On the girth of some algebraically defined graphs

Brian Kronenthal

Department of Mathematics
Kutztown University of Pennsylvania

Algebraic and Extremal Graph Theory Conference in honor of Willem Haemers, Felix Lazebnik, and Andrew Woldar

August 8, 2017

This talk contains joint work with:

- Felix Lazebnik and Jason Williford
- Allison Ganger, Shannon Golden, and Carter Lyons (Supported by NSF \#1560222, REU Site: Undergraduate Research in Mathematics, Applied Mathematics, and Statistics at Lafayette College.)

Motivation: What is a Generalized Quadrangle?

Definition

A generalized quadrangle of order q is an incidence structure of $q^{3}+q^{2}+q+1$ points and $q^{3}+q^{2}+q+1$ lines such that...
(1) Every point lies on $q+1$ lines; two distinct points determine at most one line.
(2) Every line contains $q+1$ points; two distinct lines have at most one point in common.
(3) If P is a point and ℓ is a line such that P is not on ℓ, then there exists a unique line that contains P and intersects ℓ.

An example: $G Q(1)$ and its point-line incidence graph

(1) Every point lies on two lines; two distinct points determine at most one line.
(2) Every line contains two points; two distinct lines have at most one point in common.
(3) If P is a point and ℓ is a line such that P is not on ℓ, then there exists a unique line that contains P and intersects ℓ.

An example: $G Q(1)$ and its point-line incidence graph

(1) Every point lies on two lines; two distinct points determine at most one line.
(2) Every line contains two points; two distinct lines have at most one point in common.
(3) If P is a point and ℓ is a line such that P is not on ℓ, then there exists a unique line that contains P and intersects ℓ.

An example: $G Q(1)$ and its point-line incidence graph

(1) Every point lies on two lines; two distinct points determine at most one line.
(2) Every line contains two points; two distinct lines have at most one point in common.
(3) If P is a point and ℓ is a line such that P is not on ℓ, then there exists a unique line that contains P and intersects ℓ.

The point-line incidence graph of $G Q(1)$ is 2-regular, has girth eight, and has diameter four.

Example: $G Q(2)$ and its point-line incidence graph

Example: $G Q(2)$ and its point-line incidence graph

Example: The incidence graph of $G Q(2)$

The "Affine Part" of $G Q(2)$ is an ADG

$\Gamma_{2}\left(x y, x y^{2}\right)$

$$
\left(x_{1}, x_{2}, x_{3}\right)
$$

$\left[y_{1}, y_{2}, y_{3}\right]$

Algebraically Defined Graphs

$\Gamma_{2}\left(x y, x y^{2}\right)$
$\left(x_{1}, x_{2}, x_{3}\right)$

$$
\left[y_{1}, y_{2}, y_{3}\right]
$$

Algebraically Defined Graphs

$$
\begin{aligned}
\Gamma_{q}\left(x y, x y^{2}\right) \\
\left(x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \bullet \bullet \bullet \cdots \bullet \bullet \bullet \bullet \bullet P=\mathbb{F}_{q}^{3} \\
& \text { adjacency iff }\left\{\begin{array}{l}
x_{2}+y_{2}=x_{1} y_{1} \\
x_{3}+y_{3}=x_{1} y_{1}^{2}
\end{array}\right. \\
& 0 \bigcirc O-\cdots \bigcirc \bigcirc O O \mathbb{F}_{q}^{3}
\end{aligned}
$$

$$
\left[y_{1}, y_{2}, y_{3}\right]
$$

Algebraically Defined Graphs

$\Gamma_{\mathbb{F}}\left(x y, x y^{2}\right)$

$$
\left(x_{1}, x_{2}, x_{3}\right)
$$

$$
\left[y_{1}, y_{2}, y_{3}\right]
$$

Algebraically Defined Graphs

$$
\Gamma_{\mathbb{F}}(f, g)
$$

$$
\left(x_{1}, x_{2}, x_{3}\right)
$$

$$
\left[y_{1}, y_{2}, y_{3}\right]
$$

Algebraically Defined Graphs (in two dimensions)

$\Gamma_{\mathbb{F}}(f)$

$$
\left(x_{1}, x_{2}\right)
$$

$\left[y_{1}, y_{2}\right]$

Algebraically Defined Graphs: Motivation

$\Gamma_{\mathbb{F}}\left(x y, x y^{2}\right)$

$$
\left(x_{1}, x_{2}, x_{3}\right)
$$

has girth eight.

- We know $\Gamma_{\mathbb{F}}\left(x y, x y^{2}\right)$

$$
\left[y_{1}, y_{2}, y_{3}\right]
$$

Algebraically Defined Graphs: Motivation

$\Gamma_{\mathbb{F}}(f, g)$

$$
\left(x_{1}, x_{2}, x_{3}\right)
$$

$$
\left[y_{1}, y_{2}, y_{3}\right]
$$

- We know $\Gamma_{\mathbb{F}}\left(x y, x y^{2}\right)$ has girth eight.
- If $\Gamma_{\mathbb{F}}(f, g)$ has girth eight, must it be isomorphic to $\Gamma_{\mathbb{F}}\left(x y, x y^{2}\right)$?

Algebraically Defined Graphs: Motivation

$\Gamma_{\mathbb{F}}(f, g)$

$$
\left(x_{1}, x_{2}, x_{3}\right)
$$

$0000 \cdots 0 \cdots 0000 \quad L=\mathbb{F}^{3}$

$$
\left[y_{1}, y_{2}, y_{3}\right]
$$

- We know $\Gamma_{\mathbb{F}}\left(x y, x y^{2}\right)$ has girth eight.
- If $\Gamma_{\mathbb{F}}(f, g)$ has girth eight, must it be isomorphic to $\Gamma_{\mathbb{F}}\left(x y, x y^{2}\right)$?
- If yes, we have an interesting characterization.

Algebraically Defined Graphs: Motivation

$\Gamma_{\mathbb{F}}(f, g)$

$$
\left(x_{1}, x_{2}, x_{3}\right)
$$

$\left[y_{1}, y_{2}, y_{3}\right]$

- We know $\Gamma_{\mathbb{F}}\left(x y, x y^{2}\right)$ has girth eight.
- If $\Gamma_{\mathbb{F}}(f, g)$ has girth eight, must it be isomorphic to $\Gamma_{\mathbb{F}}\left(x y, x y^{2}\right)$?
- If yes, we have an interesting characterization.
- If not, then we might be able to construct a new generalized quadrangle

Algebraically Defined Graphs: Motivation

$\Gamma_{\mathbb{F}}(f, g)$

$$
\left(x_{1}, x_{2}, x_{3}\right)
$$

$\left[y_{1}, y_{2}, y_{3}\right]$

- We know $\Gamma_{\mathbb{F}}\left(x y, x y^{2}\right)$ has girth eight.
- If $\Gamma_{\mathbb{F}}(f, g)$ has girth eight, must it be isomorphic to $\Gamma_{\mathbb{F}}\left(x y, x y^{2}\right)$?
- If yes, we have an interesting characterization.
- If not, then we might be able to construct a new generalized quadrangle (projective plane with a girth six $\left.\Gamma_{\mathbb{F}}(f) \neq \Gamma_{\mathbb{F}}(x y)\right)$.

What happens when $\mathbb{F}=\mathbb{F}_{q}$?

$$
\Gamma_{q}(f, g)
$$

$$
\left(x_{1}, x_{2}, x_{3}\right)
$$

- Where should we start our search over \mathbb{F}_{q} ?

$$
\begin{aligned}
& \text { adjacency iff }\left\{\begin{array}{l}
x_{2}+y_{2}=f\left(x_{1}, y_{1}\right) \\
x_{3}+y_{3}=g\left(x_{1}, y_{1}\right)
\end{array}\right. \\
& 0 \bigcirc \bigcirc \cup O \bigcirc O O \mathbb{F}_{q}^{3}
\end{aligned}
$$

$$
\left[y_{1}, y_{2}, y_{3}\right]
$$

What happens when $\mathbb{F}=\mathbb{F}_{q}$?

$\Gamma_{q}\left(x^{d} y^{b}, x^{c} y^{d}\right)$

$$
\left(x_{1}, x_{2}, x_{3}\right)
$$

- Where should we start our search over \mathbb{F}_{q} ?
- $\Gamma_{q}\left(x y, x y^{2}\right)$ has girth eight, so let's begin by studying monomial graphs.

$$
\left[y_{1}, y_{2}, y_{3}\right]
$$

What about monomial graphs (in two dimensions)?

Theorem (V. Dmytrenko, F. Lazebnik, R. Viglione; 2005)

Let $k, m, k^{\prime}, m^{\prime}$ be positive integers and let q, q^{\prime} be prime powers. Then the graphs $\Gamma_{q}\left(x^{k} y^{m}\right)$ and $\Gamma_{q^{\prime}}\left(x^{k^{\prime}} y^{m^{\prime}}\right)$ are isomorphic if and only if $q=q^{\prime}$ and the multisets

$$
\{\operatorname{gcd}(k, q-1), \operatorname{gcd}(m, q-1)\} \text { and }\left\{\operatorname{gcd}\left(k^{\prime}, q-1\right), \operatorname{gcd}\left(m^{\prime}, q-1\right)\right\}
$$

are equal.

What about monomial graphs?

Do any monomials f and g produce a girth eight graph that is not isomorphic to $\Gamma_{q}\left(x y, x y^{2}\right)$?

Conjecture (V. Dmytrenko, F. Lazebnik, J. Williford; 2007)

For any given odd prime power $q, \Gamma_{q}\left(x y, x y^{2}\right)$ is the unique girth eight algebraically defined monomial graph (up to isomorphism).

What about monomial graphs?

Do any monomials f and g produce a girth eight graph that is not isomorphic to $\Gamma_{q}\left(x y, x y^{2}\right)$?

Conjecture (V. Dmytrenko, F. Lazebnik, J. Williford; 2007)

For any given odd prime power $q, \Gamma_{q}\left(x y, x y^{2}\right)$ is the unique girth eight algebraically defined monomial graph (up to isomorphism).

Theorem (V. Dmytrenko, F. Lazebnik, J. Williford; 2007)

Let $q=p^{e}$ be an odd prime power. Then every monomial graph $\Gamma_{q}\left(x^{a} y^{b}, x^{c} y^{d}\right)$ of girth at least eight is isomorphic to the graph $\Gamma_{q}\left(x y, x^{k} y^{2 k}\right)$, where k is not divisible by p. If $q \geq 5$, then:
(1) $\left((x+1)^{2 k}-1\right) x^{q-1-k}-2 x^{q-1} \in \mathbb{F}_{q}[x]$ is a permutation polynomial of \mathbb{F}_{q}.
(2) $\left((x+1)^{k}-x^{k}\right) x^{k} \in \mathbb{F}_{q}[x]$ is a permutation polynomial of \mathbb{F}_{q}.

Results on monomial graphs

Theorem (V. Dmytrenko, F. Lazebnik, J. Williford; 2007)

(1) Let $q=p^{e}$ with $p \geq 5$ prime and $e=2^{m} 3^{n}$ for integers $m, n \geq 0$. Then every girth eight monomial graph $\Gamma_{q}\left(x^{a} y^{b}, x^{c} y^{d}\right)$ is isomorphic to $\Gamma_{q}\left(x y, x y^{2}\right)$.
(2) For all odd $q, 3 \leq q \leq 10^{10}$, every girth eight monomial graph $\Gamma_{q}\left(x^{a} y^{b}, x^{c} y^{d}\right)$ is isomorphic to $\Gamma_{q}\left(x y, x y^{2}\right)$.

Results on monomial graphs

Theorem (V. Dmytrenko, F. Lazebnik, J. Williford; 2007)

(1) Let $q=p^{e}$ with $p \geq 5$ prime and $e=2^{m} 3^{n}$ for integers $m, n \geq 0$. Then every girth eight monomial graph $\Gamma_{q}\left(x^{a} y^{b}, x^{c} y^{d}\right)$ is isomorphic to $\Gamma_{q}\left(x y, x y^{2}\right)$.
(2) For all odd $q, 3 \leq q \leq 10^{10}$, every girth eight monomial graph $\Gamma_{q}\left(x^{a} y^{b}, x^{c} y^{d}\right)$ is isomorphic to $\Gamma_{q}\left(x y, x y^{2}\right)$.

Theorem (BGK; 2012)

Let $q=p^{e}$ be an odd prime power, with $p \geq p_{0}$, a lower bound that depends only on the largest prime divisor of e.
Then every girth eight monomial graph $\Gamma_{q}\left(x^{a} y^{b}, x^{c} y^{d}\right)$ is isomorphic to $\Gamma_{q}\left(x y, x y^{2}\right)$.

More results on monomial graphs

Theorem (X. Hou, S.D. Lappano, F. Lazebnik; 2017)

Let q be an odd prime power. Then every girth eight monomial graph $\Gamma_{q}\left(x^{a} y^{b}, x^{c} y^{d}\right)$ is isomorphic to $\Gamma_{q}\left(x y, x y^{2}\right)$.

This means that we'll have to expand our search to algebraically defined graphs where f and g are not both monomials.

Binomial graphs

Theorem (V. Dmytrenko; 2004)

Let $q=p^{e}$ be an odd prime power, and let $G=\Gamma_{q}(x y, f)$ be a binomial graph, where $f(x, y)=\beta x^{k_{1}} y^{m_{1}}+\alpha x^{k_{2}} y^{m_{2}}, \alpha \beta \neq 0$.
Then there is a constant C such that for $q>C$, the graph G either has girth six or $G \cong \Gamma_{q}\left(x y, x^{m} y^{2 m}\right)$, where $\operatorname{gcd}(m, q-1)=1$.

Results for more complicated f seem difficult; where else can we look?

Polynomial graphs . . . over fields of characteristic zero

In two dimensions:

Theorem (F. Lazebnik and BGK; 2013)

Let \mathbb{F} be an algebraically closed field of characteristic zero. Suppose $f \in \mathbb{F}[x, y]$ and the graph $\Gamma_{\mathbb{F}}(f)$ has girth at least six. Then $\Gamma_{\mathbb{F}}(f)$ is isomorphic to $\Gamma_{\mathbb{F}}(x y)$.

Polynomial graphs . . . over fields of characteristic zero

In two dimensions:

Theorem (F. Lazebnik and BGK; 2013)

Let \mathbb{F} be an algebraically closed field of characteristic zero. Suppose $f \in \mathbb{F}[x, y]$ and the graph $\Gamma_{\mathbb{F}}(f)$ has girth at least six. Then $\Gamma_{\mathbb{F}}(f)$ is isomorphic to $\Gamma_{\mathbb{F}}(x y)$.

In three dimensions:

```
Theorem (F. Lazebnik, J. Williford, and BGK; 2017+ \(k=m=1\) case: F. Lazebnik and BGK; 2016)
```

Let \mathbb{F} be an algebraically closed field of characteristic zero, and let k and m be positive integers. Suppose $f \in \mathbb{F}[x, y]$ and the graph $\Gamma_{\mathbb{F}}\left(x^{k} y^{m}, f\right)$ has girth at least eight. Then $\Gamma_{\mathbb{F}}\left(x^{k} y^{m}, f\right)$ is isomorphic to $\Gamma_{\mathbb{F}}\left(x y, x y^{2}\right)$.

What does this tell us about the finite fields case?

Theorem

Let q be a power of a prime $p, p \geq 5$. Suppose that $f \in \mathbb{F}_{q}[x, y]$ has degree at most $p-2$ with respect to each of x and y. Then there exists a positive integer $M=M(k, m, q)$ such that for all positive integers r :

- (F. Lazebnik and BGK; 2016)
every graph $\Gamma_{q^{M r}}(x y, f)$ of girth at least eight is isomorphic to $\Gamma_{q^{M r}}\left(x y, x y^{2}\right)$, where $M=M(p)$ is the least common multiple of the integers $1,2, \ldots p-2$.
- (F. Lazebnik, J. Williford, and BGK; 2017+) every graph $\Gamma_{q^{M r}}\left(x^{k} y^{m}, f\right)$ of girth at least eight is isomorphic to $\Gamma_{q^{M r}}\left(x y, x y^{2}\right)$, where k and m are relatively prime to p and $M=M(k, m, q)$ is the least common multiple of the integers $\phi(k)$, $\phi(m), 2,3, \ldots$, and $4 p-15$, where ϕ is Euler's totient function.

What does this tell us about the finite fields case?

Theorem

Let q be a power of a prime $p, p \geq 5$. Suppose that $f \in \mathbb{F}_{q}[x, y]$ has degree at most $p-2$ with respect to each of x and y. Then there exists a positive integer $M=M(k, m, q)$ such that for all positive integers r :

- (F. Lazebnik and BGK; 2016)
every graph $\Gamma_{q^{M r}}(x y, f)$ of girth at least eight is isomorphic to $\Gamma_{q^{M r}}\left(x y, x y^{2}\right)$, where $M=M(p)$ is the least common multiple of the integers $1,2, \ldots p-2$.
- (F. Lazebnik, J. Williford, and BGK; 2017+) every graph $\Gamma_{q^{M r}}\left(x^{k} y^{m}, f\right)$ of girth at least eight is isomorphic to $\Gamma_{q^{M r}}\left(x y, x y^{2}\right)$, where k and m are relatively prime to p and $M=M(k, m, q)$ is the least common multiple of the integers $\phi(k)$, $\phi(m), 2,3, \ldots$, and $4 p-15$, where ϕ is Euler's totient function.

Algebraically defined graphs over \mathbb{R} (in two dimensions)

Theorem (A.J. Ganger, S.N. Golden, C.A. Lyons, BGK; 2017+) Let $f \in \mathbb{R}[x, y]$. Every graph $\Gamma_{\mathbb{R}}(f)$ has girth at most six.

Theorem (A.J. Ganger, S.N. Golden, C.A. Lyons, BGK; 2017+)

Let $f(x, y)=\sum_{i, j \in \mathbb{N}} \alpha_{i, j} x^{i} y^{j} \in \mathbb{R}[x, y]$. The girth of $\Gamma_{\mathbb{R}}(f)$ is as indicated for the following families of f :

Girth 4

- $\sum_{i, j \in \mathbb{N}} \alpha_{i, j}=0$
- $\sum_{i, j \in 2 \mathbb{N}+1} \alpha_{i, j}=0$
- $\sum_{i, j \in \mathbb{N}}\left(\alpha_{i, j} x^{2 i} y^{j}+\beta_{i, j} x^{i} y^{2 j}\right)$ such that all non-zero $\alpha_{i, j}>0$ or all non-zero $\alpha_{i, j}<0$
- $\alpha_{3,3} x^{3} y^{3}+\alpha_{2,2} x^{2} y^{2}+\alpha_{1,1} x y$ such that $\left(\alpha_{2,2}\right)^{2}>3 \alpha_{1,1} \alpha_{3,3}$
- Largest or smallest exponent is even
- Coefficients on largest and smallest power terms have opposite signs
- Let p be the smallest even power of x. All terms $x^{i} y^{j}$ with $i \leq p$ are mixed.

Girth 6

- $\alpha_{3,3} x^{3} y^{3}+\alpha_{2,2} x^{2} y^{2}+\alpha_{1,1} x y$ such that $\left(\alpha_{2,2}\right)^{2} \leq 3 \alpha_{1,1} \alpha_{3,3}$

Open Questions

- Let $f, g \in \mathbb{F}_{q}[x, y]$ such that f and g are not both monomials. Classify $\Gamma_{q}(f, g)$ according to girth.
- Let $f, g \in \mathbb{C}[x, y]$ such that neither f nor g is a monomial. Classify $\Gamma_{\mathbb{C}}(f, g)$ according to girth.
- Let $f, g \in \mathbb{R}[x, y]$. Classify $\Gamma_{\mathbb{R}}(f, g)$ according to girth.

