Some results on the roots of the independence polynomial of graphs

Ferenc Bencs

Central European University

Algebraic and Extremal Graph Theory Conference
Aug 9, 2017

Supervisor: Péter Csikvári

Definition, notation

The independence polynomial of a graph G is

$$
I(G, x)=\sum_{A \in \mathcal{F}(G)} x^{|A|}=
$$

where $\mathcal{F}(G)$ is the set of independent subsets of the vertices of G. E.g.

Definition, notation

The independence polynomial of a graph G is

$$
I(G, x)=\sum_{A \in \mathcal{F}(G)} x^{|A|}=\sum_{k \geq 0} i_{k}(G) x^{k},
$$

where $\mathcal{F}(G)$ is the set of independent subsets of the vertices of G. E.g.

Definition, notation

The independence polynomial of a graph G is

$$
I(G, x)=\sum_{A \in \mathcal{F}(G)} x^{|A|}=\sum_{k \geq 0} i_{k}(G) x^{k},
$$

where $\mathcal{F}(G)$ is the set of independent subsets of the vertices of G. E.g.

$$
I(G, x)=1+5 x+3 x^{2}
$$

Notation

For a generater function $f(x)=\sum_{k \geq 0} a_{k} x^{k}$, we will use the following notation

$$
\left[x^{k}\right] f(x)=a_{k}
$$

to denote the coefficient of x^{k} in $f(x)$.

Unimodality

A sequence $\left(b_{k}\right)_{k=0}^{n} \subset \mathbb{R}^{+}$is

1. unimodal, if $\exists k \in\{0, \ldots n\}$, such that

$$
b_{0} \leq b_{1} \leq \cdots \leq b_{k-1} \leq b_{k} \geq b_{k+1} \geq \cdots \geq b_{n}
$$

2. log-concave, if $\forall i \in\{1, \ldots, n-1\}$

$$
b_{i}^{2} \geq b_{i-1} b_{i+1}
$$

Lemma (Newton)
If $p(x)=\sum_{i=0}^{n} b_{i} x^{i}$ has only real zeros, then the sequence $\left(b_{k}\right)_{k=0}^{n}$ is log-concave, therefore unimodal.

Unimodality on the independent subsets of the graphs

Question: Are the coefficients of $I(G, x)$ form an unimodal sequence, if

G is ...?	Answer:
connected	No
bipartite (Levit, Mandrescu)	No (Bhattacharyya, Kahn)
tree (Alavi et al.)	Open
line graph	Yes
claw-free graph	Yes

Unimodality on the independent subsets of the graphs

Question: Are the coefficients of $I(G, x)$ form an unimodal sequence, if

G is ...?	Answer:
connected	No
bipartite (Levit, Mandrescu)	No (Bhattacharyya, Kahn)
tree (Alavi et al.)	Open
line graph	Yes, moreover real-rooted (Heilmann, Lieb)
claw-free graph	Yes, moreover real-rooted (Chudnovsky, Seymour)

(claw-free=graph without induced $K_{1,3}$.)

Unimodality on the independent subsets of the graphs

Question: Are the coefficients of $I(G, x)$ form an unimodal sequence, if

G is ...?	Answer:
connected	No
bipartite (Levit, Mandrescu)	No (Bhattacharyya, Kahn)
tree (Alavi et al.)	Open
line graph	Yes, moreover real-rooted (Heilmann, Lieb)
claw-free graph	Yes, moreover real-rooted (Chudnovsky, Seymour)

Unimodality on the independent subsets of the graphs

Question: Are the coefficients of $I(G, x)$ form an unimodal sequence, if

G is ...?	Answer:
connected	No
bipartite (Levit, Mandrescu)	No (Bhattacharyya, Kahn)
tree (Alavi et al.)	Open
line graph	Yes, moreover real-rooted (Heilmann, Lieb)
claw-free graph	Yes, moreover real-rooted (Chudnovsky, Seymour)

Question(Galvin, Hilyard): Which trees have independence polynomial with only real zeros?

Stable-path tree

Let u be a fixed vertex of G, and choose a total ordering \prec on $V(G)$.
Then the rooted tree ($T(G, u), \bar{u})$ defined as follows:
Let $N(u)=\left\{u_{1} \prec \cdots \prec u_{d}\right\}$ and

$$
G^{i}=G\left[V(G) \backslash\left\{u, u_{1}, u_{2}, \ldots, u_{i-1}\right\}\right]
$$

Stable-path tree

Let u be a fixed vertex of G, and choose a total ordering \prec on $V(G)$.
Then the rooted tree ($T(G, u), \bar{u})$ defined as follows:
Let $N(u)=\left\{u_{1} \prec \cdots \prec u_{d}\right\}$ and

$$
G^{i}=G\left[V(G) \backslash\left\{u, u_{1}, u_{2}, \ldots, u_{i-1}\right\}\right]
$$

Stable-path tree

Let u be a fixed vertex of G, and choose a total ordering \prec on $V(G)$.
Then the rooted tree ($T(G, u), \bar{u})$ defined as follows:
Let $N(u)=\left\{u_{1} \prec \cdots \prec u_{d}\right\}$ and

$$
G^{i}=G\left[V(G) \backslash\left\{u, u_{1}, u_{2}, \ldots, u_{i-1}\right\}\right]
$$

Stable-path tree

Let u be a fixed vertex of G, and choose a total ordering \prec on $V(G)$.
Then the rooted tree ($T(G, u), \bar{u})$ defined as follows:
Let $N(u)=\left\{u_{1} \prec \cdots \prec u_{d}\right\}$ and

$$
G^{i}=G\left[V(G) \backslash\left\{u, u_{1}, u_{2}, \ldots, u_{i-1}\right\}\right]
$$

Example

Example

Example

Example

Example

Example -cont.

Properties of the stable-path tree

Theorem (Scott, Sokal, Weitz)
Let G be a graph and $u \in V(G)$ be fixed. Then if $T=T(G, u)$, then

$$
\frac{I(G-u, x)}{I(G, x)}=\frac{I(T-\bar{u}, x)}{I(T, x)} .
$$

Properties of the stable-path tree

Theorem (Scott, Sokal, Weitz)
Let G be a graph and $u \in V(G)$ be fixed. Then if $T=T(G, u)$, then

$$
\frac{I(G-u, x)}{I(G, x)}=\frac{I(T-\bar{u}, x)}{I(T, x)} .
$$

Corollary

1. There exists a subtree \bar{F} in T such that

$$
I(G, x)=\frac{I(T, x)}{I(T-\bar{F}, x)} .
$$

Properties of the stable-path tree

Theorem (Scott, Sokal, Weitz)
Let G be a graph and $u \in V(G)$ be fixed. Then if $T=T(G, u)$, then

$$
\frac{I(G-u, x)}{I(G, x)}=\frac{I(T-\bar{u}, x)}{I(T, x)}
$$

Corollary

1. There exists a subtree \bar{F} in T such that

$$
I(G, x)=\frac{I(T, x)}{I(T-\bar{F}, x)}
$$

2. There exists a sequence of induced subgraphs G_{1}, \ldots, G_{k} of G, such that

$$
I(T, x)=I(G, x) I\left(G_{1}, x\right) \ldots I\left(G_{k}, x\right)
$$

Real-rooted independence polynomials

Theorem (Chudnovsky, Seymour)
Any zero of the independence polynomial of a claw-free graph is real. (claw-free=graph without induced $K_{1,3}$.)

Real-rooted independence polynomials

Theorem (Chudnovsky, Seymour)
Any zero of the independence polynomial of a claw-free graph is real. (claw-free=graph without induced $K_{1,3}$.)

Theorem
Let G be a claw-free graph and $u \in V(G)$. Then $I(T(G, u), x)$ is real-rooted.
Moreover $I(G, x)$ divides $I(T(G, u), x)$.

Caterpillar H_{n}

The nth caterpillar $\left(H_{n}\right)$ is the following tree on $3 n$ vertices:

Caterpillar H_{n}

The nth caterpillar $\left(H_{n}\right)$ is the following tree on $3 n$ vertices:

Proposition: It has real-rooted independence polynomial.(Wang, Zhu)

Caterpillar H_{n}

The nth caterpillar $\left(H_{n}\right)$ is the following tree on $3 n$ vertices:

Proposition: It has real-rooted independence polynomial.(Wang, Zhu)
For a tree T, call a claw-free graph witness, if there is an ordering of its vertices, such that the resulting stable-path tree is isomorphic to T.

Caterpillar H_{n}

The nth caterpillar $\left(H_{n}\right)$ is the following tree on $3 n$ vertices:

Proposition: It has real-rooted independence polynomial.(Wang, Zhu)
For a tree T, call a claw-free graph witness, if there is an ordering of its vertices, such that the resulting stable-path tree is isomorphic to T. The witness is the following graph

Fibonaci tree F_{n}

The Fibonaci trees are defined recursively (definition by S. Wagner),

Fibonaci tree F_{n}

The Fibonaci trees are defined recursively (definition by S. Wagner),

Fibonaci tree F_{n}

The Fibonaci trees are defined recursively (definition by S. Wagner),

Fibonaci tree F_{n}

The Fibonaci trees are defined recursively (definition by S. Wagner),

Fibonaci tree F_{n}

The Fibonaci trees are defined recursively (definition by S. Wagner),

Fibonaci tree F_{n}

The Fibonaci trees are defined recursively (definition by S. Wagner),

Fibonaci tree F_{n}

The Fibonaci trees are defined recursively (definition by S. Wagner),

Fibonaci tree F_{n}

The Fibonaci trees are defined recursively (definition by S. Wagner),

Fibonaci tree F_{n}

The Fibonaci trees are defined recursively (definition by S. Wagner),

Conjecture: It has real-rooted independence polynomial. (Galvin, Hilyard)

Fibonaci tree F_{n}

The Fibonaci trees are defined recursively (definition by S. Wagner),

Conjecture: It has real-rooted independence polynomial. (Galvin, Hilyard) The witness is the following graph

The M_{n} graph family

M_{n} when n is even.

M_{n} when n is odd.

The M_{n} graph family

M_{n} when n is even.

M_{n} when n is odd.

Proposition: It has real-rooted independence polynomial. (Wang, Zhu)

The M_{n} graph family

M_{n} when n is even.
M_{n} when n is odd.

Proposition: It has real-rooted independence polynomial. (Wang, Zhu)
As it turns out with a good ordering on the vertices the corresponding stable-path tree will be the nth caterpillar.

The M_{n} graph family

M_{n} when n is even.

M_{n} when n is odd.

Proposition: It has real-rooted independence polynomial. (Wang, Zhu)
As it turns out with a good ordering on the vertices the corresponding stable-path tree will be the nth caterpillar. So

$$
I\left(M_{n}, x\right) \mid I\left(H_{n}, x\right)
$$

and we already seen that $I\left(H_{n}, x\right)$ has only real zeros, therefore $I\left(M_{n}, x\right)$ has only real zeros.

Other real-rooted families

Trees:

Graphs:

Other real-rooted families

Trees:

- Centipede (Zhu)

Graphs:

Other real-rooted families

Trees:

- Centipede (Zhu)
- k-ary analogue of the Fibbonaci trees (definition by S. Wagner) Graphs:

Other real-rooted families

Trees:

- Centipede (Zhu)
- k-ary analogue of the Fibbonaci trees (definition by S. Wagner)

Graphs:

- Sunlet graph (Wang, Zhu)

Other real-rooted families

Trees:

- Centipede (Zhu)
- k-ary analogue of the Fibbonaci trees (definition by S. Wagner)

Graphs:

- Sunlet graph (Wang, Zhu)
- Ladder graph (Zhu, Lu)

Other real-rooted families

Trees:

- Centipede (Zhu)
- k-ary analogue of the Fibbonaci trees (definition by S. Wagner)

Graphs:

- Sunlet graph (Wang, Zhu)
- Ladder graph (Zhu, Lu)
- Polyphenil ortho-chain (Alikhani, Jafari)

Are they the answer?

Is there a tree with real-rooted independence polynomial, such that it is not a stable-path tree of other then itself?

Are they the answer?

Is there a tree with real-rooted independence polynomial, such that it is not a stable-path tree of other then itself?

Yes. E.g.:

$$
I(T, x)=(1+x)\left(1+8 x+20 x^{2}+16 x^{3}+x^{4}\right)
$$

Dictionary

Finite graphs	Infinite (rooted) graphs

Dictionary

Finite graphs	Infinite (rooted) graphs
zeros of a polynomial	

Dictionary

Finite graphs	Infinite (rooted) graphs
zeros of a polynomial	measure on the complex plane

Dictionary

Finite graphs	Infinite (rooted) graphs
zeros of a polynomial	measure on the complex plane
all zeros are real	

Dictionary

Finite graphs	Infinite (rooted) graphs
zeros of a polynomial	measure on the complex plane
all zeros are real	measure supported on the real line

Dictionary

Finite graphs	Infinite (rooted) graphs
zeros of a polynomial	measure on the complex plane
all zeros are real	measure supported on the real line

The main ingredient which enables us to move between the two "worlds", is the "localization". For any graph G, the coefficient

$$
\left[x^{k}\right] \frac{I(G-u,-x)}{I(G,-x)}
$$

depends only on the k-1-neighborhood of u in G,

Dictionary

Finite graphs	Infinite (rooted) graphs
zeros of a polynomial	measure on the complex plane
all zeros are real	measure supported on the real line

The main ingredient which enables us to move between the two "worlds", is the "localization". For any graph G, the coefficient

$$
\left[x^{k}\right] \frac{I(G-u,-x)}{I(G,-x)}
$$

depends only on the $k-1$-neighborhood of u in G, moreover it is a positive integer.

Infinite binary tree

Theorem
For the rooted binary tree (or 3-regular tree) there exists a measure μ on the real line, such that

$$
\int_{\mathbb{R}} x^{k} d \mu=\left[x^{k}\right] \frac{I(T-r,-x)}{I(T,-x)}
$$

Infinite binary tree

Theorem
For the rooted binary tree (or 3-regular tree) there exists a measure μ on the real line, such that

$$
\begin{aligned}
& \int_{\mathbb{R}} x^{k} d \mu=\left[x^{k}\right] \frac{I(T-r,-x)}{I(T,-x)} \\
& =\frac{1}{k}\binom{3 k}{k-1}
\end{aligned}
$$

Infinite binary tree

Theorem
For the rooted binary tree (or 3-regular tree) there exists a measure μ on the real line, such that

$$
\begin{array}{r}
\int_{\mathbb{R}} x^{k} d \mu=\left[x^{k}\right] \frac{I(T-r,-x)}{I(T,-x)} \\
=\sum_{i=1}^{k} \frac{i}{k}\binom{3 k}{k-i}
\end{array}
$$

THANK YOU FOR YOUR ATTENTION!

