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Introduction

Suppose G is a 3-partite graph with n vertices in each part.

Question: How many triangles can appear in G?

Answer: If there are no further assumptions on G , then we can
have

n3 triangles.
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Introduction

Let us assume that

G has no 4-cycle between any two parts.

This question was asked by Fischer and Matous̆ek (2001).
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Introduction

Probabilistic: A standard probabilistic argument shows that there
is such a G with about n triangles.

Algebraic:

This graph will have about n3/2 triangles.
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Introduction

Algebraic + Probabilistic:

Putting projective planes at random between the parts gives a
lower bound of

n3
(

1√
n

)3

= n3/2 triangles.
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Introduction

For some time, n3/2 triangles was the best lower bound.

Upper bound: Suppose G has parts A, B, and C .
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Introduction

Let H be the bipartite graph with parts A and E (B,C ) where

a ∈ A is adjacent to {b, c} ∈ E (B,C )

if and only if a, b, c is a triangle in G .
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Introduction

The number of edges of H is the same as the number of
triangles in G .

The graph H does not contain a C4.

If b 6= b′, then aba′b′ is a C4 in G between A and B.
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Introduction

An n ×m bipartite graph with no C4 has at most

nm1/2 + m edges

so that

# of triangles in G = e(H) . |A|e(B,C )1/2

. |A|(|B||C |1/2)1/2

= n7/4

*The second . is because there is no C4 between B and C .
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Introduction

Write
4(n)

for the maximum number of triangles in a 3-partite graph with n
vertices in each part, and no C4 between two parts.

Proposition (Fischer, Matous̆ek 2001)

The function 4(n) satisfies

(1− o(1))n3/2 ≤ 4(n) ≤ (1 + o(1))n7/4.

Goal: Improve the lower bound.
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A First Attempt

A simple construction is as follows (q is a power of an odd prime):

Introduce a parameter λ ∈ Fq\{0}.
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A First Attempt

Question: How many triangles?
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A First Attempt

Key Idea: To get many triangles, we need many solutions to

0 = a + b + c 0 = f (a) + g(b) + h(c)

or equivalently,

0 = a + b + c 0 = λ1a
2 + λ2b

2 + λ3c
2.
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A First Attempt

Assume λ3 = 1 and use c = −a− b with 0 = f (a) + g(b) + h(c)
to get

0 = λ1a
2 + λ2b

2 + (−a− b)2.

which gives

0 = λ1

(a
b

)2
+ λ2 +

(a
b

+ 1
)2
.

This shows that
a

b
is a root of

pλ1,λ2(X ) = (λ1 + 1)X 2 + 2X + (λ2 + 1).
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A First Attempt

Choose λ1 and λ2 so that pλ1,λ2(X ) has two distinct nonzero roots.

If ζ1 and ζ2 are the roots, then we choose a root, and we
choose a b ∈ Fq\{0} and let

a

b
= ζi

(this defines a in terms of b and determines c = −a− b).

We choose (x , y)A to get our triangle

(x , y)A, (x + a, y + λ1a
2)B , (x + a + b, y + λ1a

2 + λ2b
2)C .

Altogether, this gives 2(q − 1)q2 triangles and shows

(2− o(1))n3/2 ≤ 4(n)

which improves the previous bound by a factor of 2.

Robert S. Coulter, Rex W. Matthews, Craig Timmons An extremal problem involving 4-cycles and planar polynomials



A First Attempt

Choose λ1 and λ2 so that pλ1,λ2(X ) has two distinct nonzero roots.

If ζ1 and ζ2 are the roots, then we choose a root, and we
choose a b ∈ Fq\{0} and let

a

b
= ζi

(this defines a in terms of b and determines c = −a− b).

We choose (x , y)A to get our triangle

(x , y)A, (x + a, y + λ1a
2)B , (x + a + b, y + λ1a

2 + λ2b
2)C .

Altogether, this gives 2(q − 1)q2 triangles and shows

(2− o(1))n3/2 ≤ 4(n)

which improves the previous bound by a factor of 2.

Robert S. Coulter, Rex W. Matthews, Craig Timmons An extremal problem involving 4-cycles and planar polynomials



A First Attempt

Choose λ1 and λ2 so that pλ1,λ2(X ) has two distinct nonzero roots.

If ζ1 and ζ2 are the roots, then we choose a root, and we
choose a b ∈ Fq\{0} and let

a

b
= ζi

(this defines a in terms of b and determines c = −a− b).

We choose (x , y)A to get our triangle

(x , y)A, (x + a, y + λ1a
2)B , (x + a + b, y + λ1a

2 + λ2b
2)C .

Altogether, this gives 2(q − 1)q2 triangles and shows

(2− o(1))n3/2 ≤ 4(n)

which improves the previous bound by a factor of 2.
Robert S. Coulter, Rex W. Matthews, Craig Timmons An extremal problem involving 4-cycles and planar polynomials



A First Attempt

Limitation: The polynomial

pλ1,λ2(X ) = (λ1 + 1)X 2 + 2X + (λ2 + 1)

always has at most two roots.

Solution: Make pλ1,λ2(X ) have higher degree.

Our graph must have no C4 between two parts.
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A Second Attempt

Let q be a power of an odd prime.

A polynomial f (x) ∈ Fq[X ] is a planar polynomial if for each
a ∈ Fq\{0}, the map φa : Fq → Fq defined by

φa(x) = f (x + a)− f (x)

is 1-to-1.

Planar polynomials were first defined by Dembowski and Ostrom in
1968.
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A Second Attempt

Example: The quadratic f (X ) = λ1X
2 is a planar polynomial: if

a 6= 0, then

φa(x) = f (x + a)− f (x) = λ1(x + a)2 − λ1x2 = λ1(2xa + a2)

is 1-to-1 since 2λ1a 6= 0.

Other Examples:

1 f (X ) = X 10 + X 6 − X 2 over F3e for e ≥ 3 odd, or e = 2,

2 f (X ) = X pk+1 over Fpe for e
gcd(k,e) odd,

3 f (X ) = X
1
2
(3k+1) over F3e for k odd and gcd(k , e) = 1.
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A Second Attempt

The last two have degrees that can be made arbitrarily large:

f (X ) = X pk+1 and f (X ) = X
1
2
(3k+1).

Recall that we want

0 = a + b + c and f (a) + g(b) + h(c) = 0

and in quadratic case, we ended up with
a

b
being a root of

pλ1,λ2(X ) = (λ1 + 1)X 2 + 2X + (λ2 + 1).
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A Second Attempt

Using
X q+1

which is planar over Fq3 whenever q is a power of an odd prime,

we get that
a

b
is a root of

wλ1,λ2(X ) = (λ1 + 1)X q+1 + X q + X + (λ2 + 1).

This polynomial has degree q + 1 if λ1 6= −1, and so we have a
chance at choosing λ1 and λ2 so that we get much more than just
2 roots.
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A Second Attempt

Counting roots over all (33 − 1)2 choices of λ1, λ2 in wλ1,λ2(X ).
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A Second Attempt

Counting roots over all (73 − 1)2 choices of λ1, λ2 in wλ1,λ2(X ).
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Main Result

Theorem (Coulter, Matthews, T, 2017)

Let q be a power of an odd prime and a ∈ Fq3\{0}.
The polynomial

ga(X ) = X q+1 + a−1(X q + X ) + a−1−q + a−1−q
2 − a−q

2−q

will have q + 1 distinct roots in Fq3 whenever a ∈ Fq3\Fq.

This is equivalent to the statement that

fa(X ) = X q+1 + a−1(X q + X ) + N(a−1)(Tr(a)− 2a)

has q + 1 distinct roots in Fq3 whenever a ∈ Fq3\Fq.

This result tells us how we should choose λ1, λ2 so that wλ1,λ2(X )
has many roots.
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Main Result

If ζi is root, we choose b ∈ Fq3\{0} and let

a

b
= ζi

(this defines a in terms of b and determines c = −a− b).

We choose (x , y)A to get our triangle

(x , y)A, (x+a, y+λ1a
q+1)B , (x+a+b, y+λ1a

q+1+λ2b
q+1)C .

Altogether, this gives (q + 1)(q3 − 1)q6 triangles (here n = q6)
and shows

(1− o(1))n5/3 ≤ 4(n)

which improves the previous bound by n1/6.
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Main Result

Theorem (Coulter, Matthews, T, 2017)

The function 4(n) satisfies
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Conclusion

Best known bounds on 4(n):

(1− o(1))n5/3 ≤ 4(n) ≤ (1 + o(1))n7/4.

4(n) =???

Guess: 4(n) = o(n7/4).

Thank you
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