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De�nition, notation Tree representation Applications Further applications

De�nition, notation

The independence polynomial of a graph G is

I(G, x) =
∑

A∈F(G)

x|A| =

∑
k≥0

ik(G)xk

,

where F(G) is the set of independent subsets of the vertices of G. E.g.

1 2

3

5

4

I(G, x) = 1 + 5x+ 3x2
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Notation

For a generater function f(x) =
∑

k≥0 akx
k, we will use the following notation

[xk]f(x) = ak

to denote the coe�cient of xk in f(x).
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Unimodality

A sequence (bk)nk=0 ⊂ R+ is

1. unimodal, if ∃k ∈ {0, . . . n}, such that

b0 ≤ b1 ≤ · · · ≤ bk−1 ≤ bk ≥ bk+1 ≥ · · · ≥ bn.

2. log-concave, if ∀i ∈ {1, . . . , n− 1}

b2i ≥ bi−1bi+1

Lemma (Newton)

If p(x) =
∑n

i=0 bix
i has only real zeros, then the sequence (bk)nk=0 is log-concave,

therefore unimodal.
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Unimodality on the independent subsets of the graphs

Question: Are the coe�cients of I(G, x) form an unimodal sequence, if

G is . . . ? Answer:

connected No

bipartite (Levit, Mandrescu) No (Bhattacharyya, Kahn)

tree (Alavi et al.) Open

line graph Yes

, moreover real-rooted (Heilmann, Lieb)

claw-free graph Yes

, moreover real-rooted (Chudnovsky, Seymour)

(claw-free=graph without induced K1,3.)

Question(Galvin, Hilyard): Which trees have independence polynomial with only real

zeros?

5 / 18
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Stable-path tree

Let u be a �xed vertex of G, and choose a total ordering ≺ on V (G).

Then the rooted tree (T (G, u), ū) de�ned as follows:

Let N(u) = {u1 ≺ · · · ≺ ud} and

Gi = G[V (G) \ {u, u1, u2, . . . , ui−1}]

T (G1, u1)

T (G2, u2)

T (Gd, ud)

...

ū1

ū2

ūd

ū

6 / 18



De�nition, notation Tree representation Applications Further applications

Stable-path tree

Let u be a �xed vertex of G, and choose a total ordering ≺ on V (G).

Then the rooted tree (T (G, u), ū) de�ned as follows:
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Example
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Example -cont.

1
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Properties of the stable-path tree

Theorem (Scott, Sokal, Weitz)

Let G be a graph and u ∈ V (G) be �xed. Then if T = T (G, u), then

I(G− u, x)

I(G, x)
=
I(T − u, x)

I(T, x)
.

Corollary

1. There exists a subtree F in T such that

I(G, x) =
I(T, x)

I(T − F , x)
.

2. There exists a sequence of induced subgraphs G1, . . . , Gk of G, such that

I(T, x) = I(G, x)I(G1, x) . . . I(Gk, x).

9 / 18
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Real-rooted independence polynomials

Theorem (Chudnovsky, Seymour)

Any zero of the independence polynomial of a claw-free graph is real.

(claw-free=graph without induced K1,3.)

Theorem

Let G be a claw-free graph and u ∈ V (G). Then I(T (G, u), x) is real-rooted.

Moreover I(G, x) divides I(T (G, u), x).

10 / 18
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Caterpillar Hn

The nth caterpillar (Hn) is the following tree on 3n vertices:

. . .

Proposition: It has real-rooted independence polynomial.(Wang, Zhu)

For a tree T , call a claw-free graph witness, if there is an ordering of its vertices, such

that the resulting stable-path tree is isomorphic to T . The witness is the following

graph

. . .
0 1 2 n − 1 n3 n + 1

n + 2 n + 3 2n

11 / 18
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Fibonaci tree Fn

The Fibonaci trees are de�ned recursively (de�nition by S. Wagner),

r0

r1

r2

r3

r4

Conjecture: It has real-rooted independence polynomial. (Galvin, Hilyard)

The witness is the following graph

. . .
0 1 2 n − 3 n − 23 n − 1

12 / 18
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The Mn graph family

. . .

Mn when n is even.

. . .

Mn when n is odd.

Proposition: It has real-rooted independence polynomial. (Wang, Zhu)

As it turns out with a good ordering on the vertices the corresponding stable-path tree

will be the nth caterpillar. So

I(Mn, x)
∣∣ I(Hn, x),

and we already seen that I(Hn, x) has only real zeros, therefore I(Mn, x) has only

real zeros.

13 / 18
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Other real-rooted families

Trees:

I Centipede (Zhu)

I k-ary analogue of the Fibbonaci trees (de�nition by S. Wagner)

Graphs:

I Sunlet graph (Wang, Zhu)

I Ladder graph (Zhu, Lu)

I Polyphenil ortho-chain (Alikhani, Jafari)

. . .

. . .

. . .

. . .
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Are they the answer?

Is there a tree with real-rooted independence polynomial, such that it is not a

stable-path tree of other then itself?

Yes. E.g.:

I(T, x) = (1+x)(1+8x+20x2+16x3+x4)

15 / 18
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Dictionary

Finite graphs In�nite (rooted) graphs

zeros of a polynomial measure on the complex plane

all zeros are real measure supported on the real line

The main ingredient which enables us to move between the two �worlds�, is the

�localization�. For any graph G, the coe�cient

[xk]
I(G− u,−x)

I(G,−x)

depends only on the k − 1-neighborhood of u in G, moreover it is a positive integer.

16 / 18
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In�nite binary tree

Theorem

For the rooted binary tree (or 3-regular tree) there exists a measure µ on the real line,

such that ∫
R
xkdµ = [xk]

I(T − r,−x)

I(T,−x)

=
1

k

( 3k

k − 1

)
=

k∑
i=1

i

k

( 3k

k − i

)

17 / 18
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THANK YOU FOR YOUR ATTENTION!
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