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Motivation: What is a Generalized Quadrangle?

Definition

A generalized quadrangle of order q is an incidence structure of
q3 + q2 + q + 1 points and q3 + q2 + q + 1 lines such that...

1 Every point lies on q + 1 lines; two distinct points determine at most
one line.

2 Every line contains q + 1 points; two distinct lines have at most one
point in common.

3 If P is a point and ` is a line such that P is not on `, then there exists
a unique line that contains P and intersects `.
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An example: GQ(1) and its point-line incidence graph

1 Every point lies on two lines; two distinct points determine at most
one line.

2 Every line contains two points; two distinct lines have at most one
point in common.

3 If P is a point and ` is a line such that P is not on `, then there exists
a unique line that contains P and intersects `.
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The point-line incidence graph of GQ(1) is 2-regular, has girth eight, and
has diameter four.
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Example: GQ(2) and its point-line incidence graph
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Example: The incidence graph of GQ(2)
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The “Affine Part” of GQ(2) is an ADG

(x1, x2, x3)

[y1, y2, y3]

P = F3
2

L = F3
2

Γ2(xy , xy2)

adjacency iff

{
x2 + y2 = x1y1

x3 + y3 = x1y
2
1

∼=
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Algebraically Defined Graphs
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Algebraically Defined Graphs

· · ·· · ·

· · ·· · ·

(x1, x2, x3)

[y1, y2, y3]

P = F3

L = F3

ΓF(f , g)

adjacency iff

{
x2 + y2 = f (x1, y1)

x3 + y3 = g(x1, y1)
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Algebraically Defined Graphs (in two dimensions)

· · ·· · ·

· · ·· · ·

(x1, x2)

[y1, y2]

P = F2

P = F2

ΓF(f )

adjacency iff x2 + y2 = f (x1, y1)
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Algebraically Defined Graphs: Motivation

· · ·· · ·

· · ·· · ·

(x1, x2, x3)

[y1, y2, y3]

P = F3

L = F3

ΓF(xy , xy2)

adjacency iff

{
x2 + y2 = x1y1

x3 + y3 = x1y
2
1

We know ΓF(xy , xy2)
has girth eight.

If ΓF(f , g) has girth
eight, must it be
isomorphic to
ΓF(xy , xy2)?

If yes, we have an
interesting
characterization.

If not, then we might be
able to construct a new
generalized quadrangle
(projective plane with a
girth six ΓF(f ) 6∼= ΓF(xy)).
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What happens when F = Fq?

· · ·· · ·

· · ·· · ·

(x1, x2, x3)

[y1, y2, y3]

P = F3
q

L = F3
q

Γq(f , g)

adjacency iff

{
x2 + y2 = f (x1, y1)

x3 + y3 = g(x1, y1)

Where should we start
our search over Fq?

Γq(xy , xy2) has girth
eight, so let’s begin by
studying monomial
graphs.
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· · ·· · ·

· · ·· · ·

(x1, x2, x3)

[y1, y2, y3]

P = F3
q

L = F3
q

Γq(xayb, xcyd)

adjacency iff

{
x2 + y2 = xa1y

b
1

x3 + y3 = xc1 y
d
1

Where should we start
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What about monomial graphs (in two dimensions)?

Theorem (V. Dmytrenko, F. Lazebnik, R. Viglione; 2005)

Let k ,m, k ′,m′ be positive integers and let q, q′ be prime powers. Then
the graphs Γq(xkym) and Γq′(x

k ′ym
′
) are isomorphic if and only if q = q′

and the multisets

{gcd(k , q − 1), gcd(m, q − 1)} and {gcd(k ′, q − 1), gcd(m′, q − 1)}

are equal.
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What about monomial graphs?

Do any monomials f and g produce a girth eight graph that is not
isomorphic to Γq(xy , xy2)?

Conjecture (V. Dmytrenko, F. Lazebnik, J. Williford; 2007)

For any given odd prime power q, Γq(xy , xy2) is the unique girth eight
algebraically defined monomial graph (up to isomorphism).

Theorem (V. Dmytrenko, F. Lazebnik, J. Williford; 2007)

Let q = pe be an odd prime power. Then every monomial graph
Γq(xayb, xcyd) of girth at least eight is isomorphic to the graph
Γq(xy , xky2k), where k is not divisible by p. If q ≥ 5, then:

1 ((x + 1)2k − 1)xq−1−k − 2xq−1 ∈ Fq[x ] is a permutation polynomial
of Fq.

2 ((x + 1)k − xk)xk ∈ Fq[x ] is a permutation polynomial of Fq.
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Results on monomial graphs

Theorem (V. Dmytrenko, F. Lazebnik, J. Williford; 2007)

1 Let q = pe with p ≥ 5 prime and e = 2m3n for integers m, n ≥ 0.
Then every girth eight monomial graph Γq(xayb, xcyd) is isomorphic
to Γq(xy , xy2).

2 For all odd q, 3 ≤ q ≤ 1010, every girth eight monomial graph
Γq(xayb, xcyd) is isomorphic to Γq(xy , xy2).

Theorem (BGK; 2012)

Let q = pe be an odd prime power, with p ≥ p0, a lower bound that
depends only on the largest prime divisor of e.
Then every girth eight monomial graph Γq(xayb, xcyd) is isomorphic to
Γq(xy , xy2).
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More results on monomial graphs

Theorem (X. Hou, S.D. Lappano, F. Lazebnik; 2017)

Let q be an odd prime power. Then every girth eight monomial graph
Γq(xayb, xcyd) is isomorphic to Γq(xy , xy2).

This means that we’ll have to expand our search to algebraically defined
graphs where f and g are not both monomials.
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Binomial graphs

Theorem (V. Dmytrenko; 2004)

Let q = pe be an odd prime power, and let G = Γq(xy , f ) be a binomial
graph, where f (x , y) = βxk1ym1 + αxk2ym2 , αβ 6= 0.
Then there is a constant C such that for q > C, the graph G either has
girth six or G ∼= Γq(xy , xmy2m), where gcd(m, q − 1) = 1.

Results for more complicated f seem difficult; where else can we look?
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Polynomial graphs . . . over fields of characteristic zero

In two dimensions:

Theorem (F. Lazebnik and BGK; 2013)

Let F be an algebraically closed field of characteristic zero. Suppose
f ∈ F[x , y ] and the graph ΓF(f ) has girth at least six. Then ΓF(f ) is
isomorphic to ΓF(xy).

In three dimensions:

Theorem (F. Lazebnik, J. Williford, and BGK; 2017+
k = m = 1 case: F. Lazebnik and BGK; 2016)

Let F be an algebraically closed field of characteristic zero, and let k and
m be positive integers. Suppose f ∈ F[x , y ] and the graph ΓF(xkym, f )
has girth at least eight. Then ΓF(xkym, f ) is isomorphic to ΓF(xy , xy2).

Brian Kronenthal On the girth of some algebraically defined graphs



Polynomial graphs . . . over fields of characteristic zero

In two dimensions:

Theorem (F. Lazebnik and BGK; 2013)

Let F be an algebraically closed field of characteristic zero. Suppose
f ∈ F[x , y ] and the graph ΓF(f ) has girth at least six. Then ΓF(f ) is
isomorphic to ΓF(xy).

In three dimensions:

Theorem (F. Lazebnik, J. Williford, and BGK; 2017+
k = m = 1 case: F. Lazebnik and BGK; 2016)

Let F be an algebraically closed field of characteristic zero, and let k and
m be positive integers. Suppose f ∈ F[x , y ] and the graph ΓF(xkym, f )
has girth at least eight. Then ΓF(xkym, f ) is isomorphic to ΓF(xy , xy2).

Brian Kronenthal On the girth of some algebraically defined graphs



What does this tell us about the finite fields case?

Theorem

Let q be a power of a prime p, p ≥ 5. Suppose that f ∈ Fq[x , y ] has
degree at most p − 2 with respect to each of x and y. Then there exists a
positive integer M = M(k ,m, q) such that for all positive integers r :

(F. Lazebnik and BGK; 2016)
every graph ΓqMr (xy , f ) of girth at least eight is isomorphic to
ΓqMr (xy , xy2), where M = M(p) is the least common multiple of the
integers 1, 2, . . . p − 2.

(F. Lazebnik, J. Williford, and BGK; 2017+)
every graph ΓqMr (xkym, f ) of girth at least eight is isomorphic to
ΓqMr (xy , xy2), where k and m are relatively prime to p and
M = M(k ,m, q) is the least common multiple of the integers φ(k),
φ(m), 2, 3, . . . , and 4p − 15, where φ is Euler’s totient function.
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Algebraically defined graphs over R (in two dimensions)

Theorem (A.J. Ganger, S.N. Golden, C.A. Lyons, BGK; 2017+)

Let f ∈ R[x , y ]. Every graph ΓR(f ) has girth at most six.

Brian Kronenthal On the girth of some algebraically defined graphs



Theorem (A.J. Ganger, S.N. Golden, C.A. Lyons, BGK; 2017+)

Let f (x , y) =
∑
i ,j∈N

αi ,jx
iy j ∈ R[x , y ]. The girth of ΓR(f ) is as indicated for

the following families of f :

Girth 4

∑
i,j∈N

αi,j = 0

∑
i,j∈2N+1

αi,j = 0

∑
i,j∈N

(
αi,j x

2i y j + βi,j x
i y2j
)

such that all non-zero

αi,j > 0 or all non-zero αi,j < 0

α3,3x
3y3 + α2,2x

2y2 + α1,1xy such that

(α2,2)
2 > 3α1,1α3,3

Largest or smallest exponent is even

Coefficients on largest and smallest power terms have
opposite signs

Let p be the smallest even power of x. All terms x i y j

with i ≤ p are mixed.

Girth 6

∑
i,j∈2N+1

αi,j x
i y j such that all non-zero αi,j > 0 or

all αi,j < 0

α3,3x
3y3 + α2,2x

2y2 + α1,1xy such that

(α2,2)
2 ≤ 3α1,1α3,3
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Open Questions

Let f , g ∈ Fq[x , y ] such that f and g are not both monomials.
Classify Γq(f , g) according to girth.

Let f , g ∈ C[x , y ] such that neither f nor g is a monomial. Classify
ΓC(f , g) according to girth.

Let f , g ∈ R[x , y ]. Classify ΓR(f , g) according to girth.
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