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Notation and definitions

I [n] = {1, . . . ,n}, for some positive integer n.

I 2[n] = {A : A ⊆ [n]}

I
([n]

r

)
= {A ∈ 2[n] : |A| = r}.

I F ⊆ 2[n] called an intersecting family on [n] if for any
A,B ∈ F , A ∩ B 6= ∅.

I e.g. – F = {{1,2,3}, {2,3,4}, {1,3,4}} is an intersecting
3-uniform family on [4].



Intersecting set systems – examples

I A “star” – a collection of sets that share a fixed, common
element called the “star center”.

– Size of largest star provides a tight upper bound of 2n−1 for
maximum intersecting subfamilies of 2[n].

– A second extremal example: F = {A ⊆ [n] : |A| > bn/2c}
(for odd n).
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Uniform intersecting families

Theorem (Erdős-Ko-Rado, 61)
If r ≤ n/2 and A ⊆

([n]
r

)
is intersecting, then |A| ≤

(n−1
r−1

)
. If

r < n/2, equality holds if and only if A = {A ∈
([n]

r

)
: x ∈ A} for

some x ∈ X.

Proofs:
I Induction using shifting (Erdős et al., ’61)
I Cyclic permutations (Katona, ’72)
I Kruskal–Katona theorem (Daykin, ’74)
I Algebraic approaches

– Eigenvalues / Hoffman’s ratio bound (Godsil, ’01)
– Linear algebra (Füredi et al., ’06)

I Shadows of intersecting families (Frankl–Füredi, 2012)
I Injective proof using shifting (Hurlbert–K., 2017)
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Theorem (Erdős-Ko-Rado, 61)
If r ≤ n/2 and A ⊆

([n]
r

)
is intersecting, then |A| ≤

(n−1
r−1

)
. If

r < n/2, equality holds if and only if A = {A ∈
([n]

r

)
: x ∈ A} for

some x ∈ X.
Proofs:

I Induction using shifting (Erdős et al., ’61)
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King Arthur and the Knights of the Round Table

Definition (The Erdős–Ko–Rado problem for cycles)
Let J r (Cn) be the family of all r -sized independent sets of the
cycle on n vertices. If F ⊆ J r (Cn) is intersecting, how big can it
be?

Theorem (Talbot, 2000)
|F| ≤

(n−r−1
r−1

)
.(n−r−1

r−1

)
is the size of the star centered at any vertex x ∈ Cn.

I For r ≥ 1, say that a graph G has the “r -EKR property” if at
least one maximum intersecting family of r -independent
sets in G is a star.

I Can we prove a result analogous to Talbot’s theorem for all
graphs?

I The answer (obviously) is No!
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Möbius ladder on n = 4k + 2 vertices not r -EKR if r = n
2 − 1
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Maximum star = {13, 15}. Maximum non−star = {13, 15, 35}

Mobius ladder on 6 vertices not 2−EKR



A Conjecture on EKR graphs

Definition (“Minimax” independence number)
µ(G): minimum size of maximal independent set in G.

Conjecture (Holroyd–Talbot, 2005)
If r ≤ µ(G)/2, G is r -EKR.

True for:
I Disjoint union of complete graphs, paths

(Holroyd–Spencer–Talbot, ’05)
I Certain classes of interval graphs, containing a singleton

(Borg–Holroyd, ’08)
I All chordal graphs containing a singleton (Hurlbert–K., ’11)
I Graphs without singletons:

– Disjoint union of two cycles (Hilton–Spencer, ’09)
– Chains of complete graphs (Hurlbert–K., ’11)
– Graphs with separation conditions (Borg, ’13)
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Graphs without singletons



Maximum Stars in Trees

I Intermediate Question: Where do the centers of the
maximum stars in trees lie?

Theorem (Hurlbert – K., 2011)
For tree T and 1 ≤ r ≤ 4, a maximum star of r -independent
vertex sets in T is centered at a leaf.

I Not true when r ≥ 5. (Baber: 2011, Feghali – Johnson –
Thomas, Borg: 2016)
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A Counterexample

Figure: For r = 5, the root vertex beats all leaves



Special classes – Elongated Claws

Figure: The 7-claw C[2,2,4,4,6,7,8]



Results for Elongated n-Claws

Theorem (Feghali – Johnson – Thomas, 2016)
For G = C[l1, . . . , ln]:

1. If l1 = 1 and r ≤ n/2, G is r -EKR.
2. If l1 = · · · = ln = 2 and r ≤ µ(G)/2, G is r -EKR.

Theorem (Hurlbert – K., 2017)
For an elongated n-claw G = C[l1, . . . , ln] with set of leaves [n],
where leaf i is at distance li from the root, and 1 ≤ r ≤ α(G),
there is a maximum star centered at a leaf. Furthermore:

1. If li < lj and both li and lj are odd, then |J r
j (G)| ≤ |J r

i (G)|.
2. If li < lj and both li and lj are even, then |J r

i (G)| ≤ |J r
j (G)|.

3. If li is even and lj is odd, |J r
i (G)| ≤ |J r

j (G)|.

The question of whether or not elongated n-claws obey the
Holroyd–Talbot conjecture remains open.
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The Holy Grail – Chvátal’s conjecture

Definition (Hereditary family)
A family F ⊆ 2[n] is called hereditary if F ∈ F and G ⊆ F
implies G ∈ F .

Conjecture (Chvátal, 1974)
If F ⊆ 2[n] is hereditary and G ⊆ F is intersecting, then there
exists an x ∈ [n] such that |G| ≤ |Fx | = {F ∈ F : x ∈ F}.

– Many of the EKR graphs results stated earlier imply
Chvátal’s conjecture for subfamilies of the independence
complex of the corresponding graph class.
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Progress on Chvátal’s Conjecture

I ∩{maxH} 6= ∅ (Schonheim, ’75)

I H left-shifted for some x ∈ [n] (Snevily, ’92)

I |I|max = |H|/2 (Miklos, ’84. Wang, ’02)

I Union of uniform subfamilies of H, µ(H) large (Borg, ’07)

I H ⊆
( [n]
≤3

)
. (Sterboul, ’74)

– H ⊆
(
[n]
≤3

)
, |I|max ≥ 31. (Czabarka, Hurlbert, K.,’17)

THANK YOU!
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Hurlbert-K. Injection for EKR

I F = {124,126,146} ∪
{234,236,245,246,247,256,267,346,456,467}

– left shift: 6→ 3

I {123,124,134} ∪
{234,235,236,237,245,246,247,345,346,347}

– left shift: 4→ 1

I {123,124,125,126,127,134,135,136,137} ∪
{234,235,236,237}

– partially complement F0

I {123,124,125,126,127,134,135,136,137} ∪
{156,146,145,147}


