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My plan for today:

1. Maximum number of λ-colorings of (v , e)-graphs

2. Covering finite vector space by hyperplanes

3. Figures in finite projective planes

4. Hamiltonian cycles and weak pancyclicity
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1. Maximum number of λ-colorings of (v , e)-graphs.

Problem Let v , e, λ be positive integers.

What is the maximum number

f (v , e, λ)

of proper vertex colorings in (at most) λ colors a graph with v
vertices and e edges can have?

On which graphs is this maximum attained?

The question can be rephrases as the question on maximizing
χ(G , λ) over all graphs with v vertices and e edges.

This problem was stated independently by Wilf (82) and Linial
(86), and is still largely unsolved.
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Maximum number of λ-colorings of (v , e)-graphs.

For every (v , e)-graph G , color its vertices uniformly at random in
at most λ colors. What is the maximum probability that a graph is
colored properly? On which graph we have the greatest chance to
succeed?

Prob(G is colored properly) =
χ(G , λ)

λv

max{Prob(G is colored properly)} =
f (v , e, λ)

λv



Maximum number of λ-colorings of (v , e)-graphs.

Problem. Is it true that there exists p0 such that

f (2p, p2, λ) = χ(Kp,p, λ)

for all p ≥ p0 and all λ ≥ 2, and Kp,p is the only extremal graph?

Known to be true for λ = 2, 3, 4, and λ ≥ p5.

What if 5 ≤ λ < p5 ???
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Maximum number of λ-colorings of (v , e)-graphs.

f (2p, p2, 2) = χ(Kp,p, 2). – trivial.

f (2p, p2, λ) = χ(Kp,p, λ) if λ ≥ p5. – FL (91)

f (2p, p2, 3) = χ(Kp,p, 3).

f (2p, p2, 4) ∼ χ(Kp,p, 4) ∼ (6 + o(1))4p, as p →∞. –
FL - O. Pikhurko - A. Woldar (07)

f (2p, p2, 4) = χ(Kp,p, 4) for all sufficiently large p. –
S. Norine (11).

f (2p, p2, 4) = χ(Kp,p, 4) for all p ≥ 2. – S. Tofts (13).
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Maximum number of λ-colorings of (v , e)-graphs.

Known:

I f (v , e, 2) : FL (89)

I f (v , e, 3): bounds

FL (89, 90, 91), R. Liu (93), K. Dohmen (93, 98), X.B. Chen
(96), O. Byer (98), I. Simonelli (08), S. Norine (11)

I For 0 ≤ e ≤ v2/4, it was conjectured (FL (91)) that

f (v , e, 3) = χ(Ka,b,p, 3),

where Ka,b,p is semi-complete bipartite graph: v = a + b + 1,
e = ab + p, 0 ≤ p ≤ a ≤ b.

It was proven for sufficiently large e by
P.-S. Loh - O. Pikhurko - B. Sudakov (10)



Maximum number of λ-colorings of (v , e)-graphs.

Let e = e(Tr ,v ) =: tr ,v .

I If λ ≥ 2
(tr,v

3

)
+ 1, then f (v , tr ,v , λ) = χ(Tr ,v , λ), and Tr ,v is

the only extremal graph. – FL (91)

I Fix r ≥ 3. For all sufficiently large v ,

f (v , tr ,v , r + 1) = χ(Tr ,v , r + 1),

and Tr ,v is the only extremal graph.
P.-S. Loh - O. Pikhurko - B. Sudakov (10)

I Fix r ≥ 2. For all v (v ≥ r),

f (v , tr ,v , r + 1) = χ(Tr ,v , r + 1),

and Tr ,v is the only extremal graph. – FL - S.Tofts (10)
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Maximum number of λ-colorings of (v , e)-graphs.

I Fix λ and r so that λ > r ≥ 2 and r divides λ. For
all sufficiently large v ,

f (v , tr ,v , λ) = χ(Tr ,v , λ),

and Tr ,v is the only extremal graph. – S. Norine (11)

Conjecture: For all λ and r , λ ≥ r ≥ 2,

f (v , tr ,v , λ) = χ(Tr ,v , λ),

and Tr ,v is the only extremal graph. – FL (87)
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Maximum number of λ-colorings of (v , e)-graphs.

I For fixed sufficiently large r and λ, λ ≥ 100 r2

log r ,
Tr ,v is asymptotically extremal:

f (v , tr ,v , λ) ∼ χ(Tr ,v , λ), v →∞.

J. Ma - H. Naves (15)

The Conjecture is FALSE! – J. Ma - H. Naves (15)

I (i) For any integers r ≥ 50000, there exists λ such that

19r ≤ λ ≤ r2

200 log r
− r ,

and the Conjecture is false.

(ii) If 13 ≤ r + 3 ≤ λ ≤ 2r − 7, the Conjecture is false.



Maximum number of λ-colorings of (v , e)-graphs.
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2. Covering finite vector space by hyperplanes

Fq is a finite field of q = pe elements, p is prime.

e1, e2, . . . en – the standard basis of Fn
q.

a1, a2, . . . an – any basis of Fn
q.

For 0 6= x ∈ Fn
q, x⊥ is the orthogonal complement of x in Fn

q with
respect to the standard inner product in Fn

q.

Rename the sequence

e1, e2, . . . , en, a1, a2, . . . , an

as
b1, b2, . . . , bn, bn+1, bn+2, . . . , b2n.

Problem: Let n ≥ 3 and q ≥ 4. Is it true that

2n⋃
i=1

b⊥i = Fn
q ?

N. Alon - M. Tarsi (89)
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Covering finite vector space by hyperplanes

Let A be an n × n matrix over Fq, q is a prime power.

A vector x ∈ Fn
q is called good for A, or nowhere-zero for A, if

both x and Ax have no zero components. If x is good for A, we
also say that A has a good vector x .

Question (F. Jaeger (81)):

Consider an n-dimensional vector space over F5. Is it true that for
any two bases B1 and B2, there exists a hyperplane H which is
disjoint from B1 ∪ B2?

The question is equivalent to the following:

Does every A ∈ GL(n,F5), n ≥ 3, have a good vector?



Covering finite vector space by hyperplanes

Let n ≥ 3 and q ≥ 4. Is it true that every A ∈ GL(n, q) has a good
vector?

~w�
Let n ≥ 3 and q ≥ 4. Is it true that

2n⋃
i=1

b⊥i = Fn
q ?

~w�
Let n ≥ 3 and q ≥ 4. Is it true that for any two bases B1 and B2

of Fn
q, there exists a hyperplane H which is disjoint from B1 ∪ B2?

YES, if the prime power q is NOT a prime!
N. Alon - M. Tarsi (89).
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Covering finite vector space by hyperplanes

What if q = p is prime?

A - T Conjecture N. Alon - M. Tarsi (89):

Let n ≥ 3 and q = p ≥ 4. Then every A ∈ GL(n, p) has a good
vector.

• A simple observation:

A - T Conjecture holds for primes p such that 4 ≤ n + 1 ≤ p.
R. Baker- J. Bonin – FL– E. Shustin (94)

• A not–so–simple result:

A - T Conjecture is true for primes p such that 4 ≤ n ≤ p. -
G. Kirkup (08)

What happens if when n > p?
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Covering finite vector space by hyperplanes

• If A is chosen uniformly from GL(n,Fp), A - T Conjecture holds
almost surely as n→∞.
(N. Alon - unpublished)

• A - T Conjecture holds if n ≤ 2p−2 − 1. – Y. Yu (99)

So it is true for

p = 5 and n ≤ 7,
p = 7 and n ≤ 31,
p = 11 and n ≤ 511.



Covering finite vector space by hyperplanes

Y. Yu proved a more general statement: there exists x with no
zero components such that Ax has at most n/2p−2 components.

What if n ≥ 2p−2? E.g., p = 5, n ≥ 8?

Maybe another approach can be tried...

Let P(A, q) denote the number of good vectors of A.

Recall that for each A ∈ GLn(Fq), we have two bases of Fn
q:

{bi = ei , i = 1 . . . , n} and {bn+i = ai , i = 1, . . . , n},
where ai is the i-th row of A.
Therefore

P(A, q) =
∣∣∣ 2n⋃
j=1

b⊥j

∣∣∣.
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Covering finite vector space by hyperplanes

Fix q and n. What is the minimum value of P(A, q) over all
A ∈ GL(n,Fq)?

Let n = 2k . Consider the following matrix:

A? =



A1 0 0
. . . 0

0 A2 0
. . . 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 0
. . . 0 Ak


,

where Ai ∈ GL(2, q) with no zero entries. Note that

P(A?, q) = [(q − 1)(q − 3)]k
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Covering finite vector space by hyperplanes

R. Baker - J. Bonin – FL– E. Shustin (94)

For n = 2k ≥ 4 and q ≥ 2
(2n

3

)
+ 1

P(A, q) ≥ P(A?, q),

with the equality if and only if A can be transformed to A? by
some permutations of its rows and columns.

Recall a result on the maximum number of colorings :

If λ ≥ 2
(tr,v

3

)
+ 1, then

f (v , tr ,v , λ) = χ(Tr ,v , λ),

and Tr ,v is the only extremal graph.
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Covering finite vector space by hyperplanes

To show the extremality of the construction, in both cases of

χ(G , λ) and P(A, q),

the Whitney’s Broken Circuits Theorem was used.

QUESTION: Is it true that for n = 2k ≥ 4 and every q ≥ 4,

P(A, q) ≥ P(A?, q) = [(q − 1)(q − 3)]k ,

with the equality if and only if A can be brought to the form of A?

by some permutations of its rows and columns?

Positive answer, of course, implies A - T Conjecture in a strong
way.
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3. Figures in finite projective planes

What is a projective plane of order r ≥ 2? We will denote it πr .

I Axiomatic definition as a incidentce system on points and
lines.

I A 2− (r2 + r + 1, r + 1, 1) SBIBD.

I A bipartite (r + 1)-regular graph of diameter 3 and girth 6.

Or, an incidence system of points and lines whose Levi graph
is (r + 1)-regular graph of diameter 3 and girth 6.
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Figures in finite projective planes

A MODEL of a projective plane πr :

• r = q – prime power,

• Points: 1-dim subspaces (points) in F 3
q ,

• Lines: 2-dim subspaces in F 3
q ,

• Incidence: containment

This projective plane has order q, it is denoted by PG (2, q), and is
called the classical plane of order q.

• πr are known to exist for all r = q – prime power.

• No example with r being not a prime power is known.

• For q ≥ 9, there are non-classical πq.

• For r = p – prime, no example of a non-classical πp is known.



Figures in finite projective planes

A partial plane is an incidence system of points and lines such
that any two distinct points are on at most one line.

The definition implies that in a partial plane any two distinct lines
share at most one point.

A projective plane is a partial plane.

Levi graph of a partial plane is a bipartite graph without
4-cycles.

We say that a partial plane π1 can be embedded into a partial
plane π2 if there exists an injective map of the set of points of π1

to the set of points of π2 such that colinear points are mapped to
colinear points.

Equivalently: Levi(π1) is isomorphic to a subgraph of Levi(π2).
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Figures in finite projective planes

Problem: Given a finite partial plane π. Is there a finite projective
plane πr such that π can be embedded in πr?

Equivalently, given a finite bipartite graph without 4-cycles, is it
isomorphic to a subgraph of the Levi graph of a finite projective
plane?

P. Erdős (79), D. Welsh (76), M. Hall (???)

Problem: Which partial planes are embeddable in every sufficiently
large finite classical or finite non-classical projective plane?

• PG (2, 2) = Fano (Heawood graph) ??? H. Neumann ?

• Desargues configuration can be found in every finite projective
plane of order r ≥ 3. – T. Ostrom (56)

• Can Pappus configurartion be found in every finite projective
plane of order r ≥ 3 ???
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Figures in finite projective planes

• Does every πr contain a k-gon for every k, 3 ≤ k ≤ r2 + r + 1?

YES! – FL - K. Mellinger - O. Vega (13)

A trivial thought: Suppose we have a 4-cycle-free (m, n)-
bipartite graph G which contains more copies of a certain
subgraph H than any (m, n)-subgraph of the Levi graph of any πr .
Then H cannot be embedded in Levi(πr ).

I Levi(πr ) has more edges than any other 4-cycle-free graph G
with the same partition sizes. – I. Reiman (58)

I Levi(πr ) has more 6-cycles than any other 4-cycle-free graph
G with the same partition sizes. – FL - G. Fiorini (98)

I Levi(πr ) has more 8-cycles than any other 4-cycle-free graph
G with the same partition sizes if r ≥ 13. – FL - S. De Winter
- J. Verstraëte (08) What about 2k-cycles for k ≥ 5 ???
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- J. Verstraëte (08) What about 2k-cycles for k ≥ 5 ???



Figures in finite projective planes

The problems above led to the question of counting the number of
2k-cycles in Levi(πr ).
Let c2k(πr ) denote the number of 2k-cycles in Levi(πr ).

Explicit formuli for c2k(πr ) exists for

k = 3, 4, 5, 6 – FL - K. Mellinger - O. Vega (09)

k = 7, 8, 9, 10 – A. Voropaev (13)

In all these cases c2k(πr ) depend on k and on r ONLY!

QUESTION: Is it true that there exists k ≥ 11, such that

c2k(πq) 6= c2k(PG (2, q)) ?
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4. Hamiltonian cycles and weak pancyclicity

Let f , g : N→ (0,∞). We write

f = on(g) = o(g), if f /g → 0, n→∞.

Let (ni ) be a sequence of positive integers, ni →∞.

Let Γi = (Vni ,Eni ) – a sequence of simple graphs, |Vni | = ni .
If

|Eni | = oi (ni
2)

and say that Γi forms a sequence of sparse graphs.

If Γi is di -regular, (Γi ) sparse iff di = oi (ni ).

Example. Levi(πq) – Levi graph of a projective plane πq of order
q (bipartite point-line incidence graph of πq):

Then nq = 2(q2 + q + 1), q is a prime power,
dq = q + 1 = oq(nq): Levi(πq) is sparse.



Hamiltonian cycles and weak pancyclicity

Γ is hamiltonian if it contains a spanning cycle (= hamiltonian
cycle).

G. Dirac (1952): Let Γ have n vertices, n ≥ 3. If
dΓ(x) = d(x) ≥ n/2 for every vertex x of Γ, then Γ is hamiltonian.

O. Ore (1960): Let Γ have n vertices, n ≥ 3. If d(x) + d(y) ≥ n for
every pair of non-adjacent vertices x and y , then Γ is hamiltonian.

Closure cl(Γ) is a graph obtained from Γ by repeatedly adding a
new edge xy , connecting a nonadjacent pair of vertices x and y
such that d(x) + d(y) ≥ n.

A. Bondy - V. Chvátal (1972): Γ is hamiltonian iff cl(Γ) is
hamiltonian.

None of these theorems implies that Levi(πq) is hamiltonian.
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Hamiltonian cycles and weak pancyclicity

Is Levi(πq) is hamiltonian?

J. Singer (1938): Yes, if πq = PG (2, q) – the classical plane.

E. Schmeichel (1989): Yes, for πp = PG (2, p) (different cycle).

FL - K. Mellinger - O. Vega (2013): Yes, for all πr .

Moreover, Levi(πr ) contains a cycle of length 2k for every k ,
3 ≤ k ≤ r2 + r + 1. (weakly pancyclic)

Levi(πr ) is also known as:

• a (r + 1, 6)-cage;

• a bipartite 4-cycle-free graph with partitions of size r2 + r + 1
and having the maximum number of edges;

• a generalized 3-gon of order r : a bipartite (r + 1)-regular graph
of diameter 3 and girth 6.
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Hamiltonian cycles and weak pancyclicity

A generalized d-gon of order r is a geometry with Levi graph being
a bipartite (r + 1)-regular graph of diameter d and girth 2d .

Existence for r ≥ 2 and d ≥ 3:

J. Tits (1959) for d ∈ {4, 6} r = q – any prime power.

W. Feit and G. Higman (1964): If r ≥ 2 and d ≥ 3, it can exists
only for d ∈ {3, 4, 6}.

Here are equivalent definitions:

• a (r + 1, 2d)-cage;

• a bipartite graph of girth at least 2d with partitions of size
rd−1 + rd−2 + · · ·+ r + 1 and having the maximum number of
edges.



Hamiltonian cycles and weak pancyclicity

A generalized d-gon of order r is a geometry with Levi graph being
a bipartite (r + 1)-regular graph of diameter d and girth 2d .

Existence for r ≥ 2 and d ≥ 3:

J. Tits (1959) for d ∈ {4, 6} r = q – any prime power.

W. Feit and G. Higman (1964): If r ≥ 2 and d ≥ 3, it can exists
only for d ∈ {3, 4, 6}.

Here are equivalent definitions:

• a (r + 1, 2d)-cage;

• a bipartite graph of girth at least 2d with partitions of size
rd−1 + rd−2 + · · ·+ r + 1 and having the maximum number of
edges.



Hamiltonian cycles and weak pancyclicity

Denote a generalized (r + 1)-regular d-gon by πdr , d = 3, 4, 6.

π3
r = πr – projective plane of order q.

Easy to show that |V (Levi(πdr ))| = 2(rd−1 + rd−2 + · · ·+ r + 1).
Hence, Levi(πdr ) is sparse.

Is Levi(πdr ) hamiltonian for d = 4, 6 ???

J. Alexander - FL - A. Thomason (2016+): Yes, provided r being
sufficiently large.

Is Levi(πdr ) weakly pancyclic for d = 4, 6 ???

Not known. J. Exoo confirmed the weak pancyclicity for Levi(π4
3)

and Levi(π4
5).



Hamiltonian cycles and weak pancyclicity

More general questions:

Consider a graph Γ on n vertices with girth at least 2k + 1 and
having “MANY” edges.

Is Γ hamiltonian? Is G weakly pancyclic?



Hamiltonian cycles and weak pancyclicity

Let G(n, p) be a random graph model, and Γ ∈ G(n, p).

What is Prob [Γ is hamiltonian] ?

L. Posa (1972): If Γ ∈ G(n, p) and p = c log n/n, then Γ is
hamiltonian, i.e.,

Prob [Γ is hamiltonian]→ 1, n→∞,

provided that constant c is sufficiently large.

Note that the expected degree of a vertex of Γ is
(n − 1)p ∼ c log n = o(n),
and the expected number of edges is ∼ (c/2)n log n = o(n2) .
Hence, Γ is sparse.



Pseudo-random graphs

A. Thomason (1987): (p, α)-jumbled graphs.

F. Chung, R. Graham, R. Wilson (1989): quasi-random graphs

M. Krivelevich and B. Sudakov (2006): a survey.

Let A(Γ) be the adjacency matrix of Γ. A(Γ) is a real symmetric
matrix, and so A(Γ) has real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. If Γ
is d-regular, then λ1 = d . Let

λ = λ(Γ) := max{|λi | : i = 2, 3, . . . , n}.

Let Γ be a d-regular graph on n vertices.

The difference d − λ is called the spectral gap.
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Hamiltonian cycles and weak pancyclicity

It turns out that the spectral gap d − λ is responsible for the
pseudo-random properties of graphs:

The larger the spectral gap is, the closer the edge distribution of Γ
approaches that of a random graph G(n, d/n).

It is known that if d ≤ (1− ε)n for some ε > 0, then λ ≥ c
√
d .

If
c1

√
d < λ < c2

√
d

for some c1, c2 > 0, then then Γ is a “good” pseudo-random
graph.

For Γ ∈ G(n, 1/2),

λ(Γ) ≈ 2
√
n/2 ≈ 2

√
d .



Hamiltonian cycles and weak pancyclicity

Theorem (M. Krivelevich, B. Sudakov (2002))

Let Γ be a d-regular n-vertex graph. If n is large enough and

λ ≤ (log log n)2

1000 log n (log log log n)
d ,

then Γ is Hamiltonian.

If Γ is bipartite, then λ = | − d | = d , and the condition fails.

E.g., it fails for Levi(πdr ).
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Hamiltonian cycles and weak pancyclicity

Theorem (J. Alexander - FL - A. Thomason (2016+))

Let Γ be a d-regular n-vertex bipartite graph, and

λ = λ(Γ) := max{|λi | : i = 2, 3, . . . , n − 1}.

If n is large enough and

λ ≤ (log log n)2

2000 log n (log log log n)
d ,

then Γ is Hamiltonian.

This gave another motivation for determining bounds on λ.



Hamiltonian cycles and weak pancyclicity

The following bipartite graphs and some of their subgraphs are
hamiltonian when their order is sufficiently large:

• Generalized polygons πdr and their biaffine parts

• S. Cioabă - FL - W. Li (2014): Wenger graphs Wn(q)

• X. Cao - M. Lu - D. Wan - L.P. Wang - Q. Wang (2015):
linearized Wenger graphs Ln(q)

• E. Moorehouse - S. Sun - J. Williford (2017): graphs D(4, q)



Hamiltonian cycles and weak pancyclicity

Problem 1: Establish similar results for all q, not just sufficiently
large.

Problem 2: Strengthen a result of A. Frieze - M. Krivelevich (02)
on

the hamiltonicity of random subgraphs of d-regular pseudo-random
graphs.

This allows to show existence of smaller cycles in the graph.

At this time it is useful only for d >> n3/4(log n)3 and large n.

Thank you!


