ALGEBRAIC DIGRAPHS

Alex Kodess Department of Mathematics University of Rhode Island kodess@uri.edu

Felix Lazebnik Department of Math. Sci. University of Delaware fellaz@udel.edu

Algebraic and Extremal Graph Theory University of Delaware August 7–10, 2017

What is a digraph?

Definition

A *digraph* is a pair D = (V, A) of:

a set V, whose elements are called *vertices* or *nodes*

a set A of ordered pairs of vertices, called *arcs*, *directed edges*, or *arrows*

What is an algebraic digraph $D(q; \mathbf{f})$?

Let

 \mathbb{F}_q be a *finite field* with q elements; $\mathbf{f} = (f_1, \dots, f_l) \colon \mathbb{F}_q^2 \to \mathbb{F}_q^l$, each f_i is a bivariate polynomial (*defining polynomials*).

Definition

An algebraic digraph, denoted $D(q; \mathbf{f})$, is a digraph whose vertex set is \mathbb{F}_q^{l+1}

arc set consits of ordered pairs $((x_1, \ldots, x_{l+1}), (y_1, \ldots, y_{l+1}))$ with the relation

$$x_i + y_i = f_{i-1}(x_1, y_1), \text{ for all } i, \ 2 \le i \le l+1.$$

Example of $D(q; \mathbf{f})$

$$V(D) = \mathbb{F}_q^4$$

$$\mathbf{f} = (f_1, f_2, f_3) \colon \mathbb{F}_q^2 \to \mathbb{F}_q^3$$

There is an arc from vertex (x_1, x_2, x_3, x_4) to vertex (y_1, y_2, y_3, y_4) if and only if

$$\begin{aligned} x_2 + y_2 &= x_1 y_1^3 + 3x_1^2 y_1^5 &= f_1(x_1, y_1) \\ x_3 + y_3 &= 2x_1 y_1^2 &= f_2(x_1, y_1) \\ x_4 + y_4 &= x_1 y_1 + x_1^2 y_1^3 &= f_3(x_1, y_1) \end{aligned}$$

Definition

A monomial algebraic digraph, denoted D(q; m, n), is an algebraic graph in which

vertex set V is \mathbb{F}_q^2 , so $\mathbf{f} = f_1$, and there is an arc from (x_1, x_2) to (y_1, y_2) if and only if

$$x_2 + y_2 = x_1^m y_1^n =: f_1(x_1, y_1).$$

D(3; 1, 2)

has $3^2 = 9$ vertices, each is a pair (x, y), $x, y \in \mathbb{F}_3$ there is $(x_1, x_2) \rightarrow (y_1, y_2)$ if and only if

$$x_2 + y_2 = x_1^1 y_1^2$$

Motivation (from Extremal Graph Theory)

Work of:

```
Lazebnik, Woldar (2001)
Viglione (2001)
Dmytrenko, Lazebnik, Viglione (2005)
```

Bipartite udirected $B\Gamma_n$

 $V(B\Gamma_n) = P_n \cup L_n, \text{ both } P_n \text{ and } L_n \text{ are copies of } \mathbb{F}_q^n$ point $(p) = (p_1, \dots, p_n)$ is adjacent to line $[I] = (I_1, \dots, I_n)$ if $I_2 + p_2 = f_2(p_1, I_1)$ $I_3 + p_3 = f_3(p_1, I_1, p_2, I_2)$ \vdots $I_n + p_n = f_n(p_1, I_1, p_2, I_2, \dots, p_{n-1}, I_{n-1}).$

Let

 C_n denote the cycle of length $n \geq 3$

 $ex(v, \{C_3, C_4, \ldots, C_{2k}\})$ denote the greatest number of edges in a graph or order v which contains no subgraphs isomorphic to any C_3, \ldots, C_{2k} .

Theorem (Lazebnik, Ustimenko, Woldar 1995)

$$ex(v, \{C_3, C_4, \ldots, C_{2k}\}) \ge c_k v^{1+\frac{2}{3k-3+\epsilon}},$$

where c_k is a positive function of k, and $\epsilon = 0$ if $k \neq 5$ is odd, and $\epsilon = 1$ if k is even.

This lower bounds comes from $B\Gamma_n$ with a certain choice of defining functions f_i , $2 \le i \le n$.

Some Upper Bounds on $ex(v, \{C_3, C_4, \ldots, C_{2k}\})$

Erdős, Bondy-Simonovits, 1974

$$ex(v, \{C_3, C_4, \dots, C_{2k}\}) \leq 20kv^{1+(1/k)}$$
, for v sufficiently large.

Verstraëte, 2000

$$ex(v, \{C_3, C_4, \dots, C_{2k}\}) \le 8(k-1)v^{1+(1/k)}$$
, for v sufficiently large.

Pikhurko, 2012

$$ex(v, \{C_3, C_4, \ldots, C_{2k}\}) \leq (k-1)v^{1+(1/k)} + O(v)$$
.

Bukh, Jiang, 2014

$$ex(v, \{C_3, C_4, \dots, C_{2k}\}) \le 80\sqrt{k \log k} \cdot v^{1+(1/k)} + O(v)$$
.

Equal number of cycles

D(17; 1, 4) and D(17; 1, 12) are easy to show to be non-isomorphic, but they contain equal numbers of copies of C_k , for $3 \le k \le 13$.

Problems/Questions Addressed

- ✓ (Strong) connectivity for the general digraph $D(q; \mathbf{f})$ (number and size of components as well as their structure)
- Diameter for monomial digraphs $\mathbf{f}(x, y) = f_1(x, y) = x^m y^n$ (techniques include Additive Combinatorics such as Waring's Problem; and Hasse-Weil bound). Most known bounds are not tight.
- Isomorphism problem: when are D(q; f) and D(q; h) isomorphic? We only have a partial result for monomial digraphs.

Diameter of D(q; m, n)

Theorem (Kodess, Lazebnik, Smith, Sporre, 2016)

If $D_q = D(q; m, n)$ is strong, then:

 $\operatorname{diam}(D_q(q; m, n)) \leq C \sqrt{\max\{m, n\} + 1}$

Theorem (Kodess, Lazebnik, Smith, Sporre, 2016)

If $D_q = D(q; m, n)$ is strong, then:

if $q > (\max(m, n))^2$ *, then* $diam(D_q) \le 49$

if $q > (\min(m, n))^4$, then $\operatorname{diam}(D_q) \le 13$

Comment

Proofs are based on bounds on Waring's number by J. Cipra and T. Cochrane

Open Conjecture

Conjecture

 $D(q; m_1, n_1) \cong D(q; m_2, n_2)$ if and only if there exists k coprime with q-1 such that

 $m_2 \equiv km_1 \mod (q-1),$

 $n_2 \equiv kn_1 \mod (q-1).$

Example

 $D(13^7; 1, 2) \cong D(13^7; 5, 10)$

Comments

easy to prove sufficiency

partial results about necessity

checked with SageMath for many different values of q

Alex Kodess, Felix Lazebnik Algebraic Digraphs

THANK YOU!