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Open question

If 2 | n we can partition [n] = {1, 2, . . . , n} into pairs each having
the same sum n + 1.

If 3 | n we can partition [n] = {1, 2, . . . , n} into triples each having
(roughly) the same sum s.

Note (n/3)s ≈
∑n

i=1 i so s ≈ 3AM([n]) ≈ 3n/2.

Eg n = 6k, triples {1 + 3j , 3k + 2 + 3j , 6k − 6j} and
{2 + 3j , 3k + 1 + 3j , 6k − 6j − 3}, 0 ≤ j < k , each have sum
3n/2 + 3 or 3n/2.

Can we partition into triples of (roughly) the same product p?

If so, pn/3 ≈
∏n

i=1 i so p ≈ (GM([n]))3 ≈ (n/e)3.

Hence NO WE CAN’T,
because triple with 1 in it has product ≤ 1 · (n − 1) · n < n2.
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Open question

If m is large enough that mn2 > (GM({m,m + 1, . . . , n}))3, can
we partition {m,m + 1, . . . , n} into triples with similar products?

Conjecture

Let γ = 0.116586 . . . be the root of (1/γ)(1+2γ)/3 = e1−γ .

Then the set {bγnc, bγnc+ 1, . . . , n} can be split into triples
whose products differ by o(n3).



Vertex colouring

Let G be a graph or r -uniform hypergraph (edges are r -sets).

A vertex colouring of G is a map

c : V (G )→ {colours} such that no edge is monochromatic

An edge is monochromatic if every vertex in it has the same colour.
Here {colours} is the palette of available colours.

The chromatic number of G is

χ(G ) = min{k : there is a colouring c : V (G )→ {1, . . . , k}}



List colouring

Suppose now we assign a list of colours to each vertex, ie

L : V (G )→ P({colours})

We say G is L-choosable if there is a vertex colouring

c : V (G )→ {colours} with c(v) ∈ L(v) for all v

The list chromatic number of G is

χl(G ) = min{k : G is L-chooseable whenever ∀v |L(v)| ≥ k}

Clearly χl(G ) ≥ χ(G ) (make L(v) same ∀v)

Introduced by Vizing (1976) and by Erdős, Rubin, Taylor (1979)
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χl can be bigger than χ

K3,3 not 2-choosable: χ = 2, χl ≥ 3
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Graphs

Theorem (Erdős+Rubin+Taylor 79)

χl(Kd ,d) = (1 + o(1)) log2 d

Theorem (Alon+Krivelevich 98)

whp χl(G (n, n, p)) = (1 + o(1)) log2 d

where G (n, n, p) is random bipartite, d = np, d →∞

Theorem (Alon 00)

For all graphs G of average degree d, χl(G ) ≥ (12 + o(1)) log2 d
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Sapozhenko says it’s easy

Theorem (Alon 00)

For all graphs G of average degree d, χl(G ) ≥ (12 + o(1)) log2 d

To prove Alon’s theorem, we need lists L of size about (1/2) log2 d
so G is not L-chooseable. Best choice of L seems to be random.

But how do we show G is not L-chooseable?

Theorem (Sapozhenko ’90s)

Let G be a d-regular graph with n vertices. Then there is a
collection C of vertex subsets, called containers, such that

• for every independent I there is a C ∈ C with I ⊂ C

• |C | ≤ (1/2 + ε)n for all C ∈ C
• |C| ≤ 2cn/d where c = c(ε)
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Simple hypergraphs

Simple or linear hypergraph: |e ∩ f | ≤ 1 for all distinct edges e, f

A Steiner triple system is a simple regular 3-uniform hypergraph

A Latin square graph is a simple d-regular subgraph of K
(3)
d ,d ,d

Lower bounds on χl in certain cases (Haxell+Pei ’09 STS’s,
Haxell+Verstraëte ’10, Alon+Kostochka ’11)

Theorem (Saxton+T 12,14 {c.f. Balogh+Morris+Samotij})
Let G be a simple d-regular r -uniform hypergraph with n vertices.
Then there is a collection C of vertex subsets called containers,
such that

• for every independent I there is a C ∈ C with I ⊂ C

• for every C ∈ C, |C | ≤ (1− c)|V | where c = 1/4r2

• |C| ≤ 2τn where τ = d−1/(2r−1)
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A lower bound on χl

Theorem (Saxton+T 12,14)

Let G be simple (ie linear) r -uniform d-regular. Then

χl(G ) ≥
( 1

r − 1
+ o(1)

)
logr d

(bounds too for non-regular, non-simple)

How good is this bound? Are there tight examples?

For r = 2 (graphs) then χl(G ) ≥ (1 + o(1)) log2 d which is tight

For r = 3 then χl(G ) ≥ (1/2 + o(1)) log3 d

for latin square χl(G ) ≤ χl(K
(3)
d ,d ,d) ≤ (1 + o(1)) log3 d

So let’s try to colour simple regular 3-partite 3-uniform hypergraphs
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Preference orders

A preference order on [m] is a collection of r total orders on [m]
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Preference orders

A preference order on [m] is a collection of r total orders on [m]

Example: r = 3 m = 3k

3k k 2k
3k − 1 k − 1 2k − 1

...
...

...
2k + 1 1 k + 1

2k 3k k
2k − 1 3k − 1 k − 1

...
...

...
k + 1 2k + 1 1

1 k + 1 2k + 1
2 k + 2 2k + 2
...

...
...

k 2k 3k



A colouring algorithm for r -partite hypergraphs

Let G be r -partite r -uniform, average degree d
V (G ) = V1 ∪ V2 ∪ · · · ∪ Vr , |Vi | = n

Let L : V (G )→ P({colours}), with list sizes `

Algorithm:

Randomly number the colours 1 to m (the size of the palette)

Choose an “optimal” preference order on [m]

If v ∈ Vi let c(v) be colour in L(v) most preferred by ith order

Add a degenerate twist for luck

Pr(v ∈ Vi is green ) = x`i , xi = “height” of green in ith order

so if X = green vertices then E|Xi | = x`i n
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Preference orders - values

We can assign a value to a preference order, namely

max
j∈[m]

product of lowest r − 1 heights of j

An “optimal” preference order above is one with minimal value

Define f (r) to be the minimum value of all pref orders (as m→∞)

f (2) = 1/2 f (3) = 1/9 f (4) = 0.0262 . . . f (r) =?

Why is this value relevant?
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r -partite hypergraphs

Let G be r -partite r -uniform, average degree d
V (G ) = V1 ∪ V2 ∪ · · · ∪ Vr , |Vi | = n

Given X ⊂ V (G ) write Xi = X ∩ Vi and let |Xj | = maxi |Xi |

(Dr ) if
∏

i 6=j |Xi | ≤ nr−1/d then G [X ] is 4 log d
log log d

-degenerate

(Nr ) if
∏

i 6=j |Xi | ≥ nr−1/d × log2 d then X is not independent.

Almost all G satisfy both (Dr ) and (Nr ).

Theorem (Méroueh+T)

If r -partite G satisfies (Dr ) and (Nr ) then

χl(G ) ∼ g(r) logr d

where g(r) = −1/ logr f (r)
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A lower bound for χl using preference orders

Let G be r -partite r -uniform, average degree d

Choose random lists L : V (G )→ P({colours}) each of size `

Suppose G has a colouring c : V (G )→ {colours}

Define a preference order on {colours}, the r orders being the
order of popularity of c(v) in V1,V2, . . . ,Vr

This preference order has value at least f (r) . . .

. . . some colour (green, say) has positions xi with
∏

i 6=ix
xi ≥ f (r)

. . . information about the size of the green independent set

If G has (Ir ) this gives a contradiction when ` < g(r) logr d



How the numbers stack up

(Saxton+T 12,14) ∀ simple d-regular G , χl(G ) & 1
(r−1) logr d

Méroueh+T ∀ r -partite G , (Dr ) & (Nr ) ⇒ χl(G ) ∼ g(r) logr d

f (2) = 1/2 f (3) = 1/9 f (4) = 0.0262 . . .

Recall g(r) = −1/ logr f (r)

g(2) = 1 g(3) = 1/2 g(4) = 0.3807 . . .

This shows the container argument is tight for r = 2 and r = 3

but (probably) not for r ≥ 4
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but (probably) not for r ≥ 4



So in fact how big is f (r)?

1

38.13
< f (4) <

1

38.12

all numbers appear once
in top quarter and once
in bottom quarter

some twice here -

and once here

-

rest once here
and weirdly here
with constant prods

-

-

*

*
*

*

*

*

*

*

*

*
*

*

*

*
*

*

And
(
r−1
re

)r−1 ≤ f (r) ≤ (r−1)!
r r−1 so g(r) ∼ log r

r c.f. container 1
r−1



Thanks for your attention . . .


