}, S_{n} has a primitive action with central rank three, then the rank of this action is also three.

Thank you!

