* The Eigenvalues of the Graphs $D(4, q)$

G. Eric Moorhouse

Department of Mathematics
University of Wyoming

8 August 2017

*Joint work with Jason Williford and Shuying Sun

The graphs $D(4, q)$

The graph $D(4, q)$ has $2 q^{4}$ vertices: points and lines in \mathbb{F}_{q}^{4} denoted given by

$$
p=\left(p_{1}, p_{2}, p_{3}, p_{4}\right), \quad \ell=\left(\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}\right)
$$

with p and ℓ adjacent iff

$$
p_{2}+\ell_{2}=p_{1} \ell_{1}, \quad p_{3}+\ell_{3}=p_{1} \ell_{2}, \quad p_{4}+\ell_{4}=p_{2} \ell_{1} .
$$

There is an infinite sequence of q-fold covering graphs

$$
\rightarrow D(5, q) \rightarrow D(1, q) \rightarrow D(3, q) \rightarrow D(2, q)
$$

where $D(k, q)$ is bipartite with $2 q^{k}$ vertices
and the covering maps simply delete the right-most coordinates.

The graphs $D(4, q)$

The graph $D(4, q)$ has $2 q^{4}$ vertices: points and lines in \mathbb{F}_{q}^{4} denoted given by

$$
p=\left(p_{1}, p_{2}, p_{3}, p_{4}\right), \quad \ell=\left(\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}\right)
$$

with p and ℓ adjacent iff

$$
p_{2}+\ell_{2}=p_{1} \ell_{1}, \quad p_{3}+\ell_{3}=p_{1} \ell_{2}, \quad p_{4}+\ell_{4}=p_{2} \ell_{1} .
$$

There is an infinite sequence of q-fold covering graphs

$$
\cdots \rightarrow D(5, q) \rightarrow D(4, q) \rightarrow D(3, q) \rightarrow D(2, q)
$$

where $D(k, q)$ is bipartite with $2 q^{k}$ vertices

$$
p=\left(p_{1}, p_{2}, p_{3}, \ldots, p_{k}\right), \quad \ell=\left(\ell_{1}, \ell_{2}, \ell_{3}, \ldots, \ell_{k}\right)
$$

and the covering maps simply delete the right-most coordinates.

The graphs $D(4, q)$

$D=D(4, q)$ is naturally regarded as the bipartite incidence graph of a point-line incidence structure: D has adjacency matrix

$$
B=\left[\begin{array}{cc}
0 & B_{1} \\
B_{1}^{T} & 0
\end{array}\right]
$$

where B_{1} is the $q \times q$ incidence matrix.
\square
In general $D(k, q)$ is not connected; each of its connected components is denoted $C D(k, q)$.

The spectrum of $C D\left(4,2^{e}\right)$ is known (Li, Lu and Wang, 2009). For q odd, $D(4, q)$ is connected and thus coincides with $C D(4, q)$. We determine its spectrum.

The graphs $D(4, q)$

$D=D(4, q)$ is naturally regarded as the bipartite incidence graph of a point-line incidence structure: D has adjacency matrix

$$
B=\left[\begin{array}{cc}
0 & B_{1} \\
B_{1}^{T} & 0
\end{array}\right]
$$

where B_{1} is the $q \times q$ incidence matrix. The point collinearity graph is $\Gamma=\Gamma(4, q)$ with adjacency matrix $A=B_{1} B_{1}^{T}-q l_{q^{4}}$.

In general $D(k, q)$ is not connected; each of its connected components is denoted $C D(k, q)$.

The spectrum of $C D\left(4,2^{e}\right)$ is known (Li, Lu and Wang, 2009) For q odd, $D(4, q)$ is connected and thus coincides with $C D(4, q)$. We determine its spectrum.

The graphs $D(4, q)$

$D=D(4, q)$ is naturally regarded as the bipartite incidence graph of a point-line incidence structure: D has adjacency matrix

$$
B=\left[\begin{array}{cc}
0 & B_{1} \\
B_{1}^{T} & 0
\end{array}\right]
$$

where B_{1} is the $q \times q$ incidence matrix. The point collinearity graph is $\Gamma=\Gamma(4, q)$ with adjacency matrix $A=B_{1} B_{1}^{T}-q l_{q^{4}}$. By finding the eigenvalues of Γ, we may directly infer those of D.

In general $D(k, q)$ is not connected; each of its connected components is denoted $C D(k, q)$.

The spectrum of $C D\left(4,2^{e}\right)$ is known (Li, Lu and Wang, 2009) For q odd, $D(4, q)$ is connected and thus coincides with $C D(4, q)$. We determine its spectrum.

The graphs $D(4, q)$

$D=D(4, q)$ is naturally regarded as the bipartite incidence graph of a point-line incidence structure: D has adjacency matrix

$$
B=\left[\begin{array}{cc}
0 & B_{1} \\
B_{1}^{T} & 0
\end{array}\right]
$$

where B_{1} is the $q \times q$ incidence matrix. The point collinearity graph is $\Gamma=\Gamma(4, q)$ with adjacency matrix $A=B_{1} B_{1}^{T}-q l_{q^{4}}$. By finding the eigenvalues of Γ, we may directly infer those of D.

In general $D(k, q)$ is not connected; each of its connected components is denoted $C D(k, q)$.

The spectrum of $C D\left(4,2^{e}\right)$ is known (Li, Lu and Wang, 2009), For q odd, $D(4, q)$ is connected and thus coincides with $C D(4, q)$. We determine its spectrum.

The graphs $D(4, q)$

$D=D(4, q)$ is naturally regarded as the bipartite incidence graph of a point-line incidence structure: D has adjacency matrix

$$
B=\left[\begin{array}{cc}
0 & B_{1} \\
B_{1}^{T} & 0
\end{array}\right]
$$

where B_{1} is the $q \times q$ incidence matrix. The point collinearity graph is $\Gamma=\Gamma(4, q)$ with adjacency matrix $A=B_{1} B_{1}^{T}-q l_{q^{4}}$. By finding the eigenvalues of Γ, we may directly infer those of D.

In general $D(k, q)$ is not connected; each of its connected components is denoted $C D(k, q)$.

The spectrum of $C D\left(4,2^{e}\right)$ is known (Li, Lu and Wang, 2009). For q odd, $D(4, q)$ is connected and thus coincides with $C D(4, q)$. We determine its spectrum.

Our Main Result

Theorem (M., Williford, Sun (2016))

The graph $D(4, q)$ has eigenvalues $\pm q$, each of multiplicity 1 (unless $q \in\{2,4\}$, when each value $\pm q$ has multiplicity 4). All remaining eigenvalues $\pm \varepsilon$ satisfy $|\varepsilon| \leqslant 2 \sqrt{q}$.

Apart from the values $0, \pm \sqrt{q}, \pm \sqrt{2 q}$, all remaining eigenvalues have the form
for $q=p^{e}, p \neq 3$, where $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ is a cubic polynomial; or of the form
for $q=3^{e}$, where $R=G R(9, e)$ is the Galois ring of order $q^{2}=9^{e}$ and characteristic 9; again, $f: R \rightarrow R$ is a cubic polynomial. In these cases $|\varepsilon| \leqslant 2 \sqrt{q}$ is Hasse's bound.

Our Main Result

Theorem (M., Williford, Sun (2016))

The graph $D(4, q)$ has eigenvalues $\pm q$, each of multiplicity 1 (unless $q \in\{2,4\}$, when each value $\pm q$ has multiplicity 4). All remaining eigenvalues $\pm \varepsilon$ satisfy $|\varepsilon| \leqslant 2 \sqrt{q}$.

Apart from the values $0, \pm \sqrt{q}, \pm \sqrt{2 q}$, all remaining eigenvalues have the form

$$
\varepsilon= \pm \sum_{a \in \mathbb{F}_{q}} \zeta^{t_{\mathbb{I} q / / \mathbb{F}_{p}} f(a)}, \quad \zeta=e^{2 \pi i / p}
$$

for $q=p^{e}, p \neq 3$, where $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ is a cubic polynomial; the form
for $q=3^{e}$, where $R=G R(9, e)$ is the Galois ring of order $q^{2}=9^{e}$ and characteristic 9 ; again, $f: R \rightarrow R$ is a cubic polynomial. In these cases $|\varepsilon| \leqslant 2 \sqrt{q}$ is Hasse's bound.

Our Main Result

Theorem (M., Williford, Sun (2016))

The graph $D(4, q)$ has eigenvalues $\pm q$, each of multiplicity 1 (unless $q \in\{2,4\}$, when each value $\pm q$ has multiplicity 4). All remaining eigenvalues $\pm \varepsilon$ satisfy $|\varepsilon| \leqslant 2 \sqrt{q}$.

Apart from the values $0, \pm \sqrt{q}, \pm \sqrt{2 q}$, all remaining eigenvalues have the form

$$
\varepsilon= \pm \sum_{a \in \mathbb{F}_{q}} \zeta^{t_{\mathbb{I} q / / \mathbb{F}_{p}} f(a)}, \quad \zeta=e^{2 \pi i / p}
$$

for $q=p^{e}, p \neq 3$, where $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ is a cubic polynomial; or of the form

$$
\varepsilon= \pm \sum_{a \in \mathcal{T}} \xi^{t r_{R / \mathbb{Z}_{9}} f(a)}, \quad \xi=e^{2 \pi i / 9}
$$

for $q=3^{e}$, where $R=G R(9, e)$ is the Galois ring of order $q^{2}=9^{e}$ and characteristic 9; again, $f: R \rightarrow R$ is a cubic polynomial.

Our Main Result

Theorem (M., Williford, Sun (2016))

The graph $D(4, q)$ has eigenvalues $\pm q$, each of multiplicity 1 (unless $q \in\{2,4\}$, when each value $\pm q$ has multiplicity 4). All remaining eigenvalues $\pm \varepsilon$ satisfy $|\varepsilon| \leqslant 2 \sqrt{q}$.

Apart from the values $0, \pm \sqrt{q}, \pm \sqrt{2 q}$, all remaining eigenvalues have the form

$$
\varepsilon= \pm \sum_{a \in \mathbb{F}_{q}} \zeta^{t_{\mathbb{E} q} / \mathbb{F}_{p}} f(a), \quad \zeta=e^{2 \pi i / p}
$$

for $q=p^{e}, p \neq 3$, where $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ is a cubic polynomial; or of the form

$$
\varepsilon= \pm \sum_{a \in \mathcal{T}} \xi^{t r_{R / \mathbb{Z}_{9}} f(a)}, \quad \xi=e^{2 \pi i / 9}
$$

for $q=3^{e}$, where $R=G R(9, e)$ is the Galois ring of order $q^{2}=9^{e}$ and characteristic 9; again, $f: R \rightarrow R$ is a cubic polynomial. In these cases $|\varepsilon| \leqslant 2 \sqrt{q}$ is Hasse's bound.

Our Main Result

Theorem (M., Williford, Sun (2016))

The graph $D(4, q)$ has eigenvalues $\pm q$, each of multiplicity 1 (unless $q \in\{2,4\}$, when each value $\pm q$ has multiplicity 4). All remaining eigenvalues $\pm \varepsilon$ satisfy $|\varepsilon| \leqslant 2 \sqrt{q}$.

The sharper bound $|\varepsilon| \leqslant 2 \sqrt{q-1}$ holds for many, but not all, values of q.

It is an open question whether the bound $|\varepsilon| \leqslant 2 \sqrt{q}$ holds for $D(k, q)$.

Our Main Result

Theorem (M., Williford, Sun (2016))

The graph $D(4, q)$ has eigenvalues $\pm q$, each of multiplicity 1 (unless $q \in\{2,4\}$, when each value $\pm q$ has multiplicity 4). All remaining eigenvalues $\pm \varepsilon$ satisfy $|\varepsilon| \leqslant 2 \sqrt{q}$.

The sharper bound $|\varepsilon| \leqslant 2 \sqrt{q-1}$ holds for many, but not all, values of q.

It is an open question whether the bound $|\varepsilon| \leqslant 2 \sqrt{q}$ holds for $D(k, q)$.
$\Gamma=\operatorname{Cay}(G, S)$ is a Cayley graph for a group G of order q^{4} with $\left|G^{\prime}\right|=q, G^{\prime \prime}=1$:

$$
\begin{aligned}
& 1 \notin S \subset G, \quad s \in S \text { iff } s^{-1} \in S \text {; } \\
& \text { vertices } g \sim g^{\prime} \text { iff } g^{\prime} g^{-1} \in S .
\end{aligned}
$$

Alas, G is abelian; moreover, the subset $S \subset G$ is not 'normal' (a union of conjugacy classes) so the irreducible characters of G do not suffice to express the spectrum of our graphs.

Let $\pi_{i}: G \rightarrow G L_{n_{i}}(\mathbb{C})(i=1,2, \ldots, k)$ be the irreducible ordinary representations of G. Compute the $n_{i} \times n_{i}$ matrices

Then the characteristic polynomial of $\Gamma=\operatorname{Cay}(G, S)$ is

「 as a Cayley graph

$\Gamma=\operatorname{Cay}(G, S)$ is a Cayley graph for a group G of order q^{4} with $\left|G^{\prime}\right|=q, G^{\prime \prime}=1$:

$$
\begin{aligned}
& 1 \notin S \subset G, \quad s \in S \text { iff } s^{-1} \in S ; \\
& \text { vertices } g \sim g^{\prime} \text { iff } g^{\prime} g^{-1} \in S .
\end{aligned}
$$

Alas, G is abelian; moreover, the subset $S \subset G$ is not 'normal' (a union of conjugacy classes) so the irreducible characters of G do not suffice to express the spectrum of our graphs.

Let $\pi_{i}: G \rightarrow G L_{n_{i}}(\mathbb{C})(i=1,2, \ldots, k)$ be the irreducible ordinary
representations of G. Compute the $n_{i} \times n_{i}$ matrices

Then the characteristic polynomial of $\Gamma=\operatorname{Cay}(G, S)$ is $\phi(x)=\operatorname{det}\left[x I_{q^{4}}-A\right]=\prod \operatorname{det}\left[x I_{n_{i}}-\pi_{i}(S)\right]^{n^{\prime}}$

「 as a Cayley graph

$\Gamma=\operatorname{Cay}(G, S)$ is a Cayley graph for a group G of order q^{4} with $\left|G^{\prime}\right|=q, G^{\prime \prime}=1$:

$$
\begin{gathered}
1 \notin S \subset G, \quad s \in S \text { iff } s^{-1} \in S \\
\text { vertices } g \sim g^{\prime} \text { iff } g^{\prime} g^{-1} \in S
\end{gathered}
$$

Alas, G is abelian; moreover, the subset $S \subset G$ is not 'normal' (a union of conjugacy classes) so the irreducible characters of G do not suffice to express the spectrum of our graphs.

Let $\pi_{i}: G \rightarrow G L_{n_{i}}(\mathbb{C})(i=1,2, \ldots, k)$ be the irreducible ordinary representations of G. Compute the $n_{i} \times n_{i}$ matrices

$$
\pi_{i}(S)=\sum_{s \in S} \pi(s)
$$

Then the characteristic polynomial of $\Gamma=\operatorname{Cay}(G, S)$ is

$$
\phi(x)=\operatorname{det}\left[x l_{q^{4}}-A\right]=\prod_{i=1}^{k} \operatorname{det}\left[x I_{n_{i}}-\pi_{i}(S)\right]^{n_{i}}
$$

G. Eric Moorhouse

Eigenvalues of $D(4, q)$

