On Erdős－Ko－Rado graphs and Chvátal＇s conjecture

Vikram M．Kamat

Department of Mathematics，University of Richmond

Notation and definitions

- $[n]=\{1, \ldots, n\}$, for some positive integer n.
- $2^{[n]}=\{A: A \subseteq[n]\}$
- $\binom{[n]}{r}=\left\{A \in 2^{[n]}:|A|=r\right\}$.
- $\mathcal{F} \subseteq 2^{[n]}$ called an intersecting family on [n] if for any $A, B \in \mathcal{F}, A \cap B \neq \emptyset$.
- e.g. $-\mathcal{F}=\{\{1,2,3\},\{2,3,4\},\{1,3,4\}\}$ is an intersecting 3 -uniform family on [4].

Intersecting set systems - examples

- A "star" - a collection of sets that share a fixed, common element called the "star center".

Intersecting set systems - examples

- A "star" - a collection of sets that share a fixed, common element called the "star center".
- Size of largest star provides a tight upper bound of $\mathbf{2}^{\mathbf{n - 1}}$ for maximum intersecting subfamilies of $2^{[n]}$.
- A second extremal example: $\mathcal{F}=\{A \subseteq[n]:|A|>\lfloor n / 2\rfloor\}$ (for odd n).

Uniform intersecting families

Theorem (Erdős-Ko-Rado, 61)
If $r \leq n / 2$ and $\mathcal{A} \subseteq\binom{[n]}{r}$ is intersecting, then $|\mathcal{A}| \leq\binom{ n-1}{r-1}$. If $r<n / 2$, equality holds if and only if $\mathcal{A}=\left\{A \in\binom{[n]}{r}: x \in A\right\}$ for some $x \in X$.

Uniform intersecting families

Theorem (Erdős-Ko-Rado, 61)
If $r \leq n / 2$ and $\mathcal{A} \subseteq\binom{[n]}{r}$ is intersecting, then $|\mathcal{A}| \leq\binom{ n-1}{r-1}$. If $r<n / 2$, equality holds if and only if $\mathcal{A}=\left\{A \in\binom{[n]}{r}: x \in A\right\}$ for some $x \in X$.

Proofs:

- Induction using shifting (Erdős et al., '61)
- Cyclic permutations (Katona, '72)
- Kruskal-Katona theorem (Daykin, '74)
- Algebraic approaches
- Eigenvalues / Hoffman's ratio bound (Godsil, '01)
- Linear algebra (Füredi et al., '06)

Uniform intersecting families

Theorem (Erdős-Ko-Rado, 61)
If $r \leq n / 2$ and $\mathcal{A} \subseteq\binom{[n]}{r}$ is intersecting, then $|\mathcal{A}| \leq\binom{ n-1}{r-1}$. If $r<n / 2$, equality holds if and only if $\mathcal{A}=\left\{A \in\binom{[n]}{r}: x \in A\right\}$ for some $x \in X$.

Proofs:

- Induction using shifting (Erdős et al., '61)
- Cyclic permutations (Katona, '72)
- Kruskal-Katona theorem (Daykin, '74)
- Algebraic approaches
- Eigenvalues / Hoffman's ratio bound (Godsil, '01)
- Linear algebra (Füredi et al., '06)
- Shadows of intersecting families (Frankl-Füredi, 2012)
- Injective proof using shifting (Hurlbert-K., 2017)

King Arthur and the Knights of the Round Table

Definition (The Erdős-Ko-Rado problem for cycles)
Let $\mathcal{J}^{r}\left(C_{n}\right)$ be the family of all r-sized independent sets of the cycle on n vertices. If $\mathcal{F} \subseteq \mathcal{J}^{r}\left(C_{n}\right)$ is intersecting, how big can it be?

King Arthur and the Knights of the Round Table

Definition (The Erdős-Ko-Rado problem for cycles)
Let $\mathcal{J}^{r}\left(C_{n}\right)$ be the family of all r-sized independent sets of the cycle on n vertices. If $\mathcal{F} \subseteq \mathcal{J}^{r}\left(C_{n}\right)$ is intersecting, how big can it be?

Theorem (Talbot, 2000)
$|\mathcal{F}| \leq\binom{ n-r-1}{r-1}$.
$\binom{n-r-1}{r-1}$ is the size of the star centered at any vertex $x \in C_{n}$.

King Arthur and the Knights of the Round Table

Definition (The Erdős-Ko-Rado problem for cycles)
Let $\mathcal{J}^{r}\left(C_{n}\right)$ be the family of all r-sized independent sets of the cycle on n vertices. If $\mathcal{F} \subseteq \mathcal{J}^{r}\left(C_{n}\right)$ is intersecting, how big can it be?

Theorem (Talbot, 2000)
$|\mathcal{F}| \leq\binom{ n-r-1}{r-1}$.
$\binom{n-r-1}{r-1}$ is the size of the star centered at any vertex $x \in C_{n}$.

- For $r \geq 1$, say that a graph G has the " r-EKR property" if at least one maximum intersecting family of r-independent sets in G is a star.
- Can we prove a result analogous to Talbot's theorem for all graphs?

King Arthur and the Knights of the Round Table

Definition (The Erdős-Ko-Rado problem for cycles)
Let $\mathcal{J}^{r}\left(C_{n}\right)$ be the family of all r-sized independent sets of the cycle on n vertices. If $\mathcal{F} \subseteq \mathcal{J}^{r}\left(C_{n}\right)$ is intersecting, how big can it be?

Theorem (Talbot, 2000)
$|\mathcal{F}| \leq\binom{ n-r-1}{r-1}$.
$\binom{n-r-1}{r-1}$ is the size of the star centered at any vertex $x \in C_{n}$.

- For $r \geq 1$, say that a graph G has the " r-EKR property" if at least one maximum intersecting family of r-independent sets in G is a star.
- Can we prove a result analogous to Talbot's theorem for all graphs?
- The answer (obviously) is No!

Möbius ladder on $n=4 k+2$ vertices not r-EKR if $r=\frac{n}{2}-1$

Mobius ladder on 6 vertices not 2-EKR
Maximum star $=\{13,15\}$. Maximum non-star $=\{13,15,35\}$

A Conjecture on EKR graphs

Definition ("Minimax" independence number) $\mu(G)$: minimum size of maximal independent set in G.

Conjecture (Holroyd-Talbot, 2005)
If $r \leq \mu(G) / 2, G$ is $r-E K R$.

A Conjecture on EKR graphs

Definition ("Minimax" independence number) $\mu(G)$: minimum size of maximal independent set in G.
Conjecture (Holroyd-Talbot, 2005)
If $r \leq \mu(G) / 2, G$ is r-EKR.

True for:

- Disjoint union of complete graphs, paths (Holroyd-Spencer-Talbot, '05)
- Certain classes of interval graphs, containing a singleton (Borg-Holroyd, '08)
- All chordal graphs containing a singleton (Hurlbert-K., '11)

A Conjecture on EKR graphs

Definition ("Minimax" independence number) $\mu(G)$: minimum size of maximal independent set in G.
Conjecture (Holroyd-Talbot, 2005) If $r \leq \mu(G) / 2, G$ is r-EKR.

True for:

- Disjoint union of complete graphs, paths (Holroyd-Spencer-Talbot, '05)
- Certain classes of interval graphs, containing a singleton (Borg-Holroyd, '08)
- All chordal graphs containing a singleton (Hurlbert-K., '11)
- Graphs without singletons:
- Disjoint union of two cycles (Hilton-Spencer, '09)
- Chains of complete graphs (Hurlbert-K., '11)
- Graphs with separation conditions (Borg, '13)

Graphs without singletons

Maximum Stars in Trees

- Intermediate Question: Where do the centers of the maximum stars in trees lie?

Theorem (Hurlbert - K., 2011)
For tree T and $1 \leq r \leq 4$, a maximum star of r-independent vertex sets in T is centered at a leaf.

Maximum Stars in Trees

- Intermediate Question: Where do the centers of the maximum stars in trees lie?

Theorem (Hurlbert - K., 2011)
For tree T and $1 \leq r \leq 4$, a maximum star of r-independent vertex sets in T is centered at a leaf.

- Not true when $r \geq 5$. (Baber: 2011, Feghali - Johnson Thomas, Borg: 2016)

A Counterexample

Figure: For $r=5$, the root vertex beats all leaves

Special classes - Elongated Claws

Figure: The 7-claw $C[2,2,4,4,6,7,8]$

Results for Elongated n-Claws

Theorem (Feghali - Johnson - Thomas, 2016)
For $G=C\left[1_{1}, \ldots, I_{n}\right]$:

1. If $l_{1}=1$ and $r \leq n / 2, G$ is $r-E K R$.
2. If $l_{1}=\cdots=I_{n}=2$ and $r \leq \mu(G) / 2$, G is $r-E K R$.

Results for Elongated n-Claws

> Theorem (Feghali - Johnson - Thomas, 2016)
> For $G=C\left[I_{1}, \ldots, I_{n}\right]$:
> 1. If $I_{1}=1$ and $r \leq n / 2, G$ is r-EKR.
> 2. If $I_{1}=\cdots=I_{n}=2$ and $r \leq \mu(G) / 2$, G is r-EKR.

Theorem (Hurlbert - K., 2017)
For an elongated n-claw $G=C\left[I_{1}, \ldots, I_{n}\right]$ with set of leaves $[n]$, where leaf i is at distance l_{i} from the root, and $1 \leq r \leq \alpha(G)$, there is a maximum star centered at a leaf. Furthermore:

1. If $I_{i}<l_{j}$ and both I_{i} and l_{j} are odd, then $\left|\mathcal{J}_{j}^{r}(G)\right| \leq\left|\mathcal{J}_{i}^{r}(G)\right|$.
2. If $l_{i}<l_{j}$ and both l_{i} and l_{j} are even, then $\left|\mathcal{J}_{i}^{r}(G)\right| \leq\left|\mathcal{J}_{j}^{r}(G)\right|$.
3. If l_{i} is even and l_{j} is odd, $\left|\mathcal{J}_{i}^{r}(G)\right| \leq\left|\mathcal{J}_{j}^{r}(G)\right|$.

Results for Elongated n-Claws

> Theorem (Feghali - Johnson - Thomas, 2016)
> For $G=C\left[I_{1}, \ldots, I_{n}\right]$:
> 1. If $I_{1}=1$ and $r \leq n / 2, G$ is r-EKR.
> 2. If $I_{1}=\cdots=I_{n}=2$ and $r \leq \mu(G) / 2$, G is r-EKR.

Theorem (Hurlbert - K., 2017)
For an elongated n-claw $G=C\left[I_{1}, \ldots, I_{n}\right]$ with set of leaves $[n]$, where leaf i is at distance l_{i} from the root, and $1 \leq r \leq \alpha(G)$, there is a maximum star centered at a leaf. Furthermore:

1. If $I_{i}<l_{j}$ and both I_{i} and l_{j} are odd, then $\left|\mathcal{J}_{j}^{r}(G)\right| \leq\left|\mathcal{J}_{i}^{r}(G)\right|$.
2. If $l_{i}<l_{j}$ and both l_{i} and l_{j} are even, then $\left|\mathcal{J}_{i}^{r}(G)\right| \leq\left|\mathcal{J}_{j}^{r}(G)\right|$.
3. If l_{i} is even and l_{j} is odd, $\left|\mathcal{J}_{i}^{r}(G)\right| \leq\left|\mathcal{J}_{j}^{r}(G)\right|$.

The question of whether or not elongated n-claws obey the Holroyd-Talbot conjecture remains open.

The Holy Grail - Chvátal's conjecture

Definition (Hereditary family)
A family $\mathcal{F} \subseteq 2^{[n]}$ is called hereditary if $F \in \mathcal{F}$ and $G \subseteq F$ implies $G \in \mathcal{F}$.

Conjecture (Chvátal, 1974)
If $\mathcal{F} \subseteq 2^{[n]}$ is hereditary and $\mathcal{G} \subseteq \mathcal{F}$ is intersecting, then there exists an $x \in[n]$ such that $|\mathcal{G}| \leq\left|\mathcal{F}_{x}\right|=\{F \in \mathcal{F}: x \in F\}$.

The Holy Grail - Chvátal's conjecture

Definition (Hereditary family)
A family $\mathcal{F} \subseteq 2^{[n]}$ is called hereditary if $F \in \mathcal{F}$ and $G \subseteq F$ implies $G \in \mathcal{F}$.

Conjecture (Chvátal, 1974)
If $\mathcal{F} \subseteq 2^{[n]}$ is hereditary and $\mathcal{G} \subseteq \mathcal{F}$ is intersecting, then there exists an $x \in[n]$ such that $|\mathcal{G}| \leq\left|\mathcal{F}_{x}\right|=\{F \in \mathcal{F}: x \in F\}$.

- Many of the EKR graphs results stated earlier imply Chvátal's conjecture for subfamilies of the independence complex of the corresponding graph class.

Progress on Chvátal's Conjecture

- $\cap\{\max \mathcal{H}\} \neq \emptyset$ (Schonheim, '75)
- \mathcal{H} left-shifted for some $x \in[n]$ (Snevily, '92)
- $|\mathcal{I}|_{\text {max }}=|\mathcal{H}| / 2$ (Miklos, '84. Wang, '02)
- Union of uniform subfamilies of $\mathcal{H}, \mu(\mathcal{H})$ large (Borg, '07)
- $\mathcal{H} \subseteq\left(\begin{array}{c}{\left[\begin{array}{c}{[n]} \\ \leq 3\end{array}\right) .(\text { Sterboul, '74) }) ~(1)}\end{array}\right.$

Progress on Chvátal's Conjecture

- $\cap\{\max \mathcal{H}\} \neq \emptyset$ (Schonheim, '75)
- \mathcal{H} left-shifted for some $x \in[n]$ (Snevily, '92)
- $|\mathcal{I}|_{\text {max }}=|\mathcal{H}| / 2$ (Miklos, '84. Wang, '02)
- Union of uniform subfamilies of $\mathcal{H}, \mu(\mathcal{H})$ large (Borg, '07)
- $\mathcal{H} \subseteq\left(\begin{array}{c}{\left[\begin{array}{c}{[n]} \\ \leq 3\end{array}\right) .(\text { Sterboul, '74) }) ~(n) ~}\end{array}\right.$
$-\mathcal{H} \subseteq\binom{[n]}{\leq 3},|\mathcal{I}|_{\max } \geq 31$. (Czabarka, Hurlbert, K.,'17)

Progress on Chvátal's Conjecture

- $\cap\{\max \mathcal{H}\} \neq \emptyset$ (Schonheim, '75)
- \mathcal{H} left-shifted for some $x \in[n]$ (Snevily, '92)
- $|\mathcal{I}|_{\max }=|\mathcal{H}| / 2$ (Miklos, '84. Wang, '02)
- Union of uniform subfamilies of $\mathcal{H}, \mu(\mathcal{H})$ large (Borg, '07)
- $\mathcal{H} \subseteq\binom{[n]}{\leq 3}$. (Sterboul, '74)
$-\mathcal{H} \subseteq\binom{[n]}{\leq 3},|\mathcal{I}|_{\max } \geq 31$. (Czabarka, Hurlbert, K.,'17)

Hurlbert-K. Injection for EKR

- $\mathcal{F}=\{124,126,146\} \cup$
$\{234,236,245,246,247,256,267,346,456,467\}$
- left shift: $6 \rightarrow 3$
- $\{123,124,134\} \cup$
$\{234,235,236,237,245,246,247,345,346,347\}$
- left shift: $4 \rightarrow 1$
- $\{123,124,125,126,127,134,135,136,137\} \cup$ $\{234,235,236,237\}$
- partially complement \mathcal{F}_{0}
- $\{123,124,125,126,127,134,135,136,137\} \cup$ $\{156,146,145,147\}$

