On some cycles in linearized Wenger graphs

Ye Wang

Shanghai Lixin University of Accounting and Finance, Shanghai, 201209, China

AEGT, August 2017
Contents

1 Linearized Wenger graphs
 ■ Definition of $L_m(q)$
 ■ Property of $L_m(q)$

2 Main results
 ■ Embedding cycles in $L_1(p)$
 ■ Constructing cycles in $L_1(p)$

3 Future work
Definition of Wenger graphs $W_m(q)$

- Let q be a prime power, and let \mathbb{F}_q be the finite field of q elements. For any integer m with $m \geq 1$, the vertex set $V(W_m(q))$ is the disjoint union of two copies of the $m + 1$ dimensional vector space \mathbb{F}_q^{m+1} over finite field \mathbb{F}_q, one denoted by P_{m+1} and the other by L_{m+1}.
Definition of Wenger graphs $W_m(q)$

- Let q be a prime power, and let \mathbb{F}_q be the finite field of q elements. For any integer m with $m \geq 1$, the vertex set $V(W_m(q))$ is the disjoint union of two copies of the $m + 1$ dimensional vector space \mathbb{F}_q^{m+1} over finite field \mathbb{F}_q, one denoted by P_{m+1} and the other by L_{m+1}.

- Elements of P_{m+1} will be called points and those of L_{m+1} lines.
Definition of $W_m(q)$

- Let q be a prime power, and let \mathbb{F}_q be the finite field of q elements. For any integer m with $m \geq 1$, the vertex set $V(W_m(q))$ is the disjoint union of two copies of the $m+1$ dimensional vector space \mathbb{F}_q^{m+1} over finite field \mathbb{F}_q, one denoted by P_{m+1} and the other by L_{m+1}.

- Elements of P_{m+1} will be called points and those of L_{m+1} lines.

- The point $p = (p(1), p(2), \ldots, p(m+1))$ is adjacent to the line $l = [l(1), l(2), \ldots, l(m+1)]$ if and only if

$$p(i) + l(i) = p(1)(l(1))^{i-1},$$

for $i = 2, 3, \ldots, m+1$.
Definition of linearized Wenger graphs $L_m(q)$ (Cao et al. (2015))

- Let q be the power of prime p, and let \mathbb{F}_q be the finite field of q elements. For any integer m with $m \geq 1$, the vertex set $V(W_m(q))$ is the disjoint union of two copies of the $m + 1$ dimensional vector space \mathbb{F}_q^{m+1} over finite field \mathbb{F}_q, one denoted by P_{m+1} and the other by L_{m+1}.
Definition of $L_m(q)$

Definition of linearized Wenger graphs $L_m(q)$ (Cao et al. (2015))

- Let q be the power of prime p, and let \mathbb{F}_q be the finite field of q elements. For any integer m with $m \geq 1$, the vertex set $V(W_m(q))$ is the disjoint union of two copies of the $m + 1$ dimensional vector space \mathbb{F}_q^{m+1} over finite field \mathbb{F}_q, one denoted by P_{m+1} and the other by L_{m+1}.

- Elements of P_{m+1} will be called points and those of L_{m+1} lines.
Definition of linearized Wenger graphs $L_m(q)$ (Cao et al. (2015))

- Let q be the power of prime p, and let \mathbb{F}_q be the finite field of q elements. For any integer m with $m \geq 1$, the vertex set $V(W_m(q))$ is the disjoint union of two copies of the $m + 1$ dimensional vector space \mathbb{F}_q^{m+1} over finite field \mathbb{F}_q, one denoted by P_{m+1} and the other by L_{m+1}.

- Elements of P_{m+1} will be called points and those of L_{m+1} lines.

- The point $p = (p(1), p(2), \ldots, p(m+1))$ is adjacent to the line $l = [l(1), l(2), \ldots, l(m+1)]$ if and only if

 $$p(i) + l(i) = p(1)(l(1))^{p^{i-2}},$$

 for $i = 2, 3, \ldots, m + 1$.
Property of linearized Wenger graphs $L_m(q)$

- The graphs $L_m(q)$ have $2q^{m+1}$ vertices, q^{m+2} edges and are q-regular.
Property of linearized Wenger graphs $L_m(q)$

- The graphs $L_m(q)$ have $2q^{m+1}$ vertices, q^{m+2} edges and are q-regular.
- Cao, Lu, Wan, Wang and Wang (2015) determine the girth, diameter and the spectrum of linearized Wenger graphs. For $q = p^e$, their results imply that the graphs $L_e(q)$ are expanders.
Property of linearized Wenger graphs $L_m(q)$

- The graphs $L_m(q)$ have $2q^{m+1}$ vertices, q^{m+2} edges and are q-regular.
- Cao, Lu, Wan, Wang and Wang (2015) determine the girth, diameter and the spectrum of linearized Wenger graphs. For $q = p^e$, their results imply that the graphs $L_e(q)$ are expanders.
- A work of Alexander, Lazebnik and Thomason (2016) implies that for a fixed e and large p, graphs $L_e(p^e)$ are hamiltonian.
Cycles in Wenger graphs

- For Wenger graphs $W_m(q)$, Shao, He and Shan (2008) showed that for any $m \geq 2$, and any k with $k \neq 5$, $4 \leq k \leq 2p$, $W_m(q)$ contains cycles of length $2k$.
Cycles in Wenger graphs

- For Wenger graphs $W_m(q)$, Shao, He and Shan (2008) showed that for any $m \geq 2$, and any k with $k \neq 5$, $4 \leq k \leq 2p$, $W_m(q)$ contains cycles of length $2k$.

- Wang, Lazebnik, Thomason (2014) extended their results by showing $W_m(q)$ contains cycles of length $2k$ for any $m \geq 2$ and any k with $k \neq 5$, $4 \leq k \leq 4p + 1$.
Cycles in linearized Wenger graphs

- What are the lengths of the cycles in linearized Wenger graphs?
What are the lengths of the cycles in linearized Wenger graphs?

Theorem 1 (Wang (2017))

Let q be the power of prime p with $p \geq 3$. For any integer k with $3 \leq k \leq p^2$, $L_m(q)$ contains cycles of length $2k$.
The idea of constructing cycles in $L_m(q)$

Embedding cycles in partial planes to get even cycles of length from 6 to $2p^2 - 2p + 2$ in $L_1(p)$.

Constructing cycle of length $2p^2$ in $L_1(p)$ and connecting some points and lines to get cycles of length from $2p^2 - 2p$ to $2p^2$.

Cycles of all even length from 6 to $2p^2$ in $L_1(p)$.

Cycles of all even length from 6 to $2p^2$ in $L_m(q)$.
Embedding cycles in partial planes

Let \(p \) be a prime and \(\mathbb{F}_p \) be the finite field of \(p \) elements. Let \(O \) be the point \((0, 0)\) of a partial plane \(\pi \) which is constructed from projective plane \(PG(2, p) \), and let \(l_0, l_1, ..., l_{p-1} \) be the lines through point \(O \) in \(\pi \).
Embedding cycles in partial planes

- Let p be a prime and \mathbb{F}_p be the finite field of p elements. Let O be the point $(0, 0)$ of a partial plane π which is constructed from projective plane $PG(2, p)$, and let $l_0, l_1, \ldots, l_{p-1}$ be the lines through point O in π.

- Here we take all the points on lines $l_0, l_1, \ldots, l_{p-1}$, and denote the point p by (x, y) with $x, y \in \mathbb{F}_p$ and the line l_k by $[k, 0]$ with $k \in \mathbb{F}_p$. The point (x, y) is on the line l_k if and only if $y = kx$.
Embedding cycles in $L_1(p)$

Embedding cycles in partial planes

- Let p be a prime and \mathbb{F}_p be the finite field of p elements. Let O be the point $(0, 0)$ of a partial plane π which is constructed from projective plane $PG(2, p)$, and let $l_0, l_1, \ldots, l_{p-1}$ be the lines through point O in π.

- Here we take all the points on lines $l_0, l_1, \ldots, l_{p-1}$, and denote the point p by (x, y) with $x, y \in \mathbb{F}_p$ and the line l_k by $[k, 0]$ with $k \in \mathbb{F}_p$. The point (x, y) is on the line l_k if and only if $y = kx$.

- We use $l_i + p$ to denote the line parallel to l_i that passes through p.
Embedding cycles in $L_1(p)$

- Let p be a prime and \mathbb{F}_p be the finite field of p elements. Let O be the point $(0, 0)$ of a partial plane π which is constructed from projective plane $PG(2, p)$, and let $l_0, l_1, \ldots, l_{p-1}$ be the lines through point O in π.

- Here we take all the points on lines $l_0, l_1, \ldots, l_{p-1}$, and denote the point p by (x, y) with $x, y \in \mathbb{F}_p$ and the line l_k by $[k, 0]$ with $k \in \mathbb{F}_p$. The point (x, y) is on the line l_k if and only if $y = kx$.

- We use $l_i + p$ to denote the line parallel to l_i that passes through p.

- For prime p, we take a primitive element μ in \mathbb{F}_p and let $\gamma = \frac{\mu}{\mu - 1} \in \mathbb{F}_p$. Pick any point p_0 on l_0, different from O. Let p_{i+1} be the point of intersection of $l_{i+\gamma} \pmod{p} + p_i$ and $l_{i+1} \pmod{p}$, for all $i = 0, 1, \ldots, p - 2$.
Example for $p = 5$

Figure 1: Two disjoint paths for $p = 5$
Example for \(p = 5 \)

Figure 1: Two disjoint paths for \(p = 5 \)

Lemma 2

Let \(p_0 \neq p'_0 \in l_0 \) and let \(\Gamma_1, \Gamma_2 \) be two distinct paths with \(p_0 \in \Gamma_1, p'_0 \in \Gamma_2 \), then \(\Gamma_1, \Gamma_2 \) share neither points nor lines.
Lemma 3

Let p be an odd prime. For any integer k with $3 \leq k \leq p^2 - p + 1$, cycles of length k can be embedded in π.
Lemma 3

Let p be an odd prime. For any integer k with $3 \leq k \leq p^2 - p + 1$, cycles of length k can be embedded in π.

Lemma 4

For odd prime p, $L_1(p)$ contains cycles of length $2k$ with $3 \leq k \leq p^2 - p + 1$.
Linearized Wenger graphs

Main results

Future work

Constructing cycles in $L_1(p)$

Notations

- Let P_2 and L_2 denote the point set and line set in $L_1(p)$, respectively. And let $p_1l_1p_2l_2 \ldots p_{p^2}l_{p^2}$ be a walk of length $2p^2$ in $L_1(p)$ with $p_i \in P_2$ and $l_i \in L_2$, $1 \leq i \leq p^2$.
Notations

- Let P_2 and L_2 denote the point set and line set in $L_1(p)$, respectively. And let $p_1 l_1 p_2 l_2 \ldots p_{p^2} l_{p^2}$ be a walk of length $2p^2$ in $L_1(p)$ with $p_i \in P_2$ and $l_i \in L_2$, $1 \leq i \leq p^2$.

- For $p_i \in P_2$ and $l_i \in L_2$ with $1 \leq i \leq p^2$ and $1 \leq j \leq m + 1$, denote $p_i(j)$ the jth component of point p_i and $l_i(j)$ the jth component of line l_i.
• We take the first components of \(p_i \) and \(l_i \) in table form.
We take the first components of p_i and l_i in table form.

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>p</th>
<th>$p + 1$</th>
<th>$p + 2$</th>
<th>...</th>
<th>$2p$</th>
<th>...</th>
<th>p^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_i(1)$</td>
<td>1</td>
<td>2</td>
<td>...</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>...</td>
<td>1</td>
<td>...</td>
<td>$p - 1$</td>
</tr>
<tr>
<td>$l_i(1)$</td>
<td>1</td>
<td>2</td>
<td>...</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>...</td>
<td>1</td>
<td>...</td>
<td>$p - 1$</td>
</tr>
</tbody>
</table>

Table 1: The first components of p_i and l_i
• We take the first components of p_i and l_i in table form.

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>p</th>
<th>$p+1$</th>
<th>$p+2$</th>
<th>...</th>
<th>$2p$</th>
<th>...</th>
<th>p^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_i(1)$</td>
<td>1</td>
<td>2</td>
<td>...</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>...</td>
<td>1</td>
<td>...</td>
<td>$p-1$</td>
</tr>
<tr>
<td>$l_i(1)$</td>
<td>1</td>
<td>2</td>
<td>...</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>...</td>
<td>1</td>
<td>...</td>
<td>$p-1$</td>
</tr>
</tbody>
</table>

Table 1: The first components of p_i and l_i

• $p_1l_1p_2l_2 \ldots p_{p^2}l_{p^2}$ is a cycle of length $2p^2$.
• We take the first components of p_i and l_i in table form.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>p</th>
<th>$p + 1$</th>
<th>$p + 2$</th>
<th>...</th>
<th>$2p$</th>
<th>...</th>
<th>p^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_i(1)$</td>
<td>1</td>
<td>2</td>
<td>...</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>...</td>
<td>1</td>
<td>...</td>
<td>$p - 1$</td>
</tr>
<tr>
<td>$l_i(1)$</td>
<td>1</td>
<td>2</td>
<td>...</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>...</td>
<td>1</td>
<td>...</td>
<td>$p - 1$</td>
</tr>
</tbody>
</table>

Table 1: The first components of p_i and l_i

• $p_1 l_1 p_2 l_2 \ldots p_{p^2} l_{p^2}$ is a cycle of length $2p^2$.

Lemma 5

For odd prime p, $L_1(p)$ is Hamiltonian.
Connecting points and lines in C_{2p^2}

- l_{p-2} is adjacent to $p_{(i+1)p-4}$, and l_{p-1} is adjacent to $p_{(i+1)p-3}$, for $i = 1, 2, \ldots, p - 1$.
- l_{p^2-2} is adjacent to p_{p-4}, and l_{p^2-1} is adjacent to p_{p-3}.

Figure 2: cycles in $L_1(p)$
All even cycles in $L_1(p)$

1. For odd prime p, $L_1(p)$ contains cycles of length $2k$, where $3 \leq k \leq p^2 - p + 1$.
All even cycles in $L_1(p)$

1. For odd prime p, $L_1(p)$ contains cycles of length $2k$, where $3 \leq k \leq p^2 - p + 1$.

2. For odd prime p, $L_1(p)$ contains cycles of length $2k$, where $p^2 - p \leq k \leq p^2$.
All even cycles in $L_1(p)$

1. For odd prime p, $L_1(p)$ contains cycles of length $2k$, where $3 \leq k \leq p^2 - p + 1$.

2. For odd prime p, $L_1(p)$ contains cycles of length $2k$, where $p^2 - p \leq k \leq p^2$.

Lemma 6

For odd prime p and any integer k with $3 \leq k \leq p^2$, $L_1(p)$ contains cycles C_{2k}.
Cycles in $L_m(q)$

Lemma 7

For $m \geq 1$ and odd prime p, $L_m(p)$ consists of p^{m-1} components each isomorphic to $L_1(p)$.
Cycles in $L_m(q)$

Lemma 7

For $m \geq 1$ and odd prime p, $L_m(p)$ consists of p^{m-1} components each isomorphic to $L_1(p)$.

Theorem 8

Let q be the power of prime p with $p \geq 3$. For any integer k with $3 \leq k \leq p^2$, $L_m(q)$ contains cycles of length $2k$.
Future work

- Find more cycles in Wenger graphs and linearized Wenger graphs.
Future work

- Find more cycles in Wenger graphs and linearized Wenger graphs.

Conjecture 1

For every $n \geq 1$, and every prime power q, $q \geq 3$, $W_n(q)$ contains cycles of length $2k$, where $4 \leq k \leq q^{n+1}$ and $k \neq 5$.
Thank you!