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The graphs D(4, q)

The graph D(4, q) has 2g* vertices: points and lines in IF;'
denoted given by

p= (p17p27p37p4)> = (£17‘€2>€37£4)
with p and ¢ adjacent iff
Potla = p1ly, p3tls = pila, Patly = Poly.
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The graphs D(4, q)

The graph D(4, q) has 2g* vertices: points and lines in IF;'
denoted given by

p= (p17p27p37p4)> l= (£17‘€2>€37£4)
with p and ¢ adjacent iff

Potla = p1ly, p3tls = pila, Patly = Poly.
There is an infinite sequence of g-fold covering graphs

where D(k, q) is bipartite with 2g* vertices
p=(P1,P2,P3;---,Pk)s L= (l1,02,03,...,Lk)

and the covering maps simply delete the right-most g
coordinates.

G. Eric Moorhouse Eigenvalues of D(4, q)



The graphs D(4, q)

D=D(4, q) is naturally regarded as the bipartite incidence graph
of a point-line incidence structure: D has adjacency matrix

[0 B
5=|gr ]

where B; is the g x g incidence matrix.
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The graphs D(4, q)

D=D(4, q) is naturally regarded as the bipartite incidence graph
of a point-line incidence structure: D has adjacency matrix

[0 B
5=|gr ]

where B; is the g x g incidence matrix. The point collinearity
graph is T'=r(4, g) with adjacency matrix A = BB — Qlgs.
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The graphs D(4, q)

D=D(4, q) is naturally regarded as the bipartite incidence graph
of a point-line incidence structure: D has adjacency matrix
10 By
5=|gr ]
where B; is the g x g incidence matrix. The point collinearity
graph is T'=r(4, g) with adjacency matrix A = BB — Qlgs. By
finding the eigenvalues of I', we may directly infer those of D.
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The graphs D(4, q)

D=D(4, q) is naturally regarded as the bipartite incidence graph
of a point-line incidence structure: D has adjacency matrix
10 By
5=|gr ]
where B; is the g x g incidence matrix. The point collinearity
graph is T'=r(4, g) with adjacency matrix A = BB — Qlgs. By
finding the eigenvalues of I', we may directly infer those of D.

In general D(k, g) is not connected; each of its connected
components is denoted CD(k, q).
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The graphs D(4, q)

D=D(4, q) is naturally regarded as the bipartite incidence graph
of a point-line incidence structure: D has adjacency matrix

10 By
5=|gr ]
where B; is the g x g incidence matrix. The point collinearity
graph is T'=r(4, g) with adjacency matrix A = BB — Qlgs. By
finding the eigenvalues of I', we may directly infer those of D.

In general D(k, g) is not connected; each of its connected
components is denoted CD(k, q).

The spectrum of CD(4,2°) is known (Li, Lu and Wang, 2009).

For q odd, D(4, q) is connected and thus coincides with
CD(4,q). We determine its spectrum.
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Our Main Result

Theorem (M., Williford, Sun (2016))

The graph D(4, q) has eigenvalues +q, each of multiplicity 1
(unless q € {2,4}, when each value +q has multiplicity 4). All
remaining eigenvalues +¢ satisfy |¢| < 2,/q.
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Our Main Result

Theorem (M., Williford, Sun (2016))

The graph D(4, q) has eigenvalues +q, each of multiplicity 1
(unless q € {2,4}, when each value +q has multiplicity 4). All
remaining eigenvalues +¢ satisfy |¢| < 2,/q.

Apart from the values 0, +,/q, =+/24, all remaining
eigenvalues have the form

€= :l: Z Ctr]Fq/]pr(a)’ C — e27rl/p
aEFq

for g = p® p # 3, where f : Fy — [y is a cubic polynomial;
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Our Main Result

Theorem (M., Williford, Sun (2016))

The graph D(4, q) has eigenvalues +q, each of multiplicity 1
(unless q € {2,4}, when each value +q has multiplicity 4). All
remaining eigenvalues +¢ satisfy |¢| < 2,/q.

Apart from the values 0, +,/q, =+/24, all remaining
eigenvalues have the form
€= :l: Z Ctr]Fq/]pr(a)’ C — e27rl/p
acky
for g = p® p # 3, where f : Fy — [y is a cubic polynomial; or of

the form S Z gtrR/ng(a), ¢ = e2mi/®
acT
for g = 3%, where R = GR(9, e) is the Galois ring of order
g% = 9¢ and characteristic 9; again, f: R — R is a cubic ﬁ
polynomial.
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Our Main Result

Theorem (M., Williford, Sun (2016))

The graph D(4, q) has eigenvalues +q, each of multiplicity 1
(unless q € {2,4}, when each value +q has multiplicity 4). All
remaining eigenvalues +¢ satisfy |¢| < 2,/q.

Apart from the values 0, +,/q, =+/24, all remaining
eigenvalues have the form
€= :l: Z Ctr]Fq/]pr(a)’ C — e27rl/p
acky
for g = p® p # 3, where f : Fy — [y is a cubic polynomial; or of

the form S Z gtrR/ng(a), ¢ = e2mi/®
acT
for g = 3%, where R = GR(9, e) is the Galois ring of order
g% = 9¢ and characteristic 9; again, f: R — R is a cubic ﬁ
polynomial. In these cases |¢| < 2,/q is Hasse’s bound.
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Our Main Result

Theorem (M., Williford, Sun (2016))

The graph D(4, q) has eigenvalues +q, each of multiplicity 1
(unless q € {2,4}, when each value +q has multiplicity 4). All
remaining eigenvalues +e satisfy |¢| < 2,/q.

The sharper bound || < 2,/g—1 holds for many, but not all,
values of q.
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Our Main Result

Theorem (M., Williford, Sun (2016))

The graph D(4, q) has eigenvalues +q, each of multiplicity 1
(unless q € {2,4}, when each value +q has multiplicity 4). All
remaining eigenvalues +e satisfy |¢| < 2,/q.

The sharper bound || < 2,/g—1 holds for many, but not all,
values of g.

It is an open question whether the bound |¢| < 2,/q holds for
D(k, q).
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I as a Cayley graph

I = Cay(G, S) is a Cayley graph for a group G of order g* with
|G| =q,G" =1:

1¢SC G, seSiffs'esS;

! ~y—1

vertices g~ g'iff g'g ' € S.
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I as a Cayley graph

I = Cay(G, S) is a Cayley graph for a group G of order g* with
|G| =q,G" =1:

1¢SC G, seSiffs'esS;
vertices g~ g'iff g'g ' € S.

Alas, G is abelian; moreover, the subset S ¢ G is not ‘normal’
(a union of conjugacy classes) so the irreducible characters of
G do not suffice to express the spectrum of our graphs.
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I as a Cayley graph

I = Cay(G, S) is a Cayley graph for a group G of order g* with
|G| =q, G'"=1:
1¢SC G, seSiffs'esS;
vertices g~ g'iff g'g ' € S.
Alas, G is abelian; moreover, the subset S ¢ G is not ‘normal’

(a union of conjugacy classes) so the irreducible characters of
G do not suffice to express the spectrum of our graphs.

Let 7 : G — GLn,(C) (i=1,2,..., k) be the irreducible ordinary
representations of G. Compute the n; x n; matrices

Ti(S) =D _n(s).
seS
Then the characteristic polynomial of ' = Cay(G, S) is
¢(x) = det[Xlp — Hdet[x/,, mi(S)]™. &3

G. Eric Moorhouse Eigenvalues of D(4, q)






