Some results on the roots of the independence polynomial of graphs

Ferenc Bencs

Central European University

Algebraic and Extremal Graph Theory Conference Aug 9, 2017

《曰》 《聞》 《臣》 《臣》 三臣

Supervisor Péter Csikvári

Definition, notation	Applications	Further applications

Definition, notation

The independence polynomial of a graph G is

$$I(G, x) = \sum_{A \in \mathcal{F}(G)} x^{|A|} = \qquad ,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ● のへの

2/18

where $\mathcal{F}(G)$ is the set of independent subsets of the vertices of G. E.g.

Definition, notation	Applications	Further applications

Definition, notation

The independence polynomial of a graph G is

$$I(G,x) = \sum_{A \in \mathcal{F}(G)} x^{|A|} = \sum_{k \ge 0} i_k(G) x^k,$$

where $\mathcal{F}(G)$ is the set of independent subsets of the vertices of G. E.g.

Definition, notation	Applications	Further applications

Definition, notation

The independence polynomial of a graph G is

$$I(G, x) = \sum_{A \in \mathcal{F}(G)} x^{|A|} = \sum_{k \ge 0} i_k(G) x^k,$$

where $\mathcal{F}(G)$ is the set of independent subsets of the vertices of G. E.g.

$$I(G, x) = 1 + 5x + 3x^2$$

< □ > < 部 > < 言 > < 言 > 言 の < で 2/18

Definition, notation	Applications	Further applications

Notation

For a generater function $f(x) = \sum_{k \geq 0} a_k x^k$, we will use the following notation

$$[x^k]f(x) = a_k$$

to denote the coefficient of x^k in f(x).

Definition, notation	Applications	Further applications
Unimodality		

A sequence $(b_k)_{k=0}^n \subset \mathbb{R}^+$ is

1. unimodal, if $\exists k \in \{0, \ldots n\}$, such that

$$b_0 \leq b_1 \leq \cdots \leq b_{k-1} \leq b_k \geq b_{k+1} \geq \cdots \geq b_n.$$

2. log-concave, if
$$orall i \in \{1,\ldots,n-1\}$$

$$b_i^2 \ge b_{i-1}b_{i+1}$$

Lemma (Newton)

If $p(x) = \sum_{i=0}^{n} b_i x^i$ has only real zeros, then the sequence $(b_k)_{k=0}^n$ is log-concave, therefore unimodal.

Question: Are the coefficients of I(G,x) form an unimodal sequence, if

$G ext{ is } \dots ?$	Answer:
connected	Νο
bipartite (Levit, Mandrescu)	No (Bhattacharyya, Kahn)
tree (Alavi et al.)	Open
line graph	Yes
claw-free graph	Yes

Question: Are the coefficients of I(G, x) form an unimodal sequence, if

$G ext{ is } \dots ?$	Answer:
connected	Νο
bipartite (Levit, Mandrescu)	No (Bhattacharyya, Kahn)
tree (Alavi et al.)	Open
line graph	Yes, moreover real-rooted (Heilmann, Lieb)
claw-free graph	Yes, moreover real-rooted (Chudnovsky, Seymour)

(claw-free=graph without induced $K_{1,3}$)

Question: Are the coefficients of I(G,x) form an unimodal sequence, if

$G ext{ is } \dots ?$	Answer:
connected	No
bipartite (Levit, Mandrescu)	No (Bhattacharyya, Kahn)
tree (Alavi et al.)	Open
line graph	Yes, moreover real-rooted (Heilmann, Lieb)
claw-free graph	Yes, moreover real-rooted (Chudnovsky, Seymour)

Question: Are the coefficients of I(G, x) form an unimodal sequence, if

$G ext{ is } \dots ?$	Answer:
connected	No
bipartite (Levit, Mandrescu)	No (Bhattacharyya, Kahn)
tree (Alavi et al.)	Open
line graph	Yes, moreover real-rooted (Heilmann, Lieb)
claw-free graph	Yes, moreover real-rooted (Chudnovsky, Seymour)

Question(Galvin, Hilyard): Which trees have independence polynomial with only real zeros?

Definition, notation	Iree representation	Applications	Further applications
Stable-path tree			
Let u be a fixed v Then the rooted t Let $N(u) = \{u_1 -$	ertex of G , and choose a tot ree $(T(G,u),ar{u})$ defined as f $\prec \cdots \prec u_d\}$ and	tal ordering \prec on $V(G)$. follows:	
	$G^i = G[V(G) \setminus \{u, u\}]$	$[1, u_2, \ldots, u_{i-1}]]$	

Den	nition, notation	free representation	Applications	Further applications
St	able-path tree			
	Let u be a fixed vertex Then the rooted tree (of G , and choose a $T(G,u),ar{u})$ defined a	total ordering \prec on $V(G)$. as follows:	

Let $N(u) = \{u_1 \prec \cdots \prec u_d\}$ and

 $G^i = G[V(G) \setminus \{u, u_1, u_2, \dots, u_{i-1}\}]$

Der	nition, notation	free representation	Applications	Further applications
St	able-path tree			
00				
	Let u be a fixed vertex	of G , and choose a t	otal ordering \prec on $V(G)$.	
	Then the rooted tree ($T(G, u), \bar{u}$ defined as	s follows	
		1 (ca, a), a) utilita a		

$$G^i = G[V(G) \setminus \{u, u_1, u_2, \dots, u_{i-1}\}]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $N(u) = \{u_1 \prec \cdots \prec u_d\}$ and

 $ar{u} ullet$

Demnition, notatio	i ree representation	Applications	Further applications
Stable-path	tree		
Let u be Then th	a fixed vertex of $G,$ and choose a to e rooted tree $(T(G,u),ar{u})$ defined as	tal ordering \prec on $V(G)$ follows:).

Let $N(u) = \{u_1 \prec \cdots \prec u_d\}$ and

 $G^i = G[V(G) \setminus \{u, u_1, u_2, \dots, u_{i-1}\}]$

Definition, notation	Tree representation	Applications	Further applications
Example			

Definition, notation	Tree representation	Applications	Further applications

Example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Definition, notation	Tree representation	Applications	Further applications

Example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition, notation	Tree representation	Applications	Further applications

Example

Definition, notation	Tree representa	tion Applications	Further applications
Example			
1	2 5		

< □ > < 큔 > < 클 > < 클 > 트 ~ 의 < 은 7/18

Example -cont.

Properties of the stable-path tree

Theorem (Scott, Sokal, Weitz)

Let G be a graph and $u \in V(G)$ be fixed. Then if T = T(G, u), then

$$\frac{I(G-u,x)}{I(G,x)} = \frac{I(T-\overline{u},x)}{I(T,x)}$$

Properties of the stable-path tree

Theorem (Scott, Sokal, Weitz)

Let G be a graph and $u \in V(G)$ be fixed. Then if T = T(G, u), then

$$\frac{I(G-u,x)}{I(G,x)} = \frac{I(T-\overline{u},x)}{I(T,x)}$$

Corollary

1. There exists a subtree \overline{F} in T such that

$$I(G, x) = \frac{I(T, x)}{I(T - \overline{F}, x)}.$$

イロト イロト イヨト イヨト 三日

9/18

Properties of the stable-path tree

Theorem (Scott, Sokal, Weitz)

Let G be a graph and $u \in V(G)$ be fixed. Then if T = T(G, u), then

$$\frac{I(G-u,x)}{I(G,x)} = \frac{I(T-\overline{u},x)}{I(T,x)}$$

Corollary

1. There exists a subtree \overline{F} in T such that

$$I(G, x) = \frac{I(T, x)}{I(T - \overline{F}, x)}.$$

2. There exists a sequence of induced subgraphs G_1, \ldots, G_k of G_i such that

$$I(T, x) = I(G, x)I(G_1, x) \dots I(G_k, x)$$

4 ロト 4 部 ト 4 差 ト 4 差 ト 差 の Q (や 9 / 18)

Real-rooted independence polynomials

Theorem (Chudnovsky, Seymour)

Any zero of the independence polynomial of a claw-free graph is real. (claw-free=graph without induced $K_{1,3}$.)

Real-rooted independence polynomials

Theorem (Chudnovsky, Seymour)

Any zero of the independence polynomial of a claw-free graph is real. (claw-free=graph without induced $K_{1,3}$.)

Theorem

Let G be a claw-free graph and $u \in V(G)$. Then I(T(G, u), x) is real-rooted. Moreover I(G, x) divides I(T(G, u), x).

Definition, notation	Applications	Further applications
Caterpillar H_n		

Definition, notation	Applications	Further applications
Caterpillar H_n		

Proposition: It has real-rooted independence polynomial (Wang, Zhu)

< □ > < 部 > < 書 > < 書 > 差 の < や 11 / 18

Definition, notation	Applications	Further applications
Caterpillar H_n		

Proposition: It has real-rooted independence polynomial (Wang, Zhu) For a tree T, call a claw-free graph witness, if there is an ordering of its vertices, such that the resulting stable-path tree is isomorphic to T.

Definition, notation	Applications	Further applications
Caterpillar H_n		

Proposition: It has real-rooted independence polynomial (Wang, Zhu) For a tree T, call a claw-free graph witness, if there is an ordering of its vertices, such that the resulting stable-path tree is isomorphic to T. The witness is the following graph

<ロ> (四) (四) (三) (三) (三) 三

11 / 18

	Further applications
Fibonaci tree F_n	

Definition, notation	Applications	Further applications
Fibonaci tree F_n		

 r_0 r_1

Definition, notation fre	e representation	Applications	Further applications
Fibonaci tree F_n			

Definition, notation	Applications	Further applications
Fibonaci tree F_n		

Definition, notation	Applications	Further applications
Fibonaci tree F_n		

Definition, notation	Applications	Further applications
Fibonaci tree F_n		

Definition, notation	Applications	Further applications
Fibonaci tree F_n		

Definition, notation	Applications	Further applications
Fibonaci tree F_n		

Definition, notation	Applications	Further applications
Fibonaci tree F_n		

Conjecture: It has real-rooted independence polynomial. (Galvin, Hilyard)

Definition, notation	Applications	Further applications
Fibonaci tree F_n		

Conjecture: It has real-rooted independence polynomial. (Galvin, Hilyard) The witness is the following graph

Definition, notation	Applications	Further applications

 M_n when n is even.

 M_n when n is odd.

 M_n when n is odd.

Proposition: It has real-rooted independence polynomial. (Wang, Zhu)

 M_n when n is odd.

Proposition: It has real-rooted independence polynomial. (Wang, Zhu) As it turns out with a good ordering on the vertices the corresponding stable-path tree will be the nth caterpillar.

 M_n when n is even.

 M_n when n is odd.

Proposition: It has real-rooted independence polynomial. (Wang, Zhu) As it turns out with a good ordering on the vertices the corresponding stable-path tree will be the nth caterpillar. So

$$I(M_n, x) \mid I(H_n, x),$$

and we already seen that $I(H_n, x)$ has only real zeros, therefore $I(M_n, x)$ has only real zeros.

Definition, notation	Applications	Further applications

Trees:

Graphs:

< □ > < ⑦ > < 言 > < 言 > 三 の < で 14 / 18

Trees:

Centipede (Zhu)

Graphs:

Trees:

- Centipede (Zhu)
- \blacktriangleright k-ary analogue of the Fibbonaci trees (definition by S. Wagner)

Graphs:

Trees:

- Centipede (Zhu)
- ► k-ary analogue of the Fibbonaci trees (definition by S. Wagner)

Graphs:

Sunlet graph (Wang, Zhu)

Trees:

- Centipede (Zhu)
- ▶ k-ary analogue of the Fibbonaci trees (definition by S. Wagner)

Graphs:

- Sunlet graph (Wang, Zhu)
- Ladder graph (Zhu, Lu)

Trees:

- Centipede (Zhu)
- ▶ k-ary analogue of the Fibbonaci trees (definition by S. Wagner)

Graphs:

- Sunlet graph (Wang, Zhu)
- Ladder graph (Zhu, Lu)
- Polyphenil ortho-chain (Alikhani, Jafari)

Is there a tree with real-rooted independence polynomial, such that it is not a stable-path tree of other then itself?

Is there a tree with real-rooted independence polynomial, such that it is not a stable-path tree of other then itself?

Yes. E.g.:

$$I(T,x) = (1+x)(1+8x+20x^2+16x^3+x^4)$$

Definition, notation	Applications	Further applications
Dictionary		

Finite graphs	Infinite (rooted) graphs	

Definition, notation	Applications	Further applications
Dictionary		

Finite graphs	Infinite (rooted) graphs	
zeros of a polynomial		

Definition, notation	Applications	Further applications
Dictionary		

Finite graphs	Infinite (rooted) graphs
zeros of a polynomial	measure on the complex plane

Definition, notation	Applications	Further applications
Dictionary		

Finite graphs	Infinite (rooted) graphs
zeros of a polynomial	measure on the complex plane
all zeros are real	

Definition, notation	Applications	Further applications
Dictionary		

Finite graphs	Infinite (rooted) graphs
zeros of a polynomial	measure on the complex plane
all zeros are real	measure supported on the real line

Definition, notation	Applications	Further applications
Dictionary		

Finite graphs	Infinite (rooted) graphs
zeros of a polynomial	measure on the complex plane
all zeros are real	measure supported on the real line

The main ingredient which enables us to move between the two "worlds", is the "localization". For any graph G, the coefficient

$$[x^k]\frac{I(G-u,-x)}{I(G,-x)}$$

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

16/18

depends only on the k-1-neighborhood of u in G,

Definition, notation	Applications	Further applications
Dictionary		

Finite graphs	Infinite (rooted) graphs
zeros of a polynomial	measure on the complex plane
all zeros are real	measure supported on the real line

The main ingredient which enables us to move between the two "worlds", is the "localization". For any graph G, the coefficient

$$[x^k]\frac{I(G-u,-x)}{I(G,-x)}$$

depends only on the k-1-neighborhood of u in G, moreover it is a positive integer.

Definition, notation	Applications	Further applications

Infinite binary tree

Theorem

For the rooted binary tree (or 3-regular tree) there exists a measure μ on the real line, such that

$$\int_{\mathbb{R}} x^k d\mu = [x^k] \frac{I(T-r, -x)}{I(T, -x)}$$

Definition, notation	Applications	Further applications

Infinite binary tree

Theorem

For the rooted binary tree (or 3-regular tree) there exists a measure μ on the real line, such that

$$\int_{\mathbb{R}} x^k d\mu = [x^k] \frac{I(T-r,-x)}{I(T,-x)}$$
$$= \frac{1}{k} \binom{3k}{k-1}$$

イロト イポト イヨト イヨト 二日

17/18

Infinite binary tree

Theorem

For the rooted binary tree (or 3-regular tree) there exists a measure μ on the real line, such that

$$\int_{\mathbb{R}} x^k d\mu = [x^k] \frac{I(T-r,-x)}{I(T,-x)}$$
$$= \sum_{i=1}^k \frac{i}{k} \binom{3k}{k-i}$$

イロト イポト イヨト イヨト 二日

17/18

Definition, notation	Applications	Further applications

THANK YOU FOR YOUR ATTENTION!

< □ > < ⑦ > < 言 > < 言 > 言 の < で 18/18