List colourings and preference orders

in honour of Haemers-Lazebnik-Woldar

Andrew Thomason (with Arès Méroueh)

8th August 2017

If $2 \mid n$ we can partition $[n] = \{1, 2, ..., n\}$ into pairs each having the same sum n + 1.

If $2 \mid n$ we can partition $[n] = \{1, 2, ..., n\}$ into pairs each having the same sum n + 1.

If $3 \mid n$ we can partition $[n] = \{1, 2, \dots, n\}$ into triples each having (roughly) the same sum s.

Note $(n/3)s \approx \sum_{i=1}^{n} i$ so $s \approx 3AM([n]) \approx 3n/2$.

If $2 \mid n$ we can partition $[n] = \{1, 2, ..., n\}$ into pairs each having the same sum n + 1.

If $3 \mid n$ we can partition $[n] = \{1, 2, \dots, n\}$ into triples each having (roughly) the same sum s.

Note $(n/3)s \approx \sum_{i=1}^{n} i$ so $s \approx 3AM([n]) \approx 3n/2$.

Eg n = 6k, triples $\{1 + 3j, 3k + 2 + 3j, 6k - 6j\}$ and $\{2 + 3j, 3k + 1 + 3j, 6k - 6j - 3\}$, $0 \le j < k$, each have sum 3n/2 + 3 or 3n/2.

If $2 \mid n$ we can partition $[n] = \{1, 2, ..., n\}$ into pairs each having the same sum n + 1.

If $3 \mid n$ we can partition $[n] = \{1, 2, \dots, n\}$ into triples each having (roughly) the same sum s.

Note
$$(n/3)s \approx \sum_{i=1}^{n} i$$
 so $s \approx 3AM([n]) \approx 3n/2$.

Eg
$$n = 6k$$
, triples $\{1+3j, 3k+2+3j, 6k-6j\}$ and $\{2+3j, 3k+1+3j, 6k-6j-3\}$, $0 \le j < k$, each have sum $3n/2+3$ or $3n/2$.

Can we partition into triples of (roughly) the same product p?

If so,
$$p^{n/3} \approx \prod_{i=1}^n i$$
 so $p \approx (GM([n]))^3 \approx (n/e)^3$.

Hence NO WE CAN'T, because triple with 1 in it has product $\leq 1 \cdot (n-1) \cdot n < n^2$.

If m is large enough that $mn^2 > (GM(\{m, m+1, ..., n\}))^3$, can we partition $\{m, m+1, ..., n\}$ into triples with similar products?

Conjecture

Let
$$\gamma = 0.116586...$$
 be the root of $(1/\gamma)^{(1+2\gamma)/3} = e^{1-\gamma}$.

Then the set $\{\lfloor \gamma n \rfloor, \lfloor \gamma n \rfloor + 1, \ldots, n\}$ can be split into triples whose products differ by $o(n^3)$.

Vertex colouring

Let G be a graph or r-uniform hypergraph (edges are r-sets).

A vertex colouring of G is a map

$$c:V(G) \rightarrow \{ colours \}$$
 such that no edge is monochromatic

An edge is monochromatic if every vertex in it has the same colour. Here $\{colours\}$ is the palette of available colours.

The *chromatic number* of *G* is

$$\chi(G) = \min\{k : \text{ there is a colouring } c : V(G) \rightarrow \{1, \dots, k\}\}$$

List colouring

Suppose now we assign a *list* of colours to each vertex, ie

$$L: V(G) \rightarrow \mathcal{P}(\{\text{colours}\})$$

We say G is L-choosable if there is a vertex colouring

$$c: V(G) \to \{ \text{colours} \}$$
 with $c(v) \in L(v)$ for all v

List colouring

Suppose now we assign a list of colours to each vertex, ie

$$L: V(G) \rightarrow \mathcal{P}(\{colours\})$$

We say G is L-choosable if there is a vertex colouring

$$c: V(G) \to \{\text{colours}\}$$
 with $c(v) \in L(v)$ for all v

The *list chromatic number* of *G* is

$$\chi_I(G) = \min\{k : G \text{ is } L\text{-chooseable whenever } \forall v | L(v)| \ge k\}$$

List colouring

Suppose now we assign a *list* of colours to each vertex, ie

$$L: V(G) \rightarrow \mathcal{P}(\{\text{colours}\})$$

We say G is L-choosable if there is a vertex colouring

$$c: V(G) \to \{ \text{colours} \}$$
 with $c(v) \in L(v)$ for all v

The *list chromatic number* of *G* is

$$\chi_I(G) = \min\{k : G \text{ is } L\text{-chooseable whenever } \forall v | L(v)| \ge k\}$$

Clearly
$$\chi_I(G) \ge \chi(G)$$
 (make $L(v)$ same $\forall v$)

Introduced by Vizing (1976) and by Erdős, Rubin, Taylor (1979)

χ_I can be bigger than χ

 $\{1,2\} \qquad \{1,3\} \qquad \{2,3\}$ $K_{3,3} \text{ not 2-choosable: } \chi=2, \ \chi_I \geq 3 \qquad \qquad \{1,2\} \qquad \{1,3\} \qquad \{2,3\}$

χ_I can be bigger than χ

$$K_{3,3}$$
 not 2-choosable: $\chi=2$, $\chi_I\geq 3$

More generally, $K_{m,m}$ is not k-choosable if $m \ge \binom{2k-1}{k}$ $\{1,\dots,k\}$ $\{\dots\}$ $\{\dots\}$ $\{\dots\}$ $\{k,\dots,2k-1\}$

Graphs

Theorem (Erdős+Rubin+Taylor 79)
$$\chi_I(K_{d,d}) = (1 + o(1)) \log_2 d$$

Graphs

Theorem (Erdős+Rubin+Taylor 79)
$$\chi_I(K_{d,d}) = (1 + o(1)) \log_2 d$$

whp
$$\chi_I(G(n, n, p)) = (1 + o(1)) \log_2 d$$

where G(n, n, p) is random bipartite, d = np, $d \rightarrow \infty$

Graphs

$$\chi_I(K_{d,d}) = (1+o(1))\log_2 d$$

Theorem (Alon+Krivelevich 98)

whp
$$\chi_I(G(n, n, p)) = (1 + o(1)) \log_2 d$$

where G(n, n, p) is random bipartite, d = np, $d \rightarrow \infty$

Theorem (Alon 00)

For all graphs G of average degree d, $\chi_I(G) \geq (\frac{1}{2} + o(1)) \log_2 d$

Sapozhenko says it's easy

Theorem (Alon 00)

For all graphs G of average degree d, $\chi_I(G) \geq (\frac{1}{2} + o(1)) \log_2 d$

To prove Alon's theorem, we need lists L of size about $(1/2) \log_2 d$ so G is not L-chooseable. Best choice of L seems to be random.

But how do we show G is not L-chooseable?

Sapozhenko says it's easy

Theorem (Alon 00)

For all graphs G of average degree d, $\chi_I(G) \geq (\frac{1}{2} + o(1)) \log_2 d$

To prove Alon's theorem, we need lists L of size about $(1/2) \log_2 d$ so G is not L-chooseable. Best choice of L seems to be random.

But how do we show G is not L-chooseable?

Theorem (Sapozhenko '90s)

Let G be a d-regular graph with n vertices. Then there is a collection C of vertex subsets, called containers, such that

- for every independent I there is a $C \in C$ with $I \subset C$
- $|C| \leq (1/2 + \epsilon)n$ for all $C \in C$
- $|\mathcal{C}| \leq 2^{cn/d}$ where $c = c(\epsilon)$

Simple hypergraphs

Simple or *linear* hypergraph: $|e \cap f| \le 1$ for all distinct edges e, f

A Steiner triple system is a simple regular 3-uniform hypergraph

A Latin square graph is a simple d-regular subgraph of $K_{d,d,d}^{(3)}$

Simple hypergraphs

Simple or *linear* hypergraph: $|e \cap f| \le 1$ for all distinct edges e, f

A Steiner triple system is a simple regular 3-uniform hypergraph

A Latin square graph is a simple d-regular subgraph of $K_{d,d,d}^{(3)}$

Lower bounds on χ_I in certain cases (Haxell+Pei '09 STS's, Haxell+Verstraëte '10, Alon+Kostochka '11)

Simple hypergraphs

Simple or *linear* hypergraph: $|e \cap f| \le 1$ for all distinct edges e, f

A *Steiner triple system* is a simple regular 3-uniform hypergraph

A Latin square graph is a simple d-regular subgraph of $K_{d,d,d}^{(3)}$

Lower bounds on χ_l in certain cases (Haxell+Pei '09 STS's, Haxell+Verstraëte '10, Alon+Kostochka '11)

 $\label{thm:commutation} Theorem \ (Saxton+T \ 12,14 \ \{c.f. \ Balogh+Morris+Samotij\})$

Let G be a simple d-regular r-uniform hypergraph with n vertices. Then there is a collection $\mathcal C$ of vertex subsets called containers, such that

- for every independent I there is a $C \in C$ with $I \subset C$
- for every $C \in \mathcal{C}$, $|C| \le (1-c)|V|$ where $c = 1/4r^2$
- $|\mathcal{C}| \leq 2^{\tau n}$ where $\tau = d^{-1/(2r-1)}$

Theorem (Saxton+T 12,14)

Let G be simple (ie linear) r-uniform d-regular. Then

$$\chi_I(G) \ge \left(\frac{1}{r-1} + o(1)\right) \log_r d$$

(bounds too for non-regular, non-simple)

How good is this bound? Are there tight examples?

Theorem (Saxton+T 12,14)

Let G be simple (ie linear) r-uniform d-regular. Then

$$\chi_I(G) \ge \left(\frac{1}{r-1} + o(1)\right) \log_r d$$

(bounds too for non-regular, non-simple)

How good is this bound? Are there tight examples?

For r=2 (graphs) then $\chi_I(G) \geq (1+o(1))\log_2 d$ which is tight

Theorem (Saxton+T 12,14)

Let G be simple (ie linear) r-uniform d-regular. Then

$$\chi_I(G) \ge \left(\frac{1}{r-1} + o(1)\right) \log_r d$$

(bounds too for non-regular, non-simple)

How good is this bound? Are there tight examples?

For
$$r=2$$
 (graphs) then $\chi_I(G)\geq (1+o(1))\log_2 d$ which is tight

For
$$r = 3$$
 then $\chi_I(G) \ge (1/2 + o(1)) \log_3 d$

for latin square
$$\chi_I(G) \leq \chi_I(K_{d,d,d}^{(3)}) \leq (1+o(1))\log_3 d$$

Theorem (Saxton+T 12,14)

Let G be simple (ie linear) r-uniform d-regular. Then

$$\chi_I(G) \ge \left(\frac{1}{r-1} + o(1)\right) \log_r d$$

(bounds too for non-regular, non-simple)

How good is this bound? Are there tight examples?

For
$$r=2$$
 (graphs) then $\chi_I(G)\geq (1+o(1))\log_2 d$ which is tight

For
$$r = 3$$
 then $\chi_I(G) \ge (1/2 + o(1)) \log_3 d$

for latin square
$$\chi_I(G) \leq \chi_I(K_{d,d,d}^{(3)}) \leq (1+o(1))\log_3 d$$

So let's try to colour simple regular 3-partite 3-uniform hypergraphs

Preference orders

A preference order on [m] is a collection of r total orders on [m]

Preference orders

A preference order on [m] is a collection of r total orders on [m]

Example: r = 2 m = 2k

$$2k$$
 1 2 2 \vdots \vdots $k+1$ $k-1$ k $k-1$ \vdots \vdots \vdots 2 $2k-1$ 1 $2k$

Preference orders

A preference order on [m] is a collection of r total orders on [m]

Example: r = 3 m = 3k

3 <i>k</i>	k	2 <i>k</i>
3k - 1	k-1	2k - 1
:	:	:
2k + 1	1	k+1
2 <i>k</i>	3 <i>k</i>	k
2k - 1	3k - 1	k-1
:	:	:
k+1	2k + 1	1
1	k+1	2k + 1
2	k+2	2k + 2
:	:	:
k	2 <i>k</i>	3 <i>k</i>

A colouring algorithm for r-partite hypergraphs

Let
$$G$$
 be r -partite r -uniform, average degree d $V(G) = V_1 \cup V_2 \cup \cdots \cup V_r$, $|V_i| = n$
Let $L: V(G) \to \mathcal{P}(\{\text{colours}\})$, with list sizes ℓ

ALGORITHM:

Randomly number the colours 1 to m (the size of the palette) Choose an "optimal" preference order on [m]If $v \in V_i$ let c(v) be colour in L(v) most preferred by ith order Add a degenerate twist for luck

A colouring algorithm for r-partite hypergraphs

Let G be r-partite r-uniform, average degree d $V(G) = V_1 \cup V_2 \cup \cdots \cup V_r, \quad |V_i| = n$

Let $L: V(G) \to \mathcal{P}(\{\text{colours}\})$, with list sizes ℓ

ALGORITHM:

Randomly number the colours 1 to m (the size of the palette) Choose an "optimal" preference order on [m]If $v \in V_i$ let c(v) be colour in L(v) most preferred by ith order Add a degenerate twist for luck

 $\Pr(v \in V_i \text{ is green }) = x_i^{\ell}, \quad x_i = \text{``height''} \text{ of green in } i \text{th order}$ so if $X = \text{green vertices then } \mathbb{E}|X_i| = x_i^{\ell} n$

Preference orders - values

We can assign a *value* to a preference order, namely

$$\max_{j \in [m]} \quad \text{product of lowest } r-1 \text{ heights of } j$$

An "optimal" preference order above is one with minimal value

Preference orders - values

We can assign a value to a preference order, namely

$$\max_{j \in [m]} \quad \text{product of lowest } r-1 \text{ heights of } j$$

An "optimal" preference order above is one with minimal value

Define f(r) to be the minimum value of all pref orders (as $m \to \infty$)

$$f(2) = 1/2$$
 $f(3) = 1/9$ $f(4) = 0.0262...$ $f(r) = ?$

Preference orders - values

We can assign a value to a preference order, namely

$$\max_{j \in [m]} \quad \text{product of lowest } r-1 \text{ heights of } j$$

An "optimal" preference order above is one with minimal value

Define f(r) to be the minimum value of all pref orders (as $m \to \infty$)

$$f(2) = 1/2$$
 $f(3) = 1/9$ $f(4) = 0.0262...$ $f(r) = ?$

Why is this value relevant?

r-partite hypergraphs

Let G be r-partite r-uniform, average degree d $V(G) = V_1 \cup V_2 \cup \cdots \cup V_r, \quad |V_i| = n$ Given $X \subset V(G)$ write $X_i = X \cap V_i$ and let $|X_i| = \max_i |X_i|$

r-partite hypergraphs

Let G be r-partite r-uniform, average degree d $V(G) = V_1 \cup V_2 \cup \cdots \cup V_r, \quad |V_i| = n$ Given $X \subset V(G)$ write $X_i = X \cap V_i$ and let $|X_j| = \max_i |X_i|$

$$(D_r)$$
 if $\prod_{i \neq j} |X_i| \leq n^{r-1}/d$ then $G[X]$ is $\frac{4 \log d}{\log \log d}$ -degenerate (N_r) if $\prod_{i \neq j} |X_i| \geq n^{r-1}/d \times \log^2 d$ then X is not independent.

Almost all G satisfy both (D_r) and (N_r) .

r-partite hypergraphs

Let
$$G$$
 be r -partite r -uniform, average degree d $V(G) = V_1 \cup V_2 \cup \cdots \cup V_r, \quad |V_i| = n$ Given $X \subset V(G)$ write $X_i = X \cap V_i$ and let $|X_j| = \max_i |X_i|$

$$(D_r)$$
 if $\prod_{i \neq j} |X_i| \leq n^{r-1}/d$ then $G[X]$ is $\frac{4 \log d}{\log \log d}$ -degenerate (N_r) if $\prod_{i \neq j} |X_i| \geq n^{r-1}/d \times \log^2 d$ then X is not independent.

Almost all G satisfy both (D_r) and (N_r) .

Theorem (Méroueh+T)

If r-partite G satisfies (D_r) and (N_r) then

$$\chi_I(G) \sim g(r) \log_r d$$

where
$$g(r) = -1/\log_r f(r)$$

A *lower* bound for χ_I using preference orders

Let G be r-partite r-uniform, average degree d

Choose random lists $L:V(G) \to \mathcal{P}(\{\text{colours}\})$ each of size ℓ

Suppose G has a colouring $c: V(G) \rightarrow \{\text{colours}\}\$

Define a preference order on {colours}, the r orders being the order of popularity of c(v) in V_1, V_2, \ldots, V_r

This preference order has value at least f(r) . . .

... some colour (green, say) has positions x_i with $\prod_{i \neq i_x} x_i \geq f(r)$

...information about the size of the green independent set

If G has (I_r) this gives a contradiction when $\ell < g(r) \log_r d$

(Saxton+T 12,14) \forall simple d-regular G, $\chi_I(G) \gtrsim \frac{1}{(r-1)} \log_r d$

Méroueh+T \forall r-partite G, (D_r) & $(N_r) \Rightarrow \chi_I(G) \sim g(r) \log_r d$

(Saxton+T 12,14)
$$\forall$$
 simple d -regular G , $\chi_I(G) \gtrsim \frac{1}{(r-1)} \log_r d$
Méroueh+T \forall r -partite G , (D_r) & $(N_r) \Rightarrow \chi_I(G) \sim g(r) \log_r d$
 $f(2) = 1/2$ $f(3) = 1/9$ $f(4) = 0.0262...$

(Saxton+T 12,14)
$$\forall$$
 simple d -regular G , $\chi_I(G) \gtrsim \frac{1}{(r-1)} \log_r d$
Méroueh+T \forall r -partite G , (D_r) & $(N_r) \Rightarrow \chi_I(G) \sim g(r) \log_r d$
 $f(2) = 1/2$ $f(3) = 1/9$ $f(4) = 0.0262...$
Recall $g(r) = -1/\log_r f(r)$

(Saxton+T 12,14)
$$\forall$$
 simple d -regular G , $\chi_I(G) \gtrsim \frac{1}{(r-1)} \log_r d$

Méroueh+T \forall r -partite G , $(D_r) \& (N_r) \Rightarrow \chi_I(G) \sim g(r) \log_r d$
 $f(2) = 1/2$ $f(3) = 1/9$ $f(4) = 0.0262...$

Recall $g(r) = -1/\log_r f(r)$
 $g(2) = 1$ $g(3) = 1/2$ $g(4) = 0.3807...$

(Saxton+T 12,14)
$$\forall$$
 simple d -regular G , $\chi_I(G) \gtrsim \frac{1}{(r-1)} \log_r d$

Méroueh+T \forall r -partite G , $(D_r) \& (N_r) \Rightarrow \chi_I(G) \sim g(r) \log_r d$
 $f(2) = 1/2$ $f(3) = 1/9$ $f(4) = 0.0262...$

$$g(2) = 1$$
 $g(3) = 1/2$ $g(4) = 0.3807...$

Recall $g(r) = -1/\log_r f(r)$

This shows the container argument is tight for r=2 and r=3 but (probably) not for $r\geq 4$

So in fact how big is f(r)?

$$\frac{1}{38.13} < f(4) < \frac{1}{38.12}$$
all numbers appear once in top quarter and once in bottom quarter some twice here and once here
$$\frac{1}{38.13} < f(4) < \frac{1}{38.12}$$

$$\frac{1}{38.12}$$

$$\frac{1}{38.12}$$

$$\frac{1}{38.12}$$

$$\frac{1}{38.12}$$

$$\frac{1}{38.12}$$

And
$$\left(\frac{r-1}{re}\right)^{r-1} \le f(r) \le \frac{(r-1)!}{r^{r-1}}$$
 so $g(r) \sim \frac{\log r}{r}$ c.f. container $\frac{1}{r-1}$

Thanks for your attention . . .