List colourings and preference orders

in honour of Haemers-Lazebnik-Woldar

Andrew Thomason (with Arès Méroueh)

8th August 2017

Open question

If $2 \mid n$ we can partition $[n]=\{1,2, \ldots, n\}$ into pairs each having the same sum $n+1$.

Open question

If $2 \mid n$ we can partition $[n]=\{1,2, \ldots, n\}$ into pairs each having the same sum $n+1$.

If $3 \mid n$ we can partition $[n]=\{1,2, \ldots, n\}$ into triples each having (roughly) the same sum s.
Note $(n / 3) s \approx \sum_{i=1}^{n} i$ so $s \approx 3 \mathrm{AM}([n]) \approx 3 n / 2$.

Open question

If $2 \mid n$ we can partition $[n]=\{1,2, \ldots, n\}$ into pairs each having the same sum $n+1$.
If $3 \mid n$ we can partition $[n]=\{1,2, \ldots, n\}$ into triples each having (roughly) the same sum s.
Note $(n / 3) s \approx \sum_{i=1}^{n} i$ so $s \approx 3 \mathrm{AM}([n]) \approx 3 n / 2$.
Eg $n=6 k$, triples $\{1+3 j, 3 k+2+3 j, 6 k-6 j\}$ and $\{2+3 j, 3 k+1+3 j, 6 k-6 j-3\}, 0 \leq j<k$, each have sum $3 n / 2+3$ or $3 n / 2$.

Open question

If $2 \mid n$ we can partition $[n]=\{1,2, \ldots, n\}$ into pairs each having the same sum $n+1$.
If $3 \mid n$ we can partition $[n]=\{1,2, \ldots, n\}$ into triples each having (roughly) the same sum s.
Note $(n / 3) s \approx \sum_{i=1}^{n} i$ so $s \approx 3 \mathrm{AM}([n]) \approx 3 n / 2$.
Eg $n=6 k$, triples $\{1+3 j, 3 k+2+3 j, 6 k-6 j\}$ and $\{2+3 j, 3 k+1+3 j, 6 k-6 j-3\}, 0 \leq j<k$, each have sum $3 n / 2+3$ or $3 n / 2$.

Can we partition into triples of (roughly) the same product p ?
If so, $p^{n / 3} \approx \prod_{i=1}^{n} i$ so $p \approx(\operatorname{GM}([n]))^{3} \approx(n / e)^{3}$.
Hence NO WE CAN'T, because triple with 1 in it has product $\leq 1 \cdot(n-1) \cdot n<n^{2}$.

Open question

If m is large enough that $m n^{2}>(\operatorname{GM}(\{m, m+1, \ldots, n\}))^{3}$, can we partition $\{m, m+1, \ldots, n\}$ into triples with similar products?

Conjecture

Let $\gamma=0.116586 \ldots$ be the root of $(1 / \gamma)^{(1+2 \gamma) / 3}=e^{1-\gamma}$.
Then the set $\{\lfloor\gamma n\rfloor,\lfloor\gamma n\rfloor+1, \ldots, n\}$ can be split into triples whose products differ by $o\left(n^{3}\right)$.

Vertex colouring

Let G be a graph or r-uniform hypergraph (edges are r-sets).
A vertex colouring of G is a map
$c: V(G) \rightarrow$ \{colours $\}$ such that no edge is monochromatic
An edge is monochromatic if every vertex in it has the same colour. Here \{colours\} is the palette of available colours.

The chromatic number of G is
$\chi(G)=\min \{k:$ there is a colouring $c: V(G) \rightarrow\{1, \ldots, k\}\}$

List colouring

Suppose now we assign a list of colours to each vertex, ie

$$
L: V(G) \rightarrow \mathcal{P}(\{\text { colours }\})
$$

We say G is L-choosable if there is a vertex colouring

$$
c: V(G) \rightarrow\{\text { colours }\} \text { with } c(v) \in L(v) \text { for all } v
$$

List colouring

Suppose now we assign a list of colours to each vertex, ie

$$
L: V(G) \rightarrow \mathcal{P}(\{\text { colours }\})
$$

We say G is L-choosable if there is a vertex colouring

$$
c: V(G) \rightarrow\{\text { colours }\} \text { with } c(v) \in L(v) \text { for all } v
$$

The list chromatic number of G is

$$
\chi_{I}(G)=\min \{k: \quad G \text { is } L \text {-chooseable whenever } \forall v \quad|L(v)| \geq k\}
$$

List colouring

Suppose now we assign a list of colours to each vertex, ie

$$
L: V(G) \rightarrow \mathcal{P}(\{\text { colours }\})
$$

We say G is L-choosable if there is a vertex colouring

$$
c: V(G) \rightarrow\{\text { colours }\} \quad \text { with } \quad c(v) \in L(v) \text { for all } v
$$

The list chromatic number of G is

$$
\chi_{I}(G)=\min \{k: \quad G \text { is } L \text {-chooseable whenever } \forall v \quad|L(v)| \geq k\}
$$

Clearly $\chi_{I}(G) \geq \chi(G)$ (make $L(v)$ same $\forall v$)
Introduced by Vizing (1976) and by Erdős, Rubin, Taylor (1979)

$\chi_{\text {I }}$ can be bigger than χ

$K_{3,3}$ not 2-choosable: $\chi=2, \chi_{I} \geq 3$

$\chi_{\text {I }}$ can be bigger than χ

$K_{3,3}$ not 2-choosable: $\chi=2, \chi_{I} \geq 3$

More generally, $K_{m, m}$ is not k-choosable if $m \geq\binom{ 2 k-1}{k}$

Graphs

Theorem (Erdős+Rubin+Taylor 79)

$$
\chi_{I}\left(K_{d, d}\right)=(1+o(1)) \log _{2} d
$$

Graphs

Theorem (Erdős+Rubin + Taylor 79)

$$
\chi_{I}\left(K_{d, d}\right)=(1+o(1)) \log _{2} d
$$

Theorem (Alon+Krivelevich 98)

$$
\text { whp } \quad \chi_{I}(G(n, n, p))=(1+o(1)) \log _{2} d
$$

where $G(n, n, p)$ is random bipartite, $d=n p, d \rightarrow \infty$

Graphs

Theorem (Erdős+Rubin+Taylor 79)

$$
\chi_{I}\left(K_{d, d}\right)=(1+o(1)) \log _{2} d
$$

Theorem (Alon+Krivelevich 98)

$$
\text { whp } \quad \chi_{I}(G(n, n, p))=(1+o(1)) \log _{2} d
$$

where $G(n, n, p)$ is random bipartite, $d=n p, d \rightarrow \infty$
Theorem (Alon 00)
For all graphs G of average degree $d, \chi_{I}(G) \geq\left(\frac{1}{2}+o(1)\right) \log _{2} d$

Sapozhenko says it's easy

Theorem (Alon 00)
For all graphs G of average degree d, $\chi_{I}(G) \geq\left(\frac{1}{2}+o(1)\right) \log _{2} d$
To prove Alon's theorem, we need lists L of size about $(1 / 2) \log _{2} d$ so G is not L-chooseable. Best choice of L seems to be random.

But how do we show G is not L-chooseable?

Sapozhenko says it's easy

Theorem (Alon 00)
For all graphs G of average degree $d, \chi_{I}(G) \geq\left(\frac{1}{2}+o(1)\right) \log _{2} d$
To prove Alon's theorem, we need lists L of size about $(1 / 2) \log _{2} d$ so G is not L-chooseable. Best choice of L seems to be random.

But how do we show G is not L-chooseable?
Theorem (Sapozhenko '90s)
Let G be a d-regular graph with n vertices. Then there is a collection \mathcal{C} of vertex subsets, called containers, such that

- for every independent I there is a $C \in \mathcal{C}$ with I $\subset C$
- $|C| \leq(1 / 2+\epsilon) n$ for all $C \in \mathcal{C}$
- $|\mathcal{C}| \leq 2^{c n / d}$ where $c=c(\epsilon)$

Simple hypergraphs

Simple or linear hypergraph: $|e \cap f| \leq 1$ for all distinct edges e, f
A Steiner triple system is a simple regular 3-uniform hypergraph
A Latin square graph is a simple d-regular subgraph of $K_{d, d, d}^{(3)}$

Simple hypergraphs

Simple or linear hypergraph: $|e \cap f| \leq 1$ for all distinct edges e, f
A Steiner triple system is a simple regular 3-uniform hypergraph A Latin square graph is a simple d-regular subgraph of $K_{d, d, d}^{(3)}$

Lower bounds on χ_{\prime} in certain cases (Haxell+Pei '09 STS's, Haxell+Verstraëte '10, Alon+Kostochka '11)

Simple hypergraphs

Simple or linear hypergraph: $|e \cap f| \leq 1$ for all distinct edges e, f
A Steiner triple system is a simple regular 3-uniform hypergraph
A Latin square graph is a simple d-regular subgraph of $K_{d, d, d}^{(3)}$
Lower bounds on $\chi_{\text {I }}$ in certain cases (Haxell+Pei '09 STS's, Haxell+Verstraëte '10, Alon+Kostochka '11)

Theorem (Saxton+T 12,14 \{c.f. Balogh+Morris+Samotij\})
Let G be a simple d-regular r-uniform hypergraph with n vertices.
Then there is a collection \mathcal{C} of vertex subsets called containers, such that

- for every independent I there is a $C \in \mathcal{C}$ with $I \subset C$
- for every $C \in \mathcal{C},|C| \leq(1-c)|V|$
- $|\mathcal{C}| \leq 2^{\tau n}$
where $c=1 / 4 r^{2}$
where $\tau=d^{-1 /(2 r-1)}$

A lower bound on χ_{l}

Theorem (Saxton+T 12,14)
Let G be simple (ie linear) r-uniform d-regular. Then

$$
\chi_{I}(G) \geq\left(\frac{1}{r-1}+o(1)\right) \log _{r} d
$$

(bounds too for non-regular, non-simple)

How good is this bound? Are there tight examples?

A lower bound on χ_{l}

Theorem (Saxton+T 12,14)
Let G be simple (ie linear) r-uniform d-regular. Then

$$
\chi_{I}(G) \geq\left(\frac{1}{r-1}+o(1)\right) \log _{r} d
$$

(bounds too for non-regular, non-simple)

How good is this bound? Are there tight examples?
For $r=2$ (graphs) then $\chi_{I}(G) \geq(1+o(1)) \log _{2} d$ which is tight

A lower bound on χ_{I}

Theorem (Saxton+T 12,14)
Let G be simple (ie linear) r-uniform d-regular. Then

$$
\chi_{\prime}(G) \geq\left(\frac{1}{r-1}+o(1)\right) \log _{r} d
$$

(bounds too for non-regular, non-simple)
How good is this bound? Are there tight examples?
For $r=2$ (graphs) then $\chi_{J}(G) \geq(1+o(1)) \log _{2} d$ which is tight
For $r=3$ then $\chi_{I}(G) \geq(1 / 2+o(1)) \log _{3} d$
for latin square $\chi_{l}(G) \leq \chi_{l}\left(K_{d, d, d}^{(3)}\right) \leq(1+o(1)) \log _{3} d$

A lower bound on χ_{I}

Theorem (Saxton+T 12,14)
Let G be simple (ie linear) r-uniform d-regular. Then

$$
\chi_{\prime}(G) \geq\left(\frac{1}{r-1}+o(1)\right) \log _{r} d
$$

(bounds too for non-regular, non-simple)
How good is this bound? Are there tight examples?
For $r=2$ (graphs) then $\chi_{J}(G) \geq(1+o(1)) \log _{2} d$ which is tight
For $r=3$ then $\chi_{I}(G) \geq(1 / 2+o(1)) \log _{3} d$
for latin square $\chi_{l}(G) \leq \chi_{I}\left(K_{d, d, d}^{(3)}\right) \leq(1+o(1)) \log _{3} d$
So let's try to colour simple regular 3-partite 3-uniform hypergraphs

Preference orders

A preference order on [m] is a collection of r total orders on [m]

Preference orders

A preference order on [m] is a collection of r total orders on [m]
Example: $r=2 m=2 k$

$2 k$	1
$2 k-1$	2
\vdots	\vdots
$k+1$	$k-1$
k	k
$k-1$	$k+1$
\vdots	\vdots
2	$2 k-1$
1	$2 k$

Preference orders

A preference order on [m] is a collection of r total orders on [m]
Example: $r=3 m=3 k$

$3 k$	k	$2 k$
$3 k-1$	$k-1$	$2 k-1$
\vdots	\vdots	\vdots
$2 k+1$	1	$k+1$
$2 k$	$3 k$	k
$2 k-1$	$3 k-1$	$k-1$
\vdots	\vdots	\vdots
$k+1$	$2 k+1$	1
1	$k+1$	$2 k+1$
2	$k+2$	$2 k+2$
\vdots	\vdots	\vdots
k	$2 k$	$3 k$

A colouring algorithm for r-partite hypergraphs

Let G be r-partite r-uniform, average degree d

$$
V(G)=V_{1} \cup V_{2} \cup \cdots \cup V_{r}, \quad\left|V_{i}\right|=n
$$

Let $L: V(G) \rightarrow \mathcal{P}(\{$ colours $\})$, with list sizes ℓ
Algorithm:
Randomly number the colours 1 to m (the size of the palette)
Choose an "optimal" preference order on [m]
If $v \in V_{i}$ let $c(v)$ be colour in $L(v)$ most preferred by i th order
Add a degenerate twist for luck

A colouring algorithm for r-partite hypergraphs

Let G be r-partite r-uniform, average degree d

$$
V(G)=V_{1} \cup V_{2} \cup \cdots \cup V_{r}, \quad\left|V_{i}\right|=n
$$

Let $L: V(G) \rightarrow \mathcal{P}(\{$ colours $\})$, with list sizes ℓ
Algorithm:
Randomly number the colours 1 to m (the size of the palette)
Choose an "optimal" preference order on [m]
If $v \in V_{i}$ let $c(v)$ be colour in $L(v)$ most preferred by i th order
Add a degenerate twist for luck
$\operatorname{Pr}\left(v \in V_{i}\right.$ is green $)=x_{i}^{\ell}, \quad x_{i}=$ "height" of green in i th order so if $X=$ green vertices then $\mathbb{E}\left|X_{i}\right|=x_{i}^{\ell} n$

Preference orders - values

We can assign a value to a preference order, namely

$$
\max _{j \in[m]} \text { product of lowest } r-1 \text { heights of } j
$$

An "optimal" preference order above is one with minimal value

Preference orders - values

We can assign a value to a preference order, namely

$$
\max _{j \in[m]} \text { product of lowest } r-1 \text { heights of } j
$$

An "optimal" preference order above is one with minimal value
Define $f(r)$ to be the minimum value of all pref orders (as $m \rightarrow \infty$)
$f(2)=1 / 2 \quad f(3)=1 / 9 \quad f(4)=0.0262 \ldots \quad f(r)=$?

Preference orders - values

We can assign a value to a preference order, namely

$$
\max _{j \in[m]} \text { product of lowest } r-1 \text { heights of } j
$$

An "optimal" preference order above is one with minimal value
Define $f(r)$ to be the minimum value of all pref orders (as $m \rightarrow \infty$)
$f(2)=1 / 2 \quad f(3)=1 / 9 \quad f(4)=0.0262 \ldots \quad f(r)=$?

Why is this value relevant?

r-partite hypergraphs

Let G be r-partite r-uniform, average degree d

$$
V(G)=V_{1} \cup V_{2} \cup \cdots \cup V_{r}, \quad\left|V_{i}\right|=n
$$

Given $X \subset V(G)$ write $X_{i}=X \cap V_{i}$ and let $\left|X_{j}\right|=\max _{i}\left|X_{i}\right|$

r-partite hypergraphs

Let G be r-partite r-uniform, average degree d

$$
V(G)=V_{1} \cup V_{2} \cup \cdots \cup V_{r}, \quad\left|V_{i}\right|=n
$$

Given $X \subset V(G)$ write $X_{i}=X \cap V_{i}$ and let $\left|X_{j}\right|=\max _{i}\left|X_{i}\right|$
$\left(D_{r}\right)$ if $\prod_{i \neq j}\left|X_{i}\right| \leq n^{r-1} / d$ then $G[X]$ is $\frac{4 \log d}{\log \log d}$-degenerate (N_{r}) if $\prod_{i \neq j}\left|X_{i}\right| \geq n^{r-1} / d \times \log ^{2} d$ then X is not independent.

Almost all G satisfy both $\left(D_{r}\right)$ and $\left(N_{r}\right)$.

r-partite hypergraphs

Let G be r-partite r-uniform, average degree d

$$
V(G)=V_{1} \cup V_{2} \cup \cdots \cup V_{r}, \quad\left|V_{i}\right|=n
$$

Given $X \subset V(G)$ write $X_{i}=X \cap V_{i}$ and let $\left|X_{j}\right|=\max _{i}\left|X_{i}\right|$
$\left(D_{r}\right)$ if $\prod_{i \neq j}\left|X_{i}\right| \leq n^{r-1} / d$ then $G[X]$ is $\frac{4 \log d}{\log \log d}$-degenerate (N_{r}) if $\prod_{i \neq j}\left|X_{i}\right| \geq n^{r-1} / d \times \log ^{2} d$ then X is not independent.

Almost all G satisfy both $\left(D_{r}\right)$ and $\left(N_{r}\right)$.

Theorem (Méroueh+T)
If r-partite G satisfies $\left(D_{r}\right)$ and $\left(N_{r}\right)$ then

$$
\chi_{I}(G) \sim g(r) \log _{r} d
$$

where $g(r)=-1 / \log _{r} f(r)$

A lower bound for χ_{l} using preference orders

Let G be r-partite r-uniform, average degree d
Choose random lists $L: V(G) \rightarrow \mathcal{P}(\{$ colours $\})$ each of size ℓ
Suppose G has a colouring $c: V(G) \rightarrow$ \{colours $\}$
Define a preference order on \{colours\}, the r orders being the order of popularity of $c(v)$ in $V_{1}, V_{2}, \ldots, V_{r}$

This preference order has value at least $f(r) \ldots$
\ldots some colour (green, say) has positions x_{i} with $\prod_{i \neq i_{x}} x_{i} \geq f(r)$
... information about the size of the green independent set
If G has $\left(I_{r}\right)$ this gives a contradiction when $\ell<g(r) \log _{r} d$

How the numbers stack up

$($ Saxton $+\top 12,14) \forall$ simple d-regular $G, \chi_{I}(G) \gtrsim \frac{1}{(r-1)} \log _{r} d$
Méroueh $+\mathrm{T} \forall r$-partite $G,\left(D_{r}\right) \&\left(N_{r}\right) \Rightarrow \chi_{I}(G) \sim g(r) \log _{r} d$

How the numbers stack up

(Saxton+T 12,14$) \forall$ simple d-regular $G, \chi_{l}(G) \gtrsim \frac{1}{(r-1)} \log _{r} d$ Méroueh+T $\forall r$-partite $G,\left(D_{r}\right) \&\left(N_{r}\right) \Rightarrow \chi_{l}(G) \sim g(r) \log _{r} d$ $f(2)=1 / 2 \quad f(3)=1 / 9 \quad f(4)=0.0262 \ldots$

How the numbers stack up

(Saxton $+\mathrm{T} 12,14) \forall$ simple d-regular $G, \chi_{I}(G) \gtrsim \frac{1}{(r-1)} \log _{r} d$
Méroueh+T $\forall r$-partite $G,\left(D_{r}\right) \&\left(N_{r}\right) \Rightarrow \chi_{I}(G) \sim g(r) \log _{r} d$
$f(2)=1 / 2 \quad f(3)=1 / 9 \quad f(4)=0.0262 \ldots$
Recall $g(r)=-1 / \log _{r} f(r)$

How the numbers stack up

$($ Saxton $+\mathrm{T} 12,14) \forall$ simple d-regular $G, \chi_{I}(G) \gtrsim \frac{1}{(r-1)} \log _{r} d$
Méroueh+T $\forall r$-partite $G,\left(D_{r}\right) \&\left(N_{r}\right) \Rightarrow \chi_{l}(G) \sim g(r) \log _{r} d$
$f(2)=1 / 2 \quad f(3)=1 / 9 \quad f(4)=0.0262 \ldots$
Recall $g(r)=-1 / \log _{r} f(r)$
$g(2)=1 \quad g(3)=1 / 2 \quad g(4)=0.3807 \ldots$

How the numbers stack up

(Saxton $+\mathrm{T} 12,14) \forall$ simple d-regular $G, \chi_{I}(G) \gtrsim \frac{1}{(r-1)} \log _{r} d$
Méroueh+T $\forall r$-partite $G,\left(D_{r}\right) \&\left(N_{r}\right) \Rightarrow \chi_{l}(G) \sim g(r) \log _{r} d$
$f(2)=1 / 2 \quad f(3)=1 / 9 \quad f(4)=0.0262 \ldots$
Recall $g(r)=-1 / \log _{r} f(r)$
$g(2)=1 \quad g(3)=1 / 2 \quad g(4)=0.3807 \ldots$
This shows the container argument is tight for $r=2$ and $r=3$ but (probably) not for $r \geq 4$

So in fact how big is $f(r)$?

$$
\frac{1}{38.13}<f(4)<\frac{1}{38.12}
$$

all numbers appear once in top quarter and once in bottom quarter some twice here \longrightarrow and once here -

And $\left(\frac{r-1}{r e}\right)^{r-1} \leq f(r) \leq \frac{(r-1)!}{r^{r-1}}$ so $g(r) \sim \frac{\log r}{r}$ c.f. container $\frac{1}{r-1}$

Thanks for your attention...

