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The graphs D(4,q)

The graph D(4,q) has 2q4 vertices: points and lines in F4
q

denoted given by
p = (p1,p2,p3,p4), ` = (`1, `2, `3, `4)

with p and ` adjacent iff
p2+`2 = p1`1, p3+`3 = p1`2, p4+`4 = p2`1.

There is an infinite sequence of q-fold covering graphs

· · · → D(5,q)→ D(4,q)→ D(3,q)→ D(2,q)

where D(k ,q) is bipartite with 2qk vertices
p = (p1,p2,p3, . . . ,pk ), ` = (`1, `2, `3, . . . , `k )

and the covering maps simply delete the right-most
coordinates.
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The graphs D(4,q)

D=D(4,q) is naturally regarded as the bipartite incidence graph
of a point-line incidence structure: D has adjacency matrix

B =

[
0 B1

BT
1 0

]
where B1 is the q × q incidence matrix. The point collinearity
graph is Γ=Γ(4,q) with adjacency matrix A = B1BT

1 − qIq4 . By
finding the eigenvalues of Γ, we may directly infer those of D.

In general D(k ,q) is not connected; each of its connected
components is denoted CD(k ,q).

The spectrum of CD(4,2e) is known (Li, Lu and Wang, 2009).
For q odd, D(4,q) is connected and thus coincides with
CD(4,q). We determine its spectrum.
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Our Main Result

Theorem (M., Williford, Sun (2016))

The graph D(4,q) has eigenvalues ±q, each of multiplicity 1
(unless q ∈ {2,4}, when each value ±q has multiplicity 4). All
remaining eigenvalues ±ε satisfy |ε| 6 2

√
q.

Apart from the values 0,±√q,±
√

2q, all remaining
eigenvalues have the form

ε = ±
∑
a∈Fq

ζ trFq/Fp f (a), ζ = e2πi/p

for q = pe, p 6= 3, where f : Fq → Fq is a cubic polynomial; or of
the form

ε = ±
∑
a∈T

ξtrR/Z9
f (a), ξ = e2πi/9

for q = 3e, where R = GR(9,e) is the Galois ring of order
q2 = 9e and characteristic 9; again, f : R → R is a cubic
polynomial. In these cases |ε| 6 2

√
q is Hasse’s bound.
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(unless q ∈ {2,4}, when each value ±q has multiplicity 4). All
remaining eigenvalues ±ε satisfy |ε| 6 2

√
q.

The sharper bound |ε| 6 2
√

q−1 holds for many, but not all,
values of q.

It is an open question whether the bound |ε| 6 2
√

q holds for
D(k ,q).
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Γ as a Cayley graph

Γ = Cay(G,S) is a Cayley graph for a group G of order q4 with
|G′| = q, G′′ = 1:

1 /∈ S ⊂ G, s ∈ S iff s−1 ∈ S;
vertices g ∼ g′ iff g′g−1 ∈ S.

Alas, G is abelian; moreover, the subset S ⊂ G is not ‘normal’
(a union of conjugacy classes) so the irreducible characters of
G do not suffice to express the spectrum of our graphs.

Let πi : G→ GLni (C) (i = 1,2, . . . , k ) be the irreducible ordinary
representations of G. Compute the ni × ni matrices

πi(S) =
∑
s∈S

π(s).

Then the characteristic polynomial of Γ = Cay(G,S) is

φ(x) = det[xIq4 − A] =
k∏

i=1

det[xIni − πi(S)]ni .
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