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Definition of Lm(q)

Definition of Wenger graphs W,(q)

 Let g be a prime power, and let Fq be the finite field of g elements.
For any integer m with m > 1, the vertex set V(Wpn(q)) is the
disjoint union of two copies of the m + 1 dimensional vector space
JFQ"“ over finite field Iy, one denoted by Pp,, 1 and the other by

Lm+1 .
e Elements of Py,,1 will be called points and those of L, 1 lines.

e The point p = ( ( ),p(2),...,p(m+ 1)) is adjacent to the line
I=1I(1),1(2),...,/(m+ 1)] if and only if

p(i) + 1(7) = p(1)(I(1)) ",
fori=2,8,...,m+1.
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oe

Definition of Lm(q)

Definition of linearized Wenger graphs L,(q) (Cao et
al. (2015))

 Let g be the power of prime p , and let F4 be the finite field of g
elements. For any integer m with m > 1, the vertex set V(Wn(q))
is the disjoint union of two copies of the m + 1 dimensional vector
space IF‘Z7+1 over finite field IF4, one denoted by Pp,, 1 and the
other by Ly 1.
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e Elements of P,,1 will be called points and those of L, 1 lines.

e The point p = ( (1) p(2),...,p(m+ 1)) is adjacent to the line
I=1I(1),1(2),...,/(m+ 1)] if and only if

p(i) + 1(i) = p(1)(I(1))P"°
fori=2,3,...,m+1.
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Linearized Wenger graphs
@00
Property of Lm(q)

Property of linearized Wenger graphs L,(Qq)

o The graphs Ly (q) have 2g™+! vertices, g™+2 edges and are
g-regular.

e Cao, Lu, Wan, Wang and Wang (2015) determine the girth,
diameter and the spectrum of linearized Wenger graphs. For
g = p®, their results imply that the graphs L¢(q) are expanders.

e A work of Alexander, Lazebnik and Thomason (2016) implies that
for a fixed e and large p, graphs Le(p®) are hamiltonian.
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oeo
Property of Lm(q)

Cycles in Wenger graphs

e For Wenger graphs Wi»(q), Shao, He and Shan (2008) showed
that for any m > 2, and any k with k # 5,4 < k < 2p, Wn(q)
contains cycles of length 2k.
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Property of Lm(q)

Cycles in Wenger graphs

e For Wenger graphs Wi»(q), Shao, He and Shan (2008) showed
that for any m > 2, and any k with k # 5,4 < k < 2p, Wn(q)
contains cycles of length 2k.

e Wang, Lazebnik, Thomason (2014) extended their results by
showing Win(q) contains cycles of length 2k for any m > 2 and
any k with k #5,4 < k <4p+1.
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Cycles in linearized Wenger graphs
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Linearized Wenger graphs

ooe

Property of Lm(q)

Cycles in linearized Wenger graphs

e What are the lengths of the cycles in linearized Wenger graphs?

Theorem 1 (Wang (2017))

Let q be the power of prime p with p > 3. For any integer k with
3 < k < p?, Lm(q) contains cycles of length 2k.



Main results

The idea of constructing cycles in L;(q)

Embedding cycles in
partial planes to get
even cycles of length
from 6 to 2p? —2p+2

in L1(p).

Cycles of all even| [Cycles of all even
length from 6 to 2p? - length from 6 to 2p?

in Ly(p). in Lm(q).

(Constructing cycle of]
length 2p? in Ly(p)
and connecting some
points and lines to
get cycles of length
from 2p? — 2p to 2p?.




Main results
[ Jele)

Embedding cycles in L1 (p)

Embedding cycles in partial planes

e Let p be a prime and F, be the finite field of p elements. Let O be
the point (0, 0) of a partial plane 7 which is constructed from
projective plane PG(2,p), and let Iy, /1, ..., l[b—1 be the lines through
point O in 7.
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Main results
[ Jele)

Embedding cycles in L1 (p)

Embedding cycles in partial planes

e Let p be a prime and F, be the finite field of p elements. Let O be
the point (0, 0) of a partial plane 7 which is constructed from
projective plane PG(2,p), and let Iy, /1, ..., l[b—1 be the lines through
point O in 7.

» Here we take all the points on lines l, 1, ..., ,_1, and denote the
point p by (x, y) with x, y € IF, and the line I by [k, 0] with k € Fp.
The point (x, y) is on the line I if and only if y = kx.

e We use /; + p to denote the line parallel to /; that passes through p.

 For prime p, we take a primitive element . in F, and let
v = -t € Fp. Pick any point pg on Iy, different from O. Let p;, ¢ be
the point of intersection of /i, (mod p) + Pi @Nd i1 (mod p) for all
i=0,1,..,p—2.



Main results
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Embedding cycles in L1 (p)

Example forp =5

Figure 1: Two disjoint paths for p = 5
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Main results
o] e

Embedding cycles in L1 (p)

Example forp =5

Figure 1: Two disjoint paths for p = 5

Letpy # py € I and let T4, > be two distinct paths with
Po € 1, P € T2, then Ty, > share neither points nor lines.
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Main results
ooe

Embedding cycles in L1 (p)

Let p be an odd prime. For any integer k with3 < k < p?> — p + 1,
cycles of length k can be embedded in 7.
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Main results
ooe

Embedding cycles in L1 (p)

Let p be an odd prime. For any integer k with3 < k < p?> — p + 1,
cycles of length k can be embedded in 7.

Lemma 4

For odd prime p, Li(p) contains cycles of length 2k with
3<k<p?P-—p+1.
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Main results
00000
Constructing cycles in L{(p)

Notations

e Let P, and L, denote the point set and line set in Ly(p),
respectively. And let p1hpak ... pyely2 be a walk of length 202 in
Li(p) with p; € Py and | € Lp, 1 < i < p?.
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Main results
[ JeJele]e]

Constructing cycles in L{(p)

Notations

e Let P, and L, denote the point set and line set in Ly(p),
respectively. And let p1hpak ... pyely2 be a walk of length 202 in
Li(p) with p; € Py and | € Lp, 1 < i < p?.

e Forpje Poand l; € Ly with1 <i<p?and1 <)< m+ 1, denote

pi(J) the jth component of point p; and /() the jth component of
line /.

12/18



Main results

0@000

Constructing cycles in L{(p)

o We take the first components of p; and /; in table form.
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Main results

0@000

Constructing cycles in L{(p)

o We take the first components of p; and /; in table form.

i [1]2]...plp+tp+r2]...[20]...] P?
p() 112 ...[0] 2 3 ... |1 ... p-1
) [ 12]...]0] 2 3 .1 ... p-1

Table 1: The first components of p; and J;

o pihpalz...pylye is a cycle of length 20°.

For odd prime p, L1(p) is Hamiltonian.
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Main results
0Oe00
Constructing cycles in L{(p)

Connecting points and lines in Cyp

* lp—2 is adjacent to p(j;1)p—4, and lj,_1 is adjacent to p;;1)p_3, for
i=1,2,...,p—1.
* I»_5is adjacent to pp_4, and /_; is adjacent to pp_3.

,,,,,,

,,,,,,,,,,

Figure 2:-cycles in Ly(p)
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Constructing cycles in L{(p)

All even cycles in Ly(p)

© For odd prime p, L{(p) contains cycles of length 2k, where
3<k<p?P—p+1.
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Main results
[o]e]e] lo}
Constructing cycles in L{(p)

All even cycles in Ly(p)

© For odd prime p, L{(p) contains cycles of length 2k, where
3<k<p?—p+1.

® For odd prime p, L{(p) contains cycles of length 2k, where
PP —p<k<p?

For odd prime p and any integer k with 3 < k < p?, Ly(p) contains
cycles Coy.

15/18



Main results
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Constructing cycles in L{(p)

Cycles in L(Qq)

For m > 1 and odd prime p, Lm(p) consists of p™~! components each
isomorphic to L1(p).
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Main results

[e]e]e]e] }

Constructing cycles in L{(p)

Cycles in L(Qq)

For m > 1 and odd prime p, Lm(p) consists of p™~! components each
isomorphic to L1(p).

Let q be the power of prime p with p > 3. For any integer k with
3 < k < P2, Lm(q) contains cycles of length 2k.
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Future work

Future work

e Find more cycles in Wenger graphs and linearized Wenger
graphs.
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Future work

Future work

e Find more cycles in Wenger graphs and linearized Wenger
graphs.

Conjecture 1

For every n > 1, and every prime power q, q > 3, Wx(q) contains
cycles of length 2k, where 4 < k < q"*' and k # 5.
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