An asymptotic multipartite Kühn-Osthus theorem

Ryan R. Martin¹ Richard Mycroft² Jozef Skokan³

¹Iowa State University ²University of Birmingham ³London School of Economics

08 August 2017

Algebraic and Extremal Graph Theory University of Delaware, Newark, DE

Martin's research partially supported by:

NSF grant DMS-0901008, NSA grant H982320-13-1-0226, Simons Foundation grant #353292

and an Iowa State University Faculty Development Grant.

This talk is based on joint work with:

Richard Mycroft University of Birmingham

Jozef Skokan London School of Economics

(Complementary form) If G is a simple graph on n vertices with minimum degree

$$\delta(G) \ge \left(1 - \frac{1}{k}\right)n$$

then G contains a subgraph which consists of $\lfloor n/k \rfloor$ vertex-disjoint copies of K_k .

(Complementary form) If G is a simple graph on n vertices with minimum degree

$$\delta(G) \ge \left(1 - \frac{1}{k}\right)n$$

then G contains a subgraph which consists of $\lfloor n/k \rfloor$ vertex-disjoint copies of K_k .

This is a K_k -tiling

(Complementary form) If G is a simple graph on n vertices with minimum degree

$$\delta(G) \ge \left(1 - \frac{1}{k}\right)n$$

then G contains a subgraph which consists of $\lfloor n/k \rfloor$ vertex-disjoint copies of K_k .

This is a K_k -tiling or a K_k -factor or even a K_k -packing.

(Complementary form) If G is a simple graph on n vertices with minimum degree

$$\delta(G) \ge \left(1 - \frac{1}{k}\right)n$$

then G contains a subgraph which consists of $\lfloor n/k \rfloor$ vertex-disjoint copies of K_k .

This is a K_k -tiling or a K_k -factor or even a K_k -packing. We will use "tiling" most often.

(Complementary form) If G is a simple graph on n vertices with minimum degree

$$\delta(G) \ge \left(1 - \frac{1}{k}\right)n$$

then G contains a subgraph which consists of $\lfloor n/k \rfloor$ vertex-disjoint copies of K_k .

This is a K_k -tiling or a K_k -factor or even a K_k -packing. We will use "tiling" most often.

Notes

• k = 2 follows from Dirac

(Complementary form) If G is a simple graph on n vertices with minimum degree

$$\delta(G) \ge \left(1 - \frac{1}{k}\right)n$$

then G contains a subgraph which consists of $\lfloor n/k \rfloor$ vertex-disjoint copies of K_k .

This is a K_k -tiling or a K_k -factor or even a K_k -packing. We will use "tiling" most often.

Notes

- k = 2 follows from Dirac
- k = 3 proven by Corrádi & Hajnal 1963

Theorem (Alon-Yuster, 1992)

For any $\alpha > 0$ and graph H, there exists an $n_0 = n_0(\alpha, H)$ such that in any graph G on $n \ge n_0$ vertices with

$$\delta(G) \ge \left(1 - \frac{1}{\chi(H)}\right)n + \alpha n$$

there is an H-tiling of G if |V(H)| divides n.

Theorem (Alon-Yuster, 1992)

For any $\alpha > 0$ and graph H, there exists an $n_0 = n_0(\alpha, H)$ such that in any graph G on $n \ge n_0$ vertices with

$$\delta(G) \ge \left(1 - \frac{1}{\chi(H)}\right)n + \alpha n$$

there is an H-tiling of G if |V(H)| divides n.

Komlós, Sárközy and Szemerédi, 2001, showed that αn can be replaced by C = C(H), but not eliminated entirely.

Theorem (Alon-Yuster, 1992)

For any $\alpha > 0$ and graph H, there exists an $n_0 = n_0(\alpha, H)$ such that in any graph G on $n \ge n_0$ vertices with

$$\delta(G) \ge \left(1 - \frac{1}{\chi(H)}\right)n + \alpha n$$

there is an H-tiling of G if |V(H)| divides n.

Theorem (Kühn-Osthus, 2009)

For any graph H, there exists an $n_0 = n_0(H)$ and a constant C = C(H) such that in any graph G on $n \ge n_0$ vertices with

$$\delta(G) \geq \left(1 - \frac{1}{\chi^*(H)}\right)n + C$$

there is an H-tiling of G if |V(H)| divides n.

Martin (Iowa State University University of An asymptotic multipartite Kühn-Osthus thec

Theorem (Kühn-Osthus, 2009)

For any graph H, there exists an $n_0 = n_0(H)$ and a constant C = C(H) such that in any graph G on $n \ge n_0$ vertices with

$$\delta(G) \ge \left(1 - \frac{1}{\chi^*(H)}\right)n + C$$

there is an H-tiling of G if |V(H)| divides n.

This result is best possible, up to the constant C.

But what is $\chi^*(H)$?

Definition

Let H be a graph with

- order: h = |V(H)|
- chromatic number: $\chi = \chi(H)$

Definition

Let H be a graph with

- order: h = |V(H)|
- chromatic number: $\chi = \chi(H)$
- $\sigma = \sigma(H)$ is the order of the smallest color class of H among all proper χ -colorings of V(H).

Definition

Let H be a graph with

- order: h = |V(H)|
- chromatic number: $\chi = \chi(H)$
- σ = σ(H) is the order of the smallest color class of H among all proper χ-colorings of V(H).

The critical chromatic number of *H*, is $\chi_{cr} = \chi_{cr}(H) = \frac{(\chi - 1)h}{h - \sigma}$

Definition

Let H be a graph with

- order: h = |V(H)|
- chromatic number: $\chi = \chi(H)$
- σ = σ(H) is the order of the smallest color class of H among all proper χ-colorings of V(H).

The critical chromatic number of H, is
$$\chi_{
m cr} = \chi_{
m cr}(H) = rac{(\chi-1)h}{h-\sigma}$$

Fact

For any graph H:

$$\chi(H) - 1 < \chi_{\rm cr}(H) \le \chi(H)$$

Definition

Let H be a graph with

- order: h = |V(H)|
- chromatic number: $\chi = \chi(H)$
- σ = σ(H) is the order of the smallest color class of H among all proper χ-colorings of V(H).

The critical chromatic number of *H*, is $\chi_{cr} = \chi_{cr}(H) = \frac{(\chi - 1)h}{h - \sigma}$

Fact

For any graph *H*:

$$\chi(H) - 1 < \chi_{\rm cr}(H) \le \chi(H)$$

Also, $\chi_{cr}(H) = \chi(H)$ iff every proper χ -coloring of H is a equipartition.

 $\chi_{\rm cr}(H)$ was defined by Komlós, 2000.

Definition

Let H be a graph with

- order: h = |V(H)|
- chromatic number: $\chi = \chi(H)$
- σ = σ(H) is the order of the smallest color class of H among all proper χ-colorings of V(H).

The critical chromatic number of *H*, is $\chi_{cr} = \chi_{cr}(H) = \frac{(\chi - 1)h}{h - \sigma}$

$$\chi^*(H) = \begin{cases} \chi_{cr}(H), & \text{if } \gcd(H) = 1; \\ \chi(H), & \text{else.} \end{cases}$$

where gcd(H) is basically the gcd of the differences of the color classes in proper colorings of H.

Definition

The family of k-partite graphs with n vertices in each part is denoted $\mathcal{G}_k(n)$.

Definition

The natural bipartite subgraphs of G are the ones induced by the pairs of classes of the k-partition.

Definition

If $G \in \mathcal{G}_k(n)$, let $\hat{\delta}_k(G)$ denote the minimum degree among all of the natural bipartite subgraphs of G.

The asymptotic Hajnal-Szemerédi theorem was solved with two different methods:

Theorem (Keevash-Mycroft, 2013; Lo-Markström, 2013)

Let $k \ge 2$ and $\epsilon > 0$. There exists an $n_0 = n_0(k, \epsilon)$ such that if $n \ge n_0$, $G \in \mathcal{G}_k(n)$ and if

$$\hat{\delta}_k(G) \ge \left(1 - \frac{1}{k}\right)n + \epsilon n,$$

then G has a K_k -tiling.

Hypergraph blow-up; Absorbing method

The asymptotic Hajnal-Szemerédi theorem was solved with two different methods:

Theorem (Keevash-Mycroft, 2013; Lo-Markström, 2013)

Let $k \ge 2$ and $\epsilon > 0$. There exists an $n_0 = n_0(k, \epsilon)$ such that if $n \ge n_0$, $G \in \mathcal{G}_k(n)$ and if

$$\hat{\delta}_k(G) \ge \left(1 - \frac{1}{k}\right)n + \epsilon n,$$

then G has a K_k -tiling.

Hypergraph blow-up; Absorbing method

The asymptotic Hajnal-Szemerédi theorem was solved with two different methods:

Theorem (Keevash-Mycroft, 2013; Lo-Markström, 2013)

Let $k \ge 2$ and $\epsilon > 0$. There exists an $n_0 = n_0(k, \epsilon)$ such that if $n \ge n_0$, $G \in \mathcal{G}_k(n)$ and if

$$\hat{\delta}_k(G) \ge \left(1 - \frac{1}{k}\right)n + \epsilon n,$$

then G has a K_k -tiling.

Hypergraph blow-up; Absorbing method

In a longer manuscript, Keevash and Mycroft settle the multipartite Hajnal-Szemerédi case for large *n*:

Theorem (Keevash-Mycroft, 2013, Mem. Amer. Math. Soc.)

Let $k \ge 2$ and $\epsilon > 0$. There exists an $n_0 = n_0(k, \epsilon)$ such that if $n \ge n_0$, $G \in \mathcal{G}_k(n)$ and if

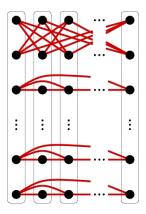
$$\hat{\delta}_k(G) \ge \left(1-\frac{1}{k}\right)n,$$

then G has a K_k-tiling or both k and n/k are odd integers and $G \approx \Gamma_k(n/k)$.

The case of k = 3 was solved by Magyar-M. (2002). The case of k = 4 was solved by M.-Szemerédi (2008).

The graph $\Gamma_k(n/k)$ is one of Catlin's "Type 2" graphs.

Catlin's Type 2 Graphs



Catlin's Type 2 graph.

The red indicates non-edges between graph classes.

Theorem (Zhao, 2009)

Let h be a positive integer. There exists an $n_0 = n_0(h)$ such that if $n \ge n_0$, $h \mid n$, and $G \in \mathcal{G}_2(n)$ with

$$\delta(G) = \hat{\delta}_2(G) \ge \begin{cases} \frac{1}{2}n + h - 1, & \text{if } n/h \text{ is odd;} \\ \frac{1}{2}n + \frac{3h}{2} - 2, & \text{if } n/h \text{ is even,} \end{cases}$$

then G has a perfect $K_{h,h}$ -tiling.

Moreover, there are examples that prove that this $\hat{\delta}_2$ condition cannot be improved.

Theorem (Bush-Zhao, 2012)

Let H be a bipartite graph. There exists an $n_0 = n_0(H)$ and c = c(H) such that if $n \ge n_0$, $|V(H)| \mid n$, and $G \in \mathcal{G}_2(n)$ with

$$\delta(G) \geq \begin{cases} \left(1 - \frac{1}{\chi^*(H)}\right)n + c, & \text{if } \gcd(H) = 1 \text{ or } \gcd_{cc}(H) > 1; \\ \left(1 - \frac{1}{\chi(H)}\right)n + c, & \text{if } \gcd(H) > 1 \text{ and } \gcd_{cc}(H) = 1, \end{cases}$$

then G has a perfect H-tiling.

The quantity $gcd_{cc}(H)$ counts the gcd of the sizes of the connected components of H.

Theorem (M.-Skokan, 2013+)

Let $k \ge 2$, H be a graph with $\chi(H) = k$ and $\epsilon > 0$. There exists an $n_0 = n_0(H, \epsilon)$ such that if $n \ge n_0$, $G \in \mathcal{G}_k(n)$ and if

$$\hat{\delta}_k(G) \ge \left(1 - \frac{1}{\chi(H)}\right)n + \epsilon n,$$

then G has an H-tiling.

Theorem (M.-Skokan, 2013+)

Let $k \ge 2$, H be a graph with $\chi(H) = k$ and $\epsilon > 0$. There exists an $n_0 = n_0(H, \epsilon)$ such that if $n \ge n_0$, $G \in \mathcal{G}_k(n)$ and if

$$\hat{\delta}_k(G) \ge \left(1 - \frac{1}{\chi(H)}\right)n + \epsilon n,$$

then G has an H-tiling.

This, of course, contains the asymptotic Hajnal-Szemerédi case.

Theorem (M.-Mycroft-Skokan, 2015+)

Let $k \ge 2$, H be a graph with $\chi(H) = k$, $\chi^* = \chi^*(H)$ and $\epsilon > 0$. There exists an $n_0 = n_0(H, \epsilon)$ such that if $n \ge n_0$, $G \in \mathcal{G}_k(n)$ and if

$$\hat{\delta}_k(G) \geq \left(1 - \frac{1}{\chi^*(H)}\right)n + \epsilon n,$$

then G has an H-tiling.

The main tool is linear programming.

Definition

For any graph G, let $\mathcal{T}_k(G)$ denote the set of k-cliques of G. The FRACTIONAL K_k -TILING NUMBER, $\tau_k^*(G)$ is:

$$\tau_k^*(G) = \begin{cases} \max & \sum_{T \in \mathcal{T}_k(G)} w(T) \\ s.t. & \sum_{T \in \mathcal{T}_k(G), T \ni v} w(T) \leq 1, \quad \forall v \in V(G), \\ & w(T) \geq 0, \qquad \forall T \in \mathcal{T}_k(G). \end{cases}$$

Definition

For any graph G, let $\mathcal{T}_k(G)$ denote the set of k-cliques of G. The FRACTIONAL K_k -TILLING NUMBER, $\tau_k^*(G)$ is:

$$\tau_k^*(G) = \begin{cases} \max & \sum_{T \in \mathcal{T}_k(G)} w(T) \\ s.t. & \sum_{T \in \mathcal{T}_k(G), T \ni v} w(T) \leq 1, \quad \forall v \in V(G), \\ & w(T) \geq 0, \qquad \forall T \in \mathcal{T}_k(G). \end{cases}$$

Theorem

Let
$$k\geq 2$$
. If ${\sf G}\in {\cal G}_k(n)$ and $\hat{\delta}_k({\sf G})\geq (k-1)n/k$, then $au_k^*({\sf G})=n$.

Definition

Theorem

Let
$$k \geq 2$$
. If $G \in \mathcal{G}_k(n)$ and $\hat{\delta}_k(G) \geq (k-1)n/k$, then $au_k^*(G) = n$.

The proof is by induction on k and uses both the Duality Theorem and Complementary Slackness Theorem of LPs.

Theorem

Let
$$k \geq 2$$
. If $G \in \mathcal{G}_k(n)$ and $\hat{\delta}_k(G) \geq (k-1)n/k$, then $\tau_k^*(G) = n$.

The proof is by induction on k and uses both the Duality Theorem and Complementary Slackness Theorem of LPs.

Duality Theorem:

$$\tau_k^*(G) = \begin{cases} \max \sum_{\substack{T \ni v \\ w(T) \ge 0, \\ w(T) \ge 0, \\ \end{array}} \psi(T) = \begin{cases} \min \sum_{\substack{T \in V \\ v \in T \\ \end{array}} \chi(v) \ge 1, \quad \forall T, \\ \sum_{\substack{v \in T \\ v \in T \\ \end{array}} \chi(v) \ge 1, \quad \forall T, \\ x(v) \ge 0, \quad \forall v. \end{cases}$$

Theorem

Let
$$k \geq 2$$
. If $G \in \mathcal{G}_k(n)$ and $\hat{\delta}_k(G) \geq (k-1)n/k$, then $au_k^*(G) = n$.

The proof is by induction on k and uses both the Duality Theorem and Complementary Slackness Theorem of LPs.

Duality Theorem:

$$\tau_k^*(G) = \begin{cases} \max \sum_{\substack{T \ni v \\ w(T) \ge 0, \\ w(T) \ge 0, \\ \end{array}} \psi(T) = \begin{cases} \min \sum_{\substack{T \in V \\ v \in T \\ \end{array}} x(v) \ge 1, \quad \forall T, \\ x(v) \ge 1, \quad \forall T, \\ x(v) \ge 0, \\ \end{cases}$$

UB: $\tau_k^*(G) \leq n$. Setting $x(v) \equiv 1/k$ gives a feasible solution to the minLP, so $\tau_k^*(G) \leq (kn) \cdot (1/k) = n$.

Theorem

Let
$$k \geq 2$$
. If $G \in \mathcal{G}_k(n)$ and $\hat{\delta}_k(G) \geq (k-1)n/k$, then $\tau_k^*(G) = n$.

$$\tau_k^*(G) = \begin{cases} \max \sum_{\substack{T \ni v \\ w(T) \ge 0, \\ w(T) \ge 0, \\ \end{array}} \psi(T) \leq 1, \quad \forall v, = \begin{cases} \min \sum_{\substack{T \ge v \\ v \in T \\ x(v) \ge 1, \\ w(v) \ge 0, \\ \end{array}} \begin{cases} \min \sum_{\substack{T \ge v \\ v \in T \\ x(v) \ge 0, \\ \end{array}} \chi(v) \geq 1, \quad \forall T, \\ u(v) \ge 0, \\ \end{array}$$

UB: $\tau_k^*(G) \leq n$. Setting $x(v) \equiv 1/k$ gives a feasible solution to the minLP, so $\tau_k^*(G) \leq (kn) \cdot (1/k) = n$.

LB: $\tau_k^*(G) \ge n$. Base Case: k = 2.

$$\tau_k^*(G) = \begin{cases} \max \sum_{\substack{T \ni v \\ w(T) \ge 0, \\ w(T) \ge 0, \\ \end{array}} \frac{\psi(T)}{\psi(T)} \leq 1, \quad \forall v, \\ \sup_{\substack{r \in T \\ v \in T \\ \end{array}} = \begin{cases} \min \sum_{\substack{T \in v \\ v \in T \\ v \in T \\ \end{array}} x(v) \geq 1, \quad \forall T, \\ w(v) \ge 0, \\ w(v) \ge 0, \\ \end{array}$$

UB:
$$\tau_k^*(G) \leq n$$
.
Setting $x(v) \equiv 1/k$ gives a feasible solution to the minLP, so $\tau_k^*(G) \leq (kn) \cdot (1/k) = n$.

LB: $\tau_k^*(G) \ge n$. Base Case: k = 2. Let $G = (V_1, V_2; E)$. If either V_1 or V_2 fails to have a "slack vertex" in the maxLP, then

$$\tau_k^*(G) \geq \sum_T w(T) = \sum_{v \in V_i} \sum_{T \ni v} w(T) = \sum_{v \in V_i} 1 = n.$$

$$\tau_k^*(G) = \begin{cases} \max \sum_{\substack{T \ni v \\ w(T) \ge 0, \\ w(T) \ge 0, \\ \end{array}} \frac{\nabla w(T)}{\nabla v} = \begin{cases} \min \sum_{\substack{T \in V \\ v \in T \\ w(v) \ge 0, \\ \end{array}} \frac{\nabla v(v)}{\nabla v} = 1, \quad \forall T, \\ \sum_{\substack{v \in T \\ v \in T \\ \end{array}} x(v) \ge 1, \quad \forall T, \end{cases}$$

LB: $\tau_k^*(G) \ge n$. Base Case: k = 2. Let $G = (V_1, V_2; E)$. If either V_1 or V_2 fails to have a "slack vertex" in the maxLP, then

$$au_k^*(G) \ge \sum_T w(T) = \sum_{v \in V_i} \sum_{T \ni v} w(T) = \sum_{v \in V_i} 1 = n$$

If $v_1 \in V_1$ and $v_2 \in V_2$ are slack, then we may assume $x(v_1) = x(v_2) = 0$ (Complementary Slackness).

$$\tau_k^*(G) = \begin{cases} \max \sum_{\substack{T \ni v \\ w(T) \ge 0, \\ w(T) \ge 0, \\ \end{array}} \psi(T) = \begin{cases} \min \sum_{\substack{T \in V \\ v \in T \\ x(v) \ge 0, \\ \end{array}} \psi(T) = \begin{cases} \min \sum_{\substack{V \in T \\ v \in T \\ x(v) \ge 0, \\ \end{array}} \psi(T) = \begin{cases} \min \sum_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \min \sum_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \min \sum_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \min \sum_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \min \sum_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \min \sum_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \min \sum_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \min \sum_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \min \sum_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \min \sum_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \min \sum_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \min \sum_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \min \sum_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \min \sum_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \min \sum_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \min \sum_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \min \sum_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \min \sum_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \min \sum_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \min \sum_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \min \sum_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \max \sum_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \max \sum_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \max \sum_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \max \sum_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \max \sum_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \max \sum_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \max \sum_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \max \sum_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \max \sum_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \max \max \sum_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \max \max \max_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \max \max \max_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \max \max_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \max \max_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \max \max_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \max \max_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \max \max_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \max \max_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \max \max_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \max \max_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \max \max_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \max \max_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \max \max \max_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \max \max_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \max \max_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \max \max_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \max \max_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \max \max_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \max \max_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \max \max_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \max_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \begin{cases} \max_{\substack{V \in T \\ v \in T \\ \end{array}} \psi(T) = \\ \\ \max \max_{\substack{V \in T \\ v \in T \\ \end{array}}$$

LB: $\tau_k^*(G) \ge n$. Base Case: k = 2. Let $G = (V_1, V_2; E)$. If either V_1 or V_2 fails to have a "slack vertex" in the maxLP, then

$$\tau_k^*(G) \ge \sum_T w(T) = \sum_{v \in V_i} \sum_{T \ni v} w(T) = \sum_{v \in V_i} 1 = n$$

If $v_1 \in V_1$ and $v_2 \in V_2$ are slack, then we may assume $x(v_1) = x(v_2) = 0$ (Complementary Slackness).

Each vertex in $N(v_1)$, $N(v_2)$ has weight 1. Since $|N(v_1)|$, $|N(v_2)| \ge n/2$, $\tau_k^*(G) \ge n$.

$$\tau_k^*(G) = \begin{cases} \max \sum_{\substack{T \ni v \\ w(T) \ge 0, \\ w(T) \ge 0, \\ \end{array}} \frac{\psi(T)}{\psi(T)} \leq 1, \quad \forall v, \\ \sup_{\substack{r \in T \\ v \in T \\ \end{array}} = \begin{cases} \min \sum_{\substack{T \in v \\ v \in T \\ v \in T \\ \end{array}} x(v) \geq 1, \quad \forall T, \\ w(v) \ge 0, \\ w(v) \ge 0, \\ \end{array}$$

LB: $\tau_k^*(G) \ge n$. Induction Step Let $G = (V_1, \ldots, V_k; E)$. If any V_i has no slack vertices in the maxLP, then

$$\tau_k^*(G) \geq \sum_T w(T) = \sum_{v \in V_i} \sum_{T \ni v} w(T) = \sum_{v \in V_i} 1 = n.$$

$$\tau_k^*(G) = \begin{cases} \max \sum_{\substack{T \ni v \\ w(T) \ge 0, \\ w(T) \ge 0, \\ \end{array}} \psi(T) = \begin{cases} \min \sum_{\substack{T \in V \\ v \in T \\ x(v) \ge 0, \\ \end{array}} \chi(v) \ge 1, \quad \forall T, \\ \sum_{\substack{v \in T \\ v \in T \\ \end{array}} \chi(v) \ge 1, \quad \forall T, \end{cases}$$

LB: $\tau_k^*(G) \ge n$. Induction Step Let $G = (V_1, \ldots, V_k; E)$. If any V_i has no slack vertices in the maxLP, then

$$\tau_k^*(G) \geq \sum_T w(T) = \sum_{v \in V_i} \sum_{T \ni v} w(T) = \sum_{v \in V_i} 1 = n.$$

If $v_i \in V_i$, $\forall i$, are slack, then we may assume $x(v_i) = 0$, $\forall i$.

$$\tau_k^*(G) = \begin{cases} \max \sum_{\substack{T \ni v \\ w(T) \ge 0, \\ w(T) \ge 0, \\ \end{array}} \psi(T) = \begin{cases} \min \sum_{\substack{T \in V \\ v \in T \\ x(v) \ge 0, \\ \end{array}} \chi(v) \ge 1, \quad \forall T, \\ \sum_{\substack{v \in T \\ v \in T \\ \end{array}} \chi(v) \ge 1, \quad \forall T, \end{cases}$$

LB: $\tau_k^*(G) \ge n$. Induction Step Let $G = (V_1, \ldots, V_k; E)$. If any V_i has no slack vertices in the maxLP, then

$$au_k^*(G) \geq \sum_T w(T) = \sum_{v \in V_i} \sum_{T \ni v} w(T) = \sum_{v \in V_i} 1 = n.$$

If $v_i \in V_i$, $\forall i$, are slack, then we may assume $x(v_i) = 0$, $\forall i$.

Let $G_i \leq G[N(v_i)]$, $\forall i$, so that G_i has exactly $\frac{k-1}{k}n$ vertices in each V_j .

Linear programming

LB: $\tau_k^*(G) \ge n$. Induction Step Let $G = (V_1, \ldots, V_k; E)$. If any V_i has no slack vertices in the maxLP, then

$$au_k^*(\mathcal{G}) \geq \sum_T w(T) = \sum_{v \in V_i} \sum_{T \ni v} w(T) = \sum_{v \in V_i} 1 = n.$$

If $v_i \in V_i$, $\forall i$, are slack, then we may assume $x(v_i) = 0$, $\forall i$.

Let $G_i \leq G[N(v_i)]$, $\forall i$, so that G_i has exactly $\frac{k-1}{k}n$ vertices in each V_j .

Each G_i satisfies the degree requirement for $\mathcal{G}_{k-1}\left(\frac{k-1}{k}n\right)$.

Linear programming

LB: $\tau_k^*(G) \ge n$. Induction Step Let $G = (V_1, \ldots, V_k; E)$. If any V_i has no slack vertices in the maxLP, then

$$au_k^*(\mathcal{G}) \geq \sum_T w(T) = \sum_{v \in V_i} \sum_{T \ni v} w(T) = \sum_{v \in V_i} 1 = n.$$

If $v_i \in V_i$, $\forall i$, are slack, then we may assume $x(v_i) = 0$, $\forall i$.

Let $G_i \leq G[N(v_i)]$, $\forall i$, so that G_i has exactly $\frac{k-1}{k}n$ vertices in each V_j .

Each G_i satisfies the degree requirement for $\mathcal{G}_{k-1}\left(\frac{k-1}{k}n\right)$.

By induction,

$$(k-1)\tau_k^*(G) \ge \sum_{i=1}^k \sum_{v \in V(G_i)} x(v) \ge \sum_{i=1}^k \frac{k-1}{k}n = (k-1)n.$$

Linear programming

LB: $\tau_k^*(G) \ge n$. Induction Step Let $G = (V_1, \ldots, V_k; E)$. If any V_i has no slack vertices in the maxLP, then

$$au_k^*(\mathcal{G}) \geq \sum_T w(T) = \sum_{v \in V_i} \sum_{T \ni v} w(T) = \sum_{v \in V_i} 1 = n.$$

If $v_i \in V_i$, $\forall i$, are slack, then we may assume $x(v_i) = 0$, $\forall i$.

Let $G_i \leq G[N(v_i)]$, $\forall i$, so that G_i has exactly $\frac{k-1}{k}n$ vertices in each V_j .

Each G_i satisfies the degree requirement for $\mathcal{G}_{k-1}\left(\frac{k-1}{k}n\right)$.

By induction,

$$(k-1) au_k^*(G) \ge \sum_{i=1}^k \sum_{v \in V(G_i)} x(v) \ge \sum_{i=1}^k \frac{k-1}{k}n = (k-1)n.$$

• Can we replace
$$\hat{\delta}_k(G) \ge \left(1 - \frac{1}{\chi^*(G)}\right)n + \epsilon n$$
 with
 $\hat{\delta}_k(G) \ge \left(1 - \frac{1}{\chi^*(G)}\right)n + C(H)$?

• Can we replace
$$\hat{\delta}_k(G) \ge \left(1 - \frac{1}{\chi^*(G)}\right)n + \epsilon n$$
 with $\hat{\delta}_k(G) \ge \left(1 - \frac{1}{\chi^*(G)}\right)n + C(H)$?

• Is $\hat{\delta}_k(G) \ge (k-1)n/k + \epsilon n$ sufficient to force the k^{th} power of a Hamilton cycle? (Related to Bollobás-Komlós conjecture on bandwidth)

• Can we replace
$$\hat{\delta}_k(G) \ge \left(1 - \frac{1}{\chi^*(G)}\right)n + \epsilon n$$
 with $\hat{\delta}_k(G) \ge \left(1 - \frac{1}{\chi^*(G)}\right)n + C(H)$?

- Is δ̂_k(G) ≥ (k − 1)n/k + εn sufficient to force the kth power of a Hamilton cycle?
 (Related to Bollobás-Komlós conjecture on bandwidth)
- What probability p guarantees that, for any G with $\hat{\delta}_k(G) \ge (k-1)n/k + \epsilon n$, the random subgraph G_p has a K_k -tiling?

My home page:

 ${\tt http://orion.math.iastate.edu/rymartin}$

My CV (with links to this and previous talks):

http://orion.math.iastate.edu/rymartin/cv/RMcv.pdf

Contact me:

rymartin@iastate.edu