On some cycles in linearized Wenger graphs

Ye Wang

Shanghai Lixin University of Accounting and Finance, Shanghai, 201209, China

AEGT, August 2017

Contents

1 Linearized Wenger graphs
■ Definition of $L_{m}(q)$

- Property of $L_{m}(q)$

2 Main results

- Embedding cycles in $L_{1}(p)$

■ Constructing cycles in $L_{1}(p)$

3 Future work

Definition of Wenger graphs $W_{m}(q)$

- Let q be a prime power, and let \mathbb{F}_{q} be the finite field of q elements. For any integer m with $m \geq 1$, the vertex set $V\left(W_{m}(q)\right)$ is the disjoint union of two copies of the $m+1$ dimensional vector space \mathbb{F}_{q}^{m+1} over finite field \mathbb{F}_{q}, one denoted by P_{m+1} and the other by L_{m+1}.

Definition of Wenger graphs $W_{m}(q)$

- Let q be a prime power, and let \mathbb{F}_{q} be the finite field of q elements. For any integer m with $m \geq 1$, the vertex set $V\left(W_{m}(q)\right)$ is the disjoint union of two copies of the $m+1$ dimensional vector space \mathbb{F}_{q}^{m+1} over finite field \mathbb{F}_{q}, one denoted by P_{m+1} and the other by L_{m+1}.
- Elements of P_{m+1} will be called points and those of L_{m+1} lines.

Definition of Wenger graphs $W_{m}(q)$

- Let q be a prime power, and let \mathbb{F}_{q} be the finite field of q elements. For any integer m with $m \geq 1$, the vertex set $V\left(W_{m}(q)\right)$ is the disjoint union of two copies of the $m+1$ dimensional vector space \mathbb{F}_{q}^{m+1} over finite field \mathbb{F}_{q}, one denoted by P_{m+1} and the other by L_{m+1}.
- Elements of P_{m+1} will be called points and those of L_{m+1} lines.
- The point $p=(p(1), p(2), \ldots, p(m+1))$ is adjacent to the line $I=[l(1), I(2), \ldots, l(m+1)]$ if and only if

$$
p(i)+I(i)=p(1)(I(1))^{i-1},
$$

$$
\text { for } i=2,3, \ldots, m+1
$$

Definition of linearized Wenger graphs $L_{m}(q)$ (Cao et al. (2015))

- Let q be the power of prime p, and let \mathbb{F}_{q} be the finite field of q elements. For any integer m with $m \geq 1$, the vertex set $V\left(W_{m}(q)\right)$ is the disjoint union of two copies of the $m+1$ dimensional vector space \mathbb{F}_{q}^{m+1} over finite field \mathbb{F}_{q}, one denoted by P_{m+1} and the other by L_{m+1}.

Definition of linearized Wenger graphs $L_{m}(q)$ (Cao et al. (2015))

- Let q be the power of prime p, and let \mathbb{F}_{q} be the finite field of q elements. For any integer m with $m \geq 1$, the vertex set $V\left(W_{m}(q)\right)$ is the disjoint union of two copies of the $m+1$ dimensional vector space \mathbb{F}_{q}^{m+1} over finite field \mathbb{F}_{q}, one denoted by P_{m+1} and the other by L_{m+1}.
- Elements of P_{m+1} will be called points and those of L_{m+1} lines.

Definition of linearized Wenger graphs $L_{m}(q)$ (Cao et al. (2015))

- Let q be the power of prime p, and let \mathbb{F}_{q} be the finite field of q elements. For any integer m with $m \geq 1$, the vertex set $V\left(W_{m}(q)\right)$ is the disjoint union of two copies of the $m+1$ dimensional vector space \mathbb{F}_{q}^{m+1} over finite field \mathbb{F}_{q}, one denoted by P_{m+1} and the other by L_{m+1}.
- Elements of P_{m+1} will be called points and those of L_{m+1} lines.
- The point $p=(p(1), p(2), \ldots, p(m+1))$ is adjacent to the line $I=[I(1), I(2), \ldots, I(m+1)]$ if and only if

$$
p(i)+I(i)=p(1)(I(1))^{p^{i-2}}
$$

for $i=2,3, \ldots, m+1$.

Property of linearized Wenger graphs $L_{m}(q)$

- The graphs $L_{m}(q)$ have $2 q^{m+1}$ vertices, q^{m+2} edges and are q-regular.

Property of linearized Wenger graphs $L_{m}(q)$

- The graphs $L_{m}(q)$ have $2 q^{m+1}$ vertices, q^{m+2} edges and are q-regular.
- Cao, Lu, Wan, Wang and Wang (2015) determine the girth, diameter and the spectrum of linearized Wenger graphs. For $q=p^{e}$, their results imply that the graphs $L_{e}(q)$ are expanders.

Property of linearized Wenger graphs $L_{m}(q)$

- The graphs $L_{m}(q)$ have $2 q^{m+1}$ vertices, q^{m+2} edges and are q-regular.
- Cao, Lu, Wan, Wang and Wang (2015) determine the girth, diameter and the spectrum of linearized Wenger graphs. For $q=p^{e}$, their results imply that the graphs $L_{e}(q)$ are expanders.
- A work of Alexander, Lazebnik and Thomason (2016) implies that for a fixed e and large p, graphs $L_{e}\left(p^{e}\right)$ are hamiltonian.

Cycles in Wenger graphs

- For Wenger graphs $W_{m}(q)$, Shao, He and Shan (2008) showed that for any $m \geq 2$, and any k with $k \neq 5,4 \leq k \leq 2 p, W_{m}(q)$ contains cycles of length $2 k$.

Cycles in Wenger graphs

- For Wenger graphs $W_{m}(q)$, Shao, He and Shan (2008) showed that for any $m \geq 2$, and any k with $k \neq 5,4 \leq k \leq 2 p, W_{m}(q)$ contains cycles of length $2 k$.
- Wang, Lazebnik, Thomason (2014) extended their results by showing $W_{m}(q)$ contains cycles of length $2 k$ for any $m \geq 2$ and any k with $k \neq 5,4 \leq k \leq 4 p+1$.

Cycles in linearized Wenger graphs

-What are the lengths of the cycles in linearized Wenger graphs?

Cycles in linearized Wenger graphs

- What are the lengths of the cycles in linearized Wenger graphs?

Theorem 1 (Wang (2017))

Let q be the power of prime p with $p \geq 3$. For any integer k with $3 \leq k \leq p^{2}, L_{m}(q)$ contains cycles of length $2 k$.

The idea of constructing cycles in $L_{m}(q)$

Embedding cycles in partial planes to get even cycles of length from 6 to $2 p^{2}-2 p+2$ in $L_{1}(p)$.

Cycles of all even Cycles of all even length from 6 to $2 p^{2} \rightarrow$ length from 6 to $2 p^{2}$ in $L_{1}(p)$. in $L_{m}(q)$.
Constructing cycle of length $2 p^{2}$ in $L_{1}(p)$ and connecting some points and lines to get cycles of length from $2 p^{2}-2 p$ to $2 p^{2}$.

Embedding cycles in partial planes

- Let p be a prime and \mathbb{F}_{p} be the finite field of p elements. Let O be the point $(0,0)$ of a partial plane π which is constructed from projective plane $P G(2, p)$, and let $I_{0}, I_{1}, \ldots, I_{p-1}$ be the lines through point O in π.

Embedding cycles in partial planes

- Let p be a prime and \mathbb{F}_{p} be the finite field of p elements. Let O be the point $(0,0)$ of a partial plane π which is constructed from projective plane $P G(2, p)$, and let $l_{0}, l_{1}, \ldots, l_{p-1}$ be the lines through point O in π.
- Here we take all the points on lines $I_{0}, l_{1}, \ldots, I_{p-1}$, and denote the point p by (x, y) with $x, y \in \mathbb{F}_{p}$ and the line I_{k} by $[k, 0]$ with $k \in \mathbb{F}_{p}$. The point (x, y) is on the line I_{k} if and only if $y=k x$.

Embedding cycles in partial planes

- Let p be a prime and \mathbb{F}_{p} be the finite field of p elements. Let O be the point $(0,0)$ of a partial plane π which is constructed from projective plane $P G(2, p)$, and let $l_{0}, l_{1}, \ldots, l_{p-1}$ be the lines through point O in π.
- Here we take all the points on lines $I_{0}, I_{1}, \ldots, I_{p-1}$, and denote the point p by (x, y) with $x, y \in \mathbb{F}_{p}$ and the line I_{k} by $[k, 0]$ with $k \in \mathbb{F}_{p}$. The point (x, y) is on the line I_{k} if and only if $y=k x$.
- We use $l_{i}+p$ to denote the line parallel to l_{i} that passes through p.

Embedding cycles in partial planes

- Let p be a prime and \mathbb{F}_{p} be the finite field of p elements. Let O be the point $(0,0)$ of a partial plane π which is constructed from projective plane $P G(2, p)$, and let $I_{0}, I_{1}, \ldots, I_{p-1}$ be the lines through point O in π.
- Here we take all the points on lines $I_{0}, l_{1}, \ldots, I_{p-1}$, and denote the point p by (x, y) with $x, y \in \mathbb{F}_{p}$ and the line I_{k} by $[k, 0]$ with $k \in \mathbb{F}_{p}$. The point (x, y) is on the line I_{k} if and only if $y=k x$.
- We use $l_{i}+p$ to denote the line parallel to l_{i} that passes through p.
- For prime p, we take a primitive element μ in \mathbb{F}_{p} and let $\gamma=\frac{\mu}{\mu-1} \in \mathbb{F}_{p}$. Pick any point p_{0} on I_{0}, different from O. Let p_{i+1} be the point of intersection of $I_{i+\gamma}(\bmod p)+p_{i}$ and $I_{i+1}(\bmod p)$, for all $i=0,1, \ldots, p-2$.

Example for $p=5$

Figure 1: Two disjoint paths for $p=5$

Example for $p=5$

Figure 1: Two disjoint paths for $p=5$

Lemma 2

Let $p_{0} \neq p_{0}^{\prime} \in I_{0}$ and let Γ_{1}, Γ_{2} be two distinct paths with $p_{0} \in \Gamma_{1}, p_{0}^{\prime} \in \Gamma_{2}$, then Γ_{1}, Γ_{2} share neither points nor lines.

Lemma 3

Let p be an odd prime. For any integer k with $3 \leq k \leq p^{2}-p+1$, cycles of length k can be embedded in π.

Lemma 3

Let p be an odd prime. For any integer k with $3 \leq k \leq p^{2}-p+1$, cycles of length k can be embedded in π.

Lemma 4

For odd prime $p, L_{1}(p)$ contains cycles of length $2 k$ with $3 \leq k \leq p^{2}-p+1$.

Notations

- Let P_{2} and L_{2} denote the point set and line set in $L_{1}(p)$, respectively. And let $p_{1} l_{1} p_{2} l_{2} \ldots p_{p^{2}} l_{p^{2}}$ be a walk of length $2 p^{2}$ in $L_{1}(p)$ with $p_{i} \in P_{2}$ and $I_{i} \in L_{2}, 1 \leq i \leq p^{2}$.

Notations

- Let P_{2} and L_{2} denote the point set and line set in $L_{1}(p)$, respectively. And let $p_{1} l_{1} p_{2} l_{2} \ldots p_{p^{2}} l_{p^{2}}$ be a walk of length $2 p^{2}$ in $L_{1}(p)$ with $p_{i} \in P_{2}$ and $l_{i} \in L_{2}, 1 \leq i \leq p^{2}$.
- For $p_{i} \in P_{2}$ and $l_{i} \in L_{2}$ with $1 \leq i \leq p^{2}$ and $1 \leq j \leq m+1$, denote $p_{i}(j)$ the j th component of point p_{i} and $l_{i}(j)$ the j th component of line l_{i}.
- We take the first components of p_{i} and l_{i} in table form.
- We take the first components of p_{i} and l_{i} in table form.

i	1	2	\ldots	p	$p+1$	$p+2$	\ldots	$2 p$	\ldots	p^{2}
$p_{i}(1)$	1	2	\ldots	0	2	3	\ldots	1	\ldots	$p-1$
$l_{i}(1)$	1	2	\ldots	0	2	3	\ldots	1	\ldots	$p-1$

Table 1: The first components of p_{i} and l_{i}

- We take the first components of p_{i} and l_{i} in table form.

i	1	2	\ldots	p	$p+1$	$p+2$	\ldots	$2 p$	\ldots	p^{2}
$p_{i}(1)$	1	2	\ldots	0	2	3	\ldots	1	\ldots	$p-1$
$l_{i}(1)$	1	2	\ldots	0	2	3	\ldots	1	\ldots	$p-1$

Table 1: The first components of p_{i} and I_{i}

- $p_{1} l_{1} p_{2} l_{2} \ldots p_{p^{2}} l_{p^{2}}$ is a cycle of length $2 p^{2}$.
- We take the first components of p_{i} and l_{i} in table form.

i	1	2	\ldots	p	$p+1$	$p+2$	\ldots	$2 p$	\ldots	p^{2}
$p_{i}(1)$	1	2	\ldots	0	2	3	\ldots	1	\ldots	$p-1$
$l_{i}(1)$	1	2	\ldots	0	2	3	\ldots	1	\ldots	$p-1$

Table 1: The first components of p_{i} and l_{i}

- $p_{1} l_{1} p_{2} l_{2} \ldots p_{p^{2}} l_{p^{2}}$ is a cycle of length $2 p^{2}$.

Lemma 5

For odd prime $p, L_{1}(p)$ is Hamiltonian.

Connecting points and lines in $\mathrm{C}_{2 p^{2}}$

- $l_{i p-2}$ is adjacent to $p_{(i+1) p-4}$, and $l_{i p-1}$ is adjacent to $p_{(i+1) p-3}$, for $i=1,2, \ldots, p-1$.
- $I_{p^{2}-2}$ is adjacent to p_{p-4}, and $I_{p^{2}-1}$ is adjacent to p_{p-3}.

Figure 2: cycles in $L_{1}(p)$

All even cycles in $L_{1}(p)$

(1) For odd prime $p, L_{1}(p)$ contains cycles of length $2 k$, where $3 \leq k \leq p^{2}-p+1$.

All even cycles in $L_{1}(p)$

(1) For odd prime $p, L_{1}(p)$ contains cycles of length $2 k$, where $3 \leq k \leq p^{2}-p+1$.
(2) For odd prime $p, L_{1}(p)$ contains cycles of length $2 k$, where $p^{2}-p \leq k \leq p^{2}$.

All even cycles in $L_{1}(p)$

(1) For odd prime $p, L_{1}(p)$ contains cycles of length $2 k$, where $3 \leq k \leq p^{2}-p+1$.
(2) For odd prime $p, L_{1}(p)$ contains cycles of length $2 k$, where $p^{2}-p \leq k \leq p^{2}$.

Lemma 6

For odd prime p and any integer k with $3 \leq k \leq p^{2}, L_{1}(p)$ contains cycles $C_{2 k}$.

Lemma 7

For $m \geq 1$ and odd prime $p, L_{m}(p)$ consists of p^{m-1} components each isomorphic to $L_{1}(p)$.

Lemma 7

For $m \geq 1$ and odd prime $p, L_{m}(p)$ consists of p^{m-1} components each isomorphic to $L_{1}(p)$.

Theorem 8

Let q be the power of prime p with $p \geq 3$. For any integer k with $3 \leq k \leq p^{2}, L_{m}(q)$ contains cycles of length $2 k$.

Future work

- Find more cycles in Wenger graphs and linearized Wenger graphs.

Future work

- Find more cycles in Wenger graphs and linearized Wenger graphs.

Conjecture 1

For every $n \geq 1$, and every prime power $q, q \geq 3, W_{n}(q)$ contains cycles of length $2 k$, where $4 \leq k \leq q^{n+1}$ and $k \neq 5$.

Thank you!

