ALGEBRAIC DIGRAPHS

Alex Kodess
Department of Mathematics University of Rhode Island kodess@uri.edu

Felix Lazebnik
Department of Math. Sci.
University of Delaware
fellaz@udel.edu

Algebraic and Extremal Graph Theory University of Delaware
August 7-10, 2017

What is a digraph?

Definition

A digraph is a pair $D=(V, A)$ of: a set V, whose elements are called vertices or nodes a set A of ordered pairs of vertices, called arcs, directed edges, or arrows

What is an algebraic digraph $D(q ; \mathbf{f})$?

Let
\mathbb{F}_{q} be a finite field with q elements;
$\mathbf{f}=\left(f_{1}, \ldots, f_{l}\right): \mathbb{F}_{q}^{2} \rightarrow \mathbb{F}_{q}^{\prime}$, each f_{i} is a bivariate polynomial (defining polynomials).

Definition

An algebraic digraph, denoted $D(q ; \mathbf{f})$, is a digraph whose vertex set is \mathbb{F}_{q}^{I+1}
arc set consits of ordered pairs $\left(\left(x_{1}, \ldots, x_{I+1}\right),\left(y_{1}, \ldots, y_{I+1}\right)\right)$
with the relation

$$
x_{i}+y_{i}=f_{i-1}\left(x_{1}, y_{1}\right), \quad \text { for all } i, 2 \leq i \leq I+1
$$

Example of $D(q ; \mathbf{f})$

$$
\begin{aligned}
& V(D)=\mathbb{F}_{q}^{4} \\
& \mathbf{f}=\left(f_{1}, f_{2}, f_{3}\right): \mathbb{F}_{q}^{2} \rightarrow \mathbb{F}_{q}^{3}
\end{aligned}
$$

There is an arc from vertex $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ to vertex $\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ if and only if

$$
\begin{array}{ll}
x_{2}+y_{2}=x_{1} y_{1}^{3}+3 x_{1}^{2} y_{1}^{5} & =f_{1}\left(x_{1}, y_{1}\right) \\
x_{3}+y_{3}=2 x_{1} y_{1}^{2} & =f_{2}\left(x_{1}, y_{1}\right) \\
x_{4}+y_{4}=x_{1} y_{1}+x_{1}^{2} y_{1}^{3} & =f_{3}\left(x_{1}, y_{1}\right)
\end{array}
$$

Definition

A monomial algebraic digraph, denoted $D(q ; m, n)$, is an algebraic graph in which
vertex set V is \mathbb{F}_{q}^{2}, so $\mathbf{f}=f_{1}$, and
there is an arc from $\left(x_{1}, x_{2}\right)$ to $\left(y_{1}, y_{2}\right)$ if and only if

$$
x_{2}+y_{2}=x_{1}^{m} y_{1}^{n}=: f_{1}\left(x_{1}, y_{1}\right)
$$

$D(3 ; 1,2)$

has $3^{2}=9$ vertices, each is a pair $(x, y), x, y \in \mathbb{F}_{3}$ there is $\left(x_{1}, x_{2}\right) \rightarrow\left(y_{1}, y_{2}\right)$ if and only if

$$
x_{2}+y_{2}=x_{1}^{1} y_{1}^{2}
$$

$D(3 ; 1,2): x_{2}+y_{2}=x_{1}^{1} y_{1}^{2}$

Work of:

Lazebnik, Woldar (2001)
Viglione (2001)
Dmytrenko, Lazebnik, Viglione (2005)
Bipartite udirected $B \Gamma_{n}$
$V\left(B \Gamma_{n}\right)=P_{n} \cup L_{n}$, both P_{n} and L_{n} are copies of \mathbb{F}_{q}^{n}
point $(p)=\left(p_{1}, \ldots, p_{n}\right)$ is adjacent to line $[I]=\left(I_{1}, \ldots, I_{n}\right)$ if

$$
\begin{aligned}
I_{2}+p_{2} & =f_{2}\left(p_{1}, l_{1}\right) \\
l_{3}+p_{3} & =f_{3}\left(p_{1}, l_{1}, p_{2}, l_{2}\right) \\
& \vdots \\
I_{n}+p_{n} & =f_{n}\left(p_{1}, l_{1}, p_{2}, l_{2}, \ldots, p_{n-1}, l_{n-1}\right)
\end{aligned}
$$

Application of $B \Gamma_{n}$ to extremal problems

Let

C_{n} denote the cycle of length $n \geq 3$
ex $\left(v,\left\{C_{3}, C_{4}, \ldots, C_{2 k}\right\}\right)$ denote the greatest number of edges in a graph or order v which contains no subgraphs isomorphic to any $C_{3}, \ldots, C_{2 k}$.

Theorem (Lazebnik, Ustimenko, Woldar 1995)

$$
e x\left(v,\left\{C_{3}, C_{4}, \ldots, C_{2 k}\right\}\right) \geq c_{k} v^{1+\frac{2}{3 k-3+\epsilon}},
$$

where c_{k} is a positive function of k, and $\epsilon=0$ if $k \neq 5$ is odd, and $\epsilon=1$ if k is even.

This lower bounds comes from $B \Gamma_{n}$ with a certain choice of defining functions $f_{i}, 2 \leq i \leq n$.

Some Upper Bounds on ex $\left(v,\left\{C_{3}, C_{4}, \ldots, C_{2 k}\right\}\right)$

Erdős, Bondy-Simonovits, 1974
$e x\left(v,\left\{C_{3}, C_{4}, \ldots, C_{2 k}\right\}\right) \leq 20 k v^{1+(1 / k)}$, for v sufficiently large.
Verstraëte, 2000
$e x\left(v,\left\{C_{3}, C_{4}, \ldots, C_{2 k}\right\}\right) \leq 8(k-1) v^{1+(1 / k)}$, for v sufficiently large.
Pikhurko, 2012

$$
e x\left(v,\left\{C_{3}, C_{4}, \ldots, C_{2 k}\right\}\right) \leq(k-1) v^{1+(1 / k)}+O(v)
$$

Bukh, Jiang, 2014

$$
e x\left(v,\left\{C_{3}, C_{4}, \ldots, C_{2 k}\right\}\right) \leq 80 \sqrt{k \log k} \cdot v^{1+(1 / k)}+O(v) .
$$

A peculiar detail

Equal number of cycles

$D(17 ; 1,4)$ and $D(17 ; 1,12)$ are easy to show to be non-isomorphic, but they contain equal numbers of copies of C_{k}, for $3 \leq k \leq 13$.
...and other small digraphs (many of them)

\checkmark (Strong) connectivity for the general digraph $D(q ; f)$ (number and size of components as well as their structure)

- Diameter for monomial digraphs $\mathbf{f}(x, y)=f_{1}(x, y)=x^{m} y^{n}$ (techniques include Additive Combinatorics such as Waring's Problem; and Hasse-Weil bound). Most known bounds are not tight.
- Isomorphism problem: when are $D(q ; \mathbf{f})$ and $D(q ; \mathbf{h})$ isomorphic? We only have a partial result for monomial digraphs.

Diameter of $D(q ; m, n)$

Theorem (Kodess, Lazebnik, Smith, Sporre, 2016)
If $D_{q}=D(q ; m, n)$ is strong, then:

$$
\operatorname{diam}\left(D_{q}(q ; m, n)\right) \leq C \sqrt{\max \{m, n\}+1}
$$

Theorem (Kodess, Lazebnik, Smith, Sporre, 2016)

If $D_{q}=D(q ; m, n)$ is strong, then:

$$
\begin{aligned}
& \text { if } q>(\max (m, n))^{2}, \text { then } \operatorname{diam}\left(D_{q}\right) \leq 49 \\
& \text { if } q>(\min (m, n))^{4}, \text { then } \operatorname{diam}\left(D_{q}\right) \leq 13
\end{aligned}
$$

Comment

Proofs are based on bounds on Waring's number by J. Cipra and T. Cochrane

Open Conjecture

Conjecture

$D\left(q ; m_{1}, n_{1}\right) \cong D\left(q ; m_{2}, n_{2}\right)$ if and only if there exists k coprime with $q-1$ such that

$$
\begin{aligned}
m_{2} & \equiv k m_{1} \quad \bmod (q-1) \\
n_{2} & \equiv k n_{1} \quad \bmod (q-1)
\end{aligned}
$$

Example

$D\left(13^{7} ; 1,2\right) \cong D\left(13^{7} ; 5,10\right)$

Comments

easy to prove sufficiency
partial results about necessity
checked with SageMath for many different values of q

THANK YOU!

