An extremal problem involving 4-cycles and planar polynomials

Robert S. Coulter, Rex W. Matthews, Craig Timmons

Work supported by the Simons Foundation

Algebraic and Extremal Graph Theory

Introduction

Suppose G is a 3-partite graph with n vertices in each part.

Question: How many triangles can appear in G ?

Introduction

Suppose G is a 3-partite graph with n vertices in each part.

Question: How many triangles can appear in G ?
Answer: If there are no further assumptions on G, then we can have

$$
n^{3} \text { triangles. }
$$

Introduction

Let us assume that
G has no 4-cycle between any two parts.

This question was asked by Fischer and Matoušek (2001).

Introduction

Probabilistic: A standard probabilistic argument shows that there is such a G with about n triangles.

Introduction

Probabilistic: A standard probabilistic argument shows that there is such a G with about n triangles.

Algebraic:

This graph will have about $n^{3 / 2}$ triangles.

Introduction

Algebraic + Probabilistic:

Introduction

Algebraic + Probabilistic:

Putting projective planes at random between the parts gives a lower bound of

$$
n^{3}\left(\frac{1}{\sqrt{n}}\right)^{3}=n^{3 / 2} \text { triangles. }
$$

Introduction

For some time, $n^{3 / 2}$ triangles was the best lower bound.

Introduction

For some time, $n^{3 / 2}$ triangles was the best lower bound.

Upper bound: Suppose G has parts A, B, and C.

Introduction

Let H be the bipartite graph with parts A and $E(B, C)$ where

$$
a \in A \text { is adjacent to }\{b, c\} \in E(B, C)
$$

if and only if a, b, c is a triangle in G.

Introduction

- The number of edges of H is the same as the number of triangles in G.

Introduction

- The number of edges of H is the same as the number of triangles in G.
- The graph H does not contain a C_{4}.

If $b \neq b^{\prime}$, then $a b a^{\prime} b^{\prime}$ is a C_{4} in G between A and B.

Introduction

An $n \times m$ bipartite graph with no C_{4} has at most

$$
n m^{1 / 2}+m \text { edges }
$$

Introduction

An $n \times m$ bipartite graph with no C_{4} has at most

$$
n m^{1 / 2}+m \text { edges }
$$

so that

$$
\begin{aligned}
\text { \# of triangles in } \mathrm{G}=e(H) & \lesssim|A| e(B, C)^{1 / 2} \\
& \lesssim|A|\left(|B||C|^{1 / 2}\right)^{1 / 2} \\
& =n^{7 / 4}
\end{aligned}
$$

*The second \lesssim is because there is no C_{4} between B and C.

Introduction

Write

$$
\triangle(n)
$$

for the maximum number of triangles in a 3-partite graph with n vertices in each part, and no C_{4} between two parts.

Introduction

Write

$$
\triangle(n)
$$

for the maximum number of triangles in a 3-partite graph with n vertices in each part, and no C_{4} between two parts.

Proposition (Fischer, Matous̆ek 2001)

The function $\triangle(n)$ satisfies

$$
(1-o(1)) n^{3 / 2} \leq \triangle(n) \leq(1+o(1)) n^{7 / 4} .
$$

Introduction

Write

$$
\triangle(n)
$$

for the maximum number of triangles in a 3-partite graph with n vertices in each part, and no C_{4} between two parts.

Proposition (Fischer, Matous̆ek 2001)
The function $\triangle(n)$ satisfies

$$
(1-o(1)) n^{3 / 2} \leq \triangle(n) \leq(1+o(1)) n^{7 / 4} .
$$

Goal: Improve the lower bound.

A First Attempt

A simple construction is as follows (q is a power of an odd prime):

A First Attempt

A simple construction is as follows (q is a power of an odd prime):

Introduce a parameter $\lambda \in \mathbb{F}_{q} \backslash\{0\}$.

A First Attempt

A First Attempt

Question: How many triangles?

A First Attempt

Key Idea: To get many triangles, we need many solutions to

$$
0=a+b+c \quad 0=f(a)+g(b)+h(c)
$$

or equivalently,

$$
0=a+b+c \quad 0=\lambda_{1} a^{2}+\lambda_{2} b^{2}+\lambda_{3} c^{2}
$$

A First Attempt

Assume $\lambda_{3}=1$ and use $c=-a-b$ with $0=f(a)+g(b)+h(c)$ to get

$$
0=\lambda_{1} a^{2}+\lambda_{2} b^{2}+(-a-b)^{2} .
$$

A First Attempt

Assume $\lambda_{3}=1$ and use $c=-a-b$ with $0=f(a)+g(b)+h(c)$ to get

$$
0=\lambda_{1} a^{2}+\lambda_{2} b^{2}+(-a-b)^{2}
$$

which gives

$$
0=\lambda_{1}\left(\frac{a}{b}\right)^{2}+\lambda_{2}+\left(\frac{a}{b}+1\right)^{2} .
$$

A First Attempt

Assume $\lambda_{3}=1$ and use $c=-a-b$ with $0=f(a)+g(b)+h(c)$ to get

$$
0=\lambda_{1} a^{2}+\lambda_{2} b^{2}+(-a-b)^{2}
$$

which gives

$$
0=\lambda_{1}\left(\frac{a}{b}\right)^{2}+\lambda_{2}+\left(\frac{a}{b}+1\right)^{2}
$$

This shows that $\frac{a}{b}$ is a root of

$$
p_{\lambda_{1}, \lambda_{2}}(X)=\left(\lambda_{1}+1\right) X^{2}+2 X+\left(\lambda_{2}+1\right)
$$

A First Attempt

Choose λ_{1} and λ_{2} so that $p_{\lambda_{1}, \lambda_{2}}(X)$ has two distinct nonzero roots.

A First Attempt

Choose λ_{1} and λ_{2} so that $p_{\lambda_{1}, \lambda_{2}}(X)$ has two distinct nonzero roots.

- If ζ_{1} and ζ_{2} are the roots, then we choose a root, and we choose a $b \in \mathbb{F}_{q} \backslash\{0\}$ and let

$$
\frac{a}{b}=\zeta_{i}
$$

(this defines a in terms of b and determines $c=-a-b$).

A First Attempt

Choose λ_{1} and λ_{2} so that $p_{\lambda_{1}, \lambda_{2}}(X)$ has two distinct nonzero roots.

- If ζ_{1} and ζ_{2} are the roots, then we choose a root, and we choose a $b \in \mathbb{F}_{q} \backslash\{0\}$ and let

$$
\frac{a}{b}=\zeta_{i}
$$

(this defines a in terms of b and determines $c=-a-b$).

- We choose $(x, y)_{A}$ to get our triangle

$$
(x, y)_{A},\left(x+a, y+\lambda_{1} a^{2}\right)_{B},\left(x+a+b, y+\lambda_{1} a^{2}+\lambda_{2} b^{2}\right)_{C}
$$

Altogether, this gives $2(q-1) q^{2}$ triangles and shows

$$
(2-o(1)) n^{3 / 2} \leq \triangle(n)
$$

which improves the previous bound by a factor of 2 .

A First Attempt

Limitation: The polynomial

$$
p_{\lambda_{1}, \lambda_{2}}(X)=\left(\lambda_{1}+1\right) X^{2}+2 X+\left(\lambda_{2}+1\right)
$$

always has at most two roots.

A First Attempt

Limitation: The polynomial

$$
p_{\lambda_{1}, \lambda_{2}}(X)=\left(\lambda_{1}+1\right) X^{2}+2 X+\left(\lambda_{2}+1\right)
$$

always has at most two roots.

Solution: Make $p_{\lambda_{1}, \lambda_{2}}(X)$ have higher degree.

A First Attempt

Limitation: The polynomial

$$
p_{\lambda_{1}, \lambda_{2}}(X)=\left(\lambda_{1}+1\right) X^{2}+2 X+\left(\lambda_{2}+1\right)
$$

always has at most two roots.

Solution: Make $p_{\lambda_{1}, \lambda_{2}}(X)$ have higher degree.

Our graph must have no C_{4} between two parts.

A Second Attempt

Let q be a power of an odd prime.

A polynomial $f(x) \in \mathbb{F}_{q}[X]$ is a planar polynomial if for each $a \in \mathbb{F}_{q} \backslash\{0\}$, the map $\phi_{a}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ defined by

$$
\phi_{a}(x)=f(x+a)-f(x)
$$

is 1-to-1.

A Second Attempt

Let q be a power of an odd prime.

A polynomial $f(x) \in \mathbb{F}_{q}[X]$ is a planar polynomial if for each $a \in \mathbb{F}_{q} \backslash\{0\}$, the map $\phi_{a}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ defined by

$$
\phi_{a}(x)=f(x+a)-f(x)
$$

is 1 -to- 1 .

Planar polynomials were first defined by Dembowski and Ostrom in 1968.

A Second Attempt

Example: The quadratic $f(X)=\lambda_{1} X^{2}$ is a planar polynomial: if $a \neq 0$, then

$$
\phi_{a}(x)=f(x+a)-f(x)=\lambda_{1}(x+a)^{2}-\lambda_{1} x^{2}=\lambda_{1}\left(2 x a+a^{2}\right)
$$

is 1 -to- 1 since $2 \lambda_{1} a \neq 0$.

A Second Attempt

Example: The quadratic $f(X)=\lambda_{1} X^{2}$ is a planar polynomial: if $a \neq 0$, then

$$
\phi_{a}(x)=f(x+a)-f(x)=\lambda_{1}(x+a)^{2}-\lambda_{1} x^{2}=\lambda_{1}\left(2 x a+a^{2}\right)
$$

is 1 -to- 1 since $2 \lambda_{1} a \neq 0$.

Other Examples:

(1) $f(X)=X^{10}+X^{6}-X^{2}$ over \mathbb{F}_{3} for $e \geq 3$ odd, or $e=2$,

A Second Attempt

Example: The quadratic $f(X)=\lambda_{1} X^{2}$ is a planar polynomial: if $a \neq 0$, then

$$
\phi_{a}(x)=f(x+a)-f(x)=\lambda_{1}(x+a)^{2}-\lambda_{1} x^{2}=\lambda_{1}\left(2 x a+a^{2}\right)
$$

is 1 -to- 1 since $2 \lambda_{1} a \neq 0$.

Other Examples:

(1) $f(X)=X^{10}+X^{6}-X^{2}$ over $\mathbb{F}_{3 \text { e }}$ for $e \geq 3$ odd, or $e=2$,
(2) $f(X)=X^{p^{k}+1}$ over $\mathbb{F}_{p^{e}}$ for $\frac{e}{\operatorname{gcd}(k, e)}$ odd,

A Second Attempt

Example: The quadratic $f(X)=\lambda_{1} X^{2}$ is a planar polynomial: if $a \neq 0$, then

$$
\phi_{a}(x)=f(x+a)-f(x)=\lambda_{1}(x+a)^{2}-\lambda_{1} x^{2}=\lambda_{1}\left(2 x a+a^{2}\right)
$$

is 1 -to- 1 since $2 \lambda_{1} a \neq 0$.

Other Examples:

(1) $f(X)=X^{10}+X^{6}-X^{2}$ over \mathbb{F}_{3} for $e \geq 3$ odd, or $e=2$,
(2) $f(X)=X^{p^{k}+1}$ over $\mathbb{F}_{p^{e}}$ for $\frac{e}{\operatorname{gcd}(k, e)}$ odd,
(3) $f(X)=X^{\frac{1}{2}\left(3^{k}+1\right)}$ over $\mathbb{F}_{3^{e}}$ for k odd and $\operatorname{gcd}(k, e)=1$.

A Second Attempt

The last two have degrees that can be made arbitrarily large:

$$
f(X)=X^{p^{k}+1} \quad \text { and } \quad f(X)=X^{\frac{1}{2}\left(3^{k}+1\right)}
$$

A Second Attempt

The last two have degrees that can be made arbitrarily large:

$$
f(X)=X^{p^{k}+1} \quad \text { and } \quad f(X)=X^{\frac{1}{2}\left(3^{k}+1\right)}
$$

Recall that we want

$$
0=a+b+c \quad \text { and } \quad f(a)+g(b)+h(c)=0
$$

and in quadratic case, we ended up with $\frac{a}{b}$ being a root of

$$
p_{\lambda_{1}, \lambda_{2}}(X)=\left(\lambda_{1}+1\right) X^{2}+2 X+\left(\lambda_{2}+1\right)
$$

A Second Attempt

Using

$$
X^{q+1}
$$

which is planar over $\mathbb{F}_{q^{3}}$ whenever q is a power of an odd prime, we get that $\frac{a}{b}$ is a root of

$$
w_{\lambda_{1}, \lambda_{2}}(X)=\left(\lambda_{1}+1\right) X^{q+1}+X^{q}+X+\left(\lambda_{2}+1\right)
$$

A Second Attempt

Using

$$
x^{q+1}
$$

which is planar over $\mathbb{F}_{q^{3}}$ whenever q is a power of an odd prime, we get that $\frac{a}{b}$ is a root of

$$
w_{\lambda_{1}, \lambda_{2}}(X)=\left(\lambda_{1}+1\right) X^{q+1}+X^{q}+X+\left(\lambda_{2}+1\right)
$$

This polynomial has degree $q+1$ if $\lambda_{1} \neq-1$, and so we have a chance at choosing λ_{1} and λ_{2} so that we get much more than just 2 roots.

A Second Attempt

Counting roots over all $\left(3^{3}-1\right)^{2}$ choices of λ_{1}, λ_{2} in $w_{\lambda_{1}, \lambda_{2}}(X)$.

A Second Attempt

Counting roots over all $\left(5^{3}-1\right)^{2}$ choices of λ_{1}, λ_{2} in $w_{\lambda_{1}, \lambda_{2}}(X)$.

A Second Attempt

Counting roots over all $\left(7^{3}-1\right)^{2}$ choices of λ_{1}, λ_{2} in $w_{\lambda_{1}, \lambda_{2}}(X)$.
Robert S. Coulter, Rex W. Matthews, Craig Timmons
An extremal problem involving 4-cycles and planar polynomials

Main Result

Theorem (Coulter, Matthews, T, 2017)
Let q be a power of an odd prime and $a \in \mathbb{F}_{q^{3}} \backslash\{0\}$.
The polynomial

$$
g_{a}(X)=X^{q+1}+a^{-1}\left(X^{q}+X\right)+a^{-1-q}+a^{-1-q^{2}}-a^{-q^{2}-q}
$$

will have $q+1$ distinct roots in $\mathbb{F}_{q^{3}}$ whenever $a \in \mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}$.

Main Result

Theorem (Coulter, Matthews, T, 2017)
Let q be a power of an odd prime and $a \in \mathbb{F}_{q^{3}} \backslash\{0\}$.
The polynomial

$$
g_{a}(X)=X^{q+1}+a^{-1}\left(X^{q}+X\right)+a^{-1-q}+a^{-1-q^{2}}-a^{-q^{2}-q}
$$

will have $q+1$ distinct roots in $\mathbb{F}_{q^{3}}$ whenever $a \in \mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}$.

This is equivalent to the statement that

$$
f_{a}(X)=X^{q+1}+a^{-1}\left(X^{q}+X\right)+N\left(a^{-1}\right)(\operatorname{Tr}(a)-2 a)
$$

has $q+1$ distinct roots in $\mathbb{F}_{q^{3}}$ whenever $a \in \mathbb{F}_{q^{3}} \backslash \mathbb{F}_{q}$.
This result tells us how we should choose λ_{1}, λ_{2} so that $w_{\lambda_{1}, \lambda_{2}}(X)$ has many roots.

Main Result

- If ζ_{i} is root, we choose $b \in \mathbb{F}_{q^{3}} \backslash\{0\}$ and let

$$
\frac{a}{b}=\zeta_{i}
$$

(this defines a in terms of b and determines $c=-a-b$).

Main Result

- If ζ_{i} is root, we choose $b \in \mathbb{F}_{q^{3}} \backslash\{0\}$ and let

$$
\frac{a}{b}=\zeta_{i}
$$

(this defines a in terms of b and determines $c=-a-b$).

- We choose $(x, y)_{A}$ to get our triangle

$$
(x, y)_{A},\left(x+a, y+\lambda_{1} a^{q+1}\right)_{B},\left(x+a+b, y+\lambda_{1} a^{q+1}+\lambda_{2} b^{q+1}\right)_{C} .
$$

Altogether, this gives $(q+1)\left(q^{3}-1\right) q^{6}$ triangles (here $n=q^{6}$) and shows

$$
(1-o(1)) n^{5 / 3} \leq \triangle(n)
$$

which improves the previous bound by $n^{1 / 6}$.

Main Result

Theorem (Coulter, Matthews, T, 2017)
The function $\triangle(n)$ satisfies

$$
(1-o(1)) n^{5 / 3} \leq \triangle(n)
$$

Conclusion

Best known bounds on $\triangle(n)$:

$$
\begin{gathered}
(1-o(1)) n^{5 / 3} \leq \triangle(n) \leq(1+o(1)) n^{7 / 4} \\
\triangle(n)=? ? ?
\end{gathered}
$$

Guess: $\triangle(n)=o\left(n^{7 / 4}\right)$.

Conclusion

Best known bounds on $\triangle(n)$:

$$
(1-o(1)) n^{5 / 3} \leq \triangle(n) \leq(1+o(1)) n^{7 / 4}
$$

$$
\triangle(n)=? ? ?
$$

Guess: $\triangle(n)=o\left(n^{7 / 4}\right)$.

Thank you

