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If 2 | n we can partition [n] = {1,2,...,n} into pairs each having
the same sum n + 1.

If 3| n we can partition [n] = {1,2,...,n} into triples each having
(roughly) the same sum s.

Note (n/3)s ~ >_7 ;i so s =~ 3AM([n]) ~ 3n/2.

Eg n = 6k, triples {1+ 3j,3k+ 2+ 3/,6k — 6/} and
{2+43j,3k+1+3j,6k —6j — 3}, 0 <j < k, each have sum
3n/2+ 3 or 3n/2.

Can we partition into triples of (roughly) the same product p?
If so, p"/3 ~ [[1_,iso p~ (GM([n]))® ~ (n/e).

Hence NO WE CAN'T,
because triple with 1 in it has product < 1-(n—1)-n < n?



Open question

If mis large enough that mn? > (GM({m,m+1,...,n}))3, can
we partition {m, m+1,..., n} into triples with similar products?

Conjecture
Let v = 0.116586. .. be the root of (1/v)1+21)/3 = =7,

Then the set {|vn|, |yn] +1,...,n} can be split into triples
whose products differ by o(n%).



Vertex colouring

Let G be a graph or r-uniform hypergraph (edges are r-sets).

A vertex colouring of G is a map
c: V(G) — {colours} such that no edge is monochromatic

An edge is monochromatic if every vertex in it has the same colour.
Here {colours} is the palette of available colours.

The chromatic number of G is

X(G) = min{k : there is a colouring c: V(G) — {1,...,k}}
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List colouring

Suppose now we assign a list of colours to each vertex, ie
L:V(G) — P({colours})
We say G is L-choosable if there is a vertex colouring

c: V(G) — {colours} with ¢(v) € L(v) for all v

The list chromatic number of G is

X/(G) = min{k : G is L-chooseable whenever Vv |[L(v)|> k}

Clearly x/(G) > x(G) (make L(v) same Vv)
Introduced by Vizing (1976) and by Erdés, Rubin, Taylor (1979)
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Graphs

Theorem (Erdés+Rubin+Taylor 79)

Xi(Ka,a) = (1 + 0(1)) log, d

Theorem (Alon+Krivelevich 98)
whp  xi(G(n,n,p)) = (1+o(1))log, d

where G(n, n, p) is random bipartite, d = np, d — oo

Theorem (Alon 00)
For all graphs G of average degree d, x;(G) > (3 + o(1)) log, d
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Sapozhenko says it's easy

Theorem (Alon 00)
For all graphs G of average degree d, x;(G) > (3 + o(1)) log, d

To prove Alon's theorem, we need lists L of size about (1/2)log, d
so G is not L-chooseable.  Best choice of L seems to be random.

But how do we show G is not L-chooseable?

Theorem (Sapozhenko '90s)

Let G be a d-regular graph with n vertices. Then there is a
collection C of vertex subsets, called containers, such that

e for every independent | there isa C € C with | C C
e [C|<(1/2+¢€)nforall CeC
o |C] <29 where ¢ = c(e)
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Theorem (Saxton+T 12,14 {c.f. Balogh+Morris+Samotij})

Let G be a simple d-regular r-uniform hypergraph with n vertices.
Then there is a collection C of vertex subsets called containers,
such that

e for every independent | there isa C € C with | C C
o forevery CeC, |C| <(1-0c)|V]| where ¢ = 1/4r2
o [C] <27 where T = d—1/(2r=1)
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A lower bound on Y,

Theorem (Saxton+T 12,14)

Let G be simple (ie linear) r-uniform d-regular. Then

1
xi(G) > (i + 0(1)) log, d
(bounds too for non-regular, non-simple)

How good is this bound? Are there tight examples?
For r = 2 (graphs) then x,(G) > (1 + o(1)) log, d which is tight
For r = 3 then x,(G) > (1/2 + o(1)) logs d

for latin square x(G) < X/(Kc(ii)i,d) < (1+o(1))logzd

So let's try to colour simple regular 3-partite 3-uniform hypergraphs
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Preference orders
A preference order on [m] is a collection of r total orders on [m]

Example: r =3 m = 3k

3k k 2k
3k—1 k—1 2k—1
2k +1 1 k+1
2k 3k k
2k —1 3k—-1 k-1
k+1 2k +1 1

1 k+1 2k +1

2 k+2 2k + 2



A colouring algorithm for r-partite hypergraphs

Let G be r-partite r-uniform, average degree d
V(G)=VLiuWV,U---UV,, |Vi|=n

Let L: V(G) — P({colours}), with list sizes ¢

ALGORITHM:
Randomly number the colours 1 to m (the size of the palette)
Choose an “optimal” preference order on [m]
If v € Vjlet c(v) be colour in L(v) most preferred by ith order

Add a degenerate twist for luck



A colouring algorithm for r-partite hypergraphs

Let G be r-partite r-uniform, average degree d
V(G)=VLiuWV,U---UV,, |Vi|=n

Let L: V(G) — P({colours}), with list sizes ¢

ALGORITHM:
Randomly number the colours 1 to m (the size of the palette)
Choose an “optimal” preference order on [m]
If v € Vjlet c(v) be colour in L(v) most preferred by ith order

Add a degenerate twist for luck

Pr(v € V;is green ) = xf, x; = "height” of green in ith order

so if X = green vertices then E|X;| = x‘n
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Preference orders - values

We can assign a value to a preference order, namely

max  product of lowest r — 1 heights of j
J€[m]

An “optimal” preference order above is one with minimal value

Define f(r) to be the minimum value of all pref orders (as m — o0)

f(2)=1/2 f(3)=1/9  f(4)=00262...  f(r)=?

Why is this value relevant?
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r-partite hypergraphs

Let G be r-partite r-uniform, average degree d
V(G):V1UV2U'”UVr, |V,-|:n
Given X C V(G) write Xj = X N V; and let |Xj| = max; | X;]

(D) if T1i; 1Xi| < n"71/d then G[X] is ‘1% -degenerate

log log d

(N;) if [Tz 1Xi] = n"~/d «1og? d then X is not independent.

Almost all G satisfy both (D,) and (N,).

Theorem (Méroueh+T)
If r-partite G satisfies (D,) and (N,) then

xi(G) ~ g(r) log, d

where g(r) = —1/log, f(r)



A lower bound for , using preference orders

Let G be r-partite r-uniform, average degree d
Choose random lists L : V(G) — P({colours}) each of size ¢
Suppose G has a colouring ¢ : V(G) — {colours}

Define a preference order on {colours}, the r orders being the
order of popularity of c(v) in Vi, Vo, ..., V,

This preference order has value at least f(r) ...

...some colour (green, say) has positions x; with Hi#ix x;j > f(r)
... information about the size of the green independent set

If G has (I,) this gives a contradiction when ¢ < g(r)log, d
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How the numbers stack up

(Saxton+T 12,14) V simple d-regular G, x;(G) = (ril) log, d
Méroueh+T V r-partite G, (D,) & (N,) = xi(G) ~ g(r) log, d
fFQ)=1/2 f(3)=1/9  f(4)=0.0262...

Recall g(r) = —1/log, f(r)

g2)=1 gB3)=1/2  g(4)=0.3807...

This shows the container argument is tight for r =2 and r =3

but (probably) not for r > 4



So in fact how big is f(r)?

1
T f(4) < —
3813 ~ W <31

all numbers appear once
in top quarter and once
in bottom quarter

some twice here ——
and once here

and weirdly here —

rest once here
{with constant prods

* X ¥ %
* X ¥ *

* X ¥ *

And (

)’ <) < 2 so g(r) ~ 987 ¢ f. container -

1

-1

* ¥ ¥ ¥



Thanks for your attention . ..



