Designs and extremal hypergraph
problems

Z. Firedi

Rényi Institute of Mathematics, Budapest, Hungary

z—furedi@illinois.edu

Algebraic and Extremal Graph Theory

a conference in honor of
Willem Haemers, Felix Lazebnik, and Andrew Woldar
University of Delaware, USA, August 7—10, 2017.



Abstract

Let F be a (finite) class of k-uniform hypergraphs, and let ex(n, F)
denote its Turan number, i.e., the maximum size of the F-free,
n-vertex, k-uniform hypergraphs. In other words, we consider
maximal k-hypergraphs satisfying a local constraint. E.g., a Steiner
system S(n, k, t) is just a maximum k-hypergraph with no two sets
intersecting in t or more elements.

In this lecture old and new Turan type problems are considered. We
emphasize constructions applying algebraic/design theoretic tools
with some additional twists. Here is a conjecture from the 1980’s.

Let 4 = {1283,456,124,356} and H be a U-free triple system on n
vertices. l.e., H does not contain four distinct members

A B C,DcHsuchthat AnNB=CnNnD=0and AuUB=CuUD,in
other words, H does not have two disjoint pairs with the same union.
We conjecture that |#| < (5). Equality can be obtained by replacing
the 5-element blocks of an S(n,5,2) by its 3-subsets.



The aim of this lecture

Problems and results in Extremal Combinatorics
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which are leading to symmetric designs.
TURAN PROBLEM FOR GRAPHS

. Def’s
. The four-cycle, C, and finite projective planes
. A few other graphs

EXTREMAL PROBLEMS ABOUT TRIPLE SYSTEMS

. Turan’s conjectures
. The Turan number of the Fano plane
. K4— and the design S»(6, 3, 2)

r-UNIFORM GRAPHS

. A problem with an extremum from S(11,5,4), S(12,6,5)
. A conjecture concerning S(n, 5, 2)

. Grid-free linear hypergraphs

. Sparse Steiner sytems.



Turan’s theorem
Turan type graph problems

Kp+1 := complete graph,
Thp := max p-partite graph on n.

Theorem. Mantel (1903) (for K3)

Turan (1940)

e(Gn) > e(Thp) = Kpi+1 € Gn.

Unique extremal graph for Kp 1.

E.g.: the largest triangle-free graph is the complete bipartite
one with |n?/4| edges.



General question

Given a family F of forbidden graphs.
What is the maximum of e(Gy) if G, does not contain
subgraphs F € 7?

Notation: ex(n, 7) := max e(G)

ex(n, Kpe1) = (1= 1) (3) + O(n).



General asymptotics

Erdos-Stone-Simonovits (1946), (1966)

If

inx(F)=p+1
minx(F) =p+

ex(n, F) = <1 - :)) <g> + o(n?).

then

The asymptotics depends only on the
minimum chromatic number.



Octahedron Theorem
Erdds-Simonovits

For Os, n > ng, the extremal graph is a complete bipartite
graph + on one side an extremal for C4 + on the other
side a matching.

Excluded: octahedron extremal graph



The Problem of Quadrilateral free Graphs
Cy4:= four-cycle

ex(n, C4) :=max{e(G) : G, is quadrilateral-free}.

Fan, F is C4-free, ex(n, Cq) > 3(n—1).
Petersen graph is Cs-free, ex(10, C4) > 15.



A simple upper bound
Theorem (Erdds, 1938)

ex(n, C4) = ©(n*/?).

Upper bound. G, is Cs-free <= |N(x) N N(y)| < 1.
Count the paths of length 2.

deg(X))

n
( 2) > the number of paths of length2in G = Z ( 5

xeV

Use convexity (3) > n(dge).
This gives

n—12> dye(daye — 1) = %(1 + vV4n —3) > duye.



A large bipartite C,-free graph
E. Klein 1938, Reiman 1958.

DEF: bipartite incidency graph of a finite plane, Pq.
Letn=2(qg°> +q+1),

The two parts V(G) are P and £

p € PisadjacenttoLe Lin Gifpe L.

Ng(L1) N NG(LQ) =LiNnLk = ‘N1 N NQ‘ <1
= @Gis Cs-free.
2 nn
e(G) = (q+1)(q" +g+1) = (1+0(1))/ 55> hence

ex(n, Cq) > (1 + 0(1))Ln3/2 for all n.

2v/2



A polarity of the Desarguesian plane

A polarity in the Fano plane.

If P is Desarguesian, then a = can be defined as
(x,y,2) <> [x,y,z]. Then two points (x,y,z) and (x, y’,Z') are
joined in G if and only if xx’ + yy’ + zz’' = 0.



Many absolute elements
Corollary. If n=g¢? + g+ 1, g > 1, prime(power) then

1 1
50°(q+1) <ex(@® +q+1.Ca) < 5(a° +a+1)(q+1).

A theorem of Baer (1946) states that for every polarity has at
least g + 1 absolute points, a(7) > q + 1.

So the lower bound above cannot be improved in this way, the
polarity graph cannot have more edges.

Erdds conjectured that the polarity graph is optimal for large q.



Infinitely many exact values
Erdds conj. was proved in the following stronger form.

Theorem 1. (ZF 1983 for g = 2%, ZF 1996 for all g).
Let G be a quadrilateral-free graph on g° + q + 1 vertices, with
qg+#1,7,9,11,13. Then

1
£(G)] < 5q(q+ 1)
Probably holds for all g.

Corollary If 3 a polarity graph with a(7) = g + 1, then

1
ex(¢®+q+1,Ca) = 5a(q + 1)

QUESTION: Extremal graphs?



The extremal graphs

Theorem 2. (ZF)

Let G be a quadrilateral-free graph on g + q + 1 vertices,
q > 24, such that |£(G)| = 3q(gq + 1)
Then G is the polarity graph.



Symmetric (g° + g + 2, q + 1,2)-packings

We use the theory of quasi-designs.

We need results of Ryser (1974), Schellenberg (1974) and
Lamken, Mullin and Vanstone (1985), who investigated 0-1
intersecting families on g% + g + 2 points.

DEF: A (g + 1)-uniform hypergraph C with g? + g + 2 vertices is
called a special packing if

— it covers every pair at most once,

— it consists of (g2 + g + 2) blocks.

Observation: can yield extremal Cy-free graphs!
Question: Are there infinitely many? (Unsolved).



Conjectures

Erdds conjectured that

lex(n, C4) — %n3/2\ = O(v/n).

This conjecture is out of reach at present, even if one knew that the
gap between two consecutive primes is only O(log® p).

McCuaig conjectures that

each extremal graph is a subgraph of a polarity graph.
It was proven only for n < 21.



The case n < 31

McCuaig (1985) and Clapham, Flockart and Sheehan (1989)
determined ex(n, C4) and all the extremal graphs for n < 21.
This analysis was extended to n < 31 by Yuansheng and
Rowlinson (1992) by an extensive computer search.

For n = 7 there are 5 extremal graphs.
(The last one is the polarity graph, g = 2.)



Other values (i.e, n# g> + g+ 1)

Firke, Kosik, Nash, and Williford 2013 determined

ex(g° +q,C4) (when g =2%).
They claimed that they are very close to show that
the extremal graph = polarity graph minus a vertex.

Tait and Timmons 2015
presented a very good construction for n = g% — g — 2.



No C4, no Cs.

The points-lines incidency graph of a finite plane gives
a bipartite C4-free graph on
n=2(q%> + q+ 1) vertices, (g + 1)(g? + g + 1) edges.

CONJECTURE. (Erd6s and Simonovits)
ex(n, {Cs, C4}) = (1 + 0(1))(n/2)*2.
Garnick, Kwong, and Lazebnik 1993 gave the exact value of

ex(n, {Cz, C4}) for all nup to 24.
Garnick and Nieuwajaar 1992: for all n < 27.



Graphs without K ;. 1

Thm. (ZF 1996) t > 1, fixed

]
ex(n, Kor11) = é\/En3/2 + O(n*?).

Upper bound.
Easy, a special case of Kdvari-T. Sos-Turan, 1956.
In G, any two vertices have < t common neighbors.

n B d(x) 2e/n
t<2> > the number of 2—paths_)§/< 5 > > n( 5 )

Hence

e(G) < =(1+ /1 +4t(n—1)).

S



A large graph without K5 ;_ 1

Construction.

Let g be a prime power, (g — 1)/t is an integer, F := F,.

Aim: a Ky 1, 1-free graph G on (g® — 1)/t vertices

with every vertex of degree gor g — 1.

H:={1,h k2, ... ht="}, h € F an element of order t.

The vertices of G are the t-element orbits of
(FxF)\(0,0)

under the action of multiplication by powers of h.

Two classes (a, b) and (x, y) are joined by an edge if

ax+ by € H.

This construction was inspired by examples of Hyltén-Cavallius
(1958) and Moérs (1981) given for Zarankiewicz’s problem.



Further directions of research

No Cs, no C4 = girth is at least 5.
Lazebnik, Ustimenko, and Woldar 1995, 1997:
Dense graphs of high girth.

Lazebnik and Woldar 2000, 2001
Graphs defined by systems of equations.



Hypergraph extremal problems
mainly triple systems

3-uniform hypergraphs: H = (V,H)

X %
% %

The complete 4-graph, the Fano configuration and the
octahedron

Question: exz(n,H) =7



The famous Turan conjecture (1960)

The following is an extremal structure for Kf) :

The famous Turan conjecture

If it is true: there is no stability (Brown/Kostochka).



Another conjecture of Turan

The “complete bipartite” 3-graph is extremal for KéB).

ex(n, K7) = (1 + o(1)) (g) (?)



The Fano configuration, F;

O

It is a 3-graph of seven edges(=triples) and seven vertices.

F; is 3-chromatic. (The smallest one.)



Conjecture (V. T. S6s (TRUE!))

For n > ny partition [n] = X U X with ||X| — [X|| <1 and
consider all the triplets containing at least one vertex from both
X and X. Then the 3-uniform hypergraph obtained, B(X, X), is
extremal for F.




Asymptotics for F;

Theorem [de Caen and ZF 2000].

ex(n, F7) = i(;’) +O(mP).



The Fano-extremal 3-graphs

Extremal theorem. [ZF-Simonovits 2002]
If H is a triple system on n > ny vertices not containing
F; and of maximum cardinality, then x(H) = 2. Thus

wine= ()-()- (%)

Remark. The same was proved independently, in a fairly
similar way, by P. Keevash and Benny Sudakov.



Three triples on four vertices
Problem of ex3(n, K, ).

K, := 3 triples on 4 points, {123, 124,134}, 2

Question (Brown, Erdos, T. Sés 1973/1976)
exz(n, K, ) =7?

F C <[g]), V 4 elements span at most 2 triples. max F =7
Upper bounds:
de Caen ;(g) + o(n®), Matthias < ; — 10728, Mubayi

< :13 —3x107°%, Razborov (2012) etal. < 0.2871 ...



No three triples on four vertices, constructions

Lower bounds. ]
Erdds, T. S6s 1982 > (g) + o(rd). )
o

. 1/n
> — .
Rodl / Frankl & ZF > 7] (3>

Take cyclic triangles
in a random tournament. 1

Frankl & ZF: Blow up an S(6,3,2) .
10 triples on 6 vertices yield 10 x (g)3 = %6 triples. Iterate!

2
Conjecture ex3(n. K, ) = = (g) +o(n?) ?



Definition of the S;(6, 3, 2) triple system




Blowing up and iterating the 6 groups




A Conjecture of Erdos and Sos

HC (['3’]) and every link is bipartite then

[H| < (14 0(1))n%/24.
Link has no triangle < there is no H(4, 3).
Link is bipartite = thereis no H(4,3).
A construction:
Take a random tournament on [n].
H := { the vertex sets of directed triangles }.



A problem with an extremum from the Witt designs
Yk :={ABC:AABCCI|ANB =k—-1,ANBNC =0}

Theorem (Bollobas for k = 3, Sidorenko 1987 for k = 4, Frankl,
ZF 1989 for k = 5,6. Asked by de Caen.)

ex(n, X3) < (n/3)3
ex(n, X4) < (n/4)*
ex(n,Xs) < %ns

with equality holding for n > ng, 11|n,

11
eX(I’I, Ze) S @FIS

with equality holding for n > ng, 12|n.



Construction from Witt designs

Take an S(11,5, 4) Steiner system W1.
11

It has (( )) = 66 quintuples on 11 elements such that
4

every 4-tuple is covered exactly once.
Especially, |An B| < 3 holds for every two sets.

Let 11|nand [n] = X7 U Xo U Xi1, | Xj| = n/11.
Take the blow up of Wy with parts Xi,..., Xi4, i.e.,
F:={Ac|n:|Al=5and {i: ANX; # 0} € Wy1}.

Fhasno¥s, and |F|=66(%)°.

Similar constructrion for k = 6 from the other small Witt design.

15
Wiz is a S(12,6,5) design, it has ((g)) = 132 six-tuples.
5

lts blow-up contains 132({%)® edges contains no .



Better results
T :={{1,2,3,...,k},{1,2,3,... .k =1,k + 1},
{k,k+1,...,2k —1}}.
Tk € 2.
Observation (Frankl, ZF 1989)

ex(n, Xx) < ex(n, Tx) < ex(n, Lx) + Ok(n*1).

Theorem

ex(n, zk) = ex(n: Tk)
for n > ny(k) and k = 3 by Frankl, ZF 1983, for k = 4 by
Pikhurko 2008, for k = 5,6 by Norin and Yepremyan 2017.
(Stability, 31 pages.)



Disjoint union free families

No AuUB=CuDwithAnB=0=CnD
(for four distinct A, B, C, and D).

Problem (Erdds, 1970’s)
F < () with no two pairs of disjoint members with the same
union.

DU, (n) := max |F| =?

Theorem (ZF, 1983) (: 1) < DUk(n) < ;(k Z 1>-

7/2 was improved to 3 By Mubayi and Verstraéte (2004) and
to 13/9 by Pikhurko and Verstraéte (2009) (for n > m).

n

Conjecture DUj3(n) = <2

) for inf’ many times.



Disjoint triples with the same union

2 4

3 6

U := {123, 124, 356, 456}.
eX3(n,Z/{) =7



Four triples obtained from disjoint pairs

2

-

3

123, 124, 356, 456.



A disjoint-union-free triple system
Start with a S(n, 5, 2) and
fill up the 5-tuples with ((3)/(3)) x (3) = (g) triples.

\><T

7



No triangles, no r x r grids

UF,(n,r) := max |F| : F () such that
AlUAU---UA=B1U---UB,

and A;, B € Fimply {A, A, ..., A} = {Bi,..., B}

Theorem (ZF & Ruszinké 2013)

There exists a 3 = 5(r) > 0 such that foralln>r > 4

1
e PV199n < ex(n, {Isp, Ts, Grer}) < UF(n, 1) < 11 1)).

r(r—
sl
{ 3 4
OEOED cC A
% .
rx rgrid, Gr«, Triangle T, a member of [>»

CONJECTURE: UF,(n, r) = o(n?) for all r > 3.
What other small substructures can be avoided?



Grid-free linear hypergraphs

Corollary (Grid-free packings)
For r > 4 there exists a real ¢, > 0 such that there are linear

r-uniform hypergraphs F on n vertices containing no grids and
n(n—1)
r(r—1)

5

|F| > —¢n®/5,

n(n—1)
r(r—1)
holds for every n,r > 4.

—¢rn®/® < ex,(n, {52, Grur}) <

n(n—1)
r(r—1)

Conjecture (grid-free Steiner systems)

3 an n(r) such that, for every admissible n > n(r) (this means
that (n—1)/(r —1) and (3)/(3) are both integers)

there exists a grid-free S(n, r, 2).



Grid-free triple systems

In the case of r = 3 with probabilistic method we only have

Q(n1'8) < 6X3(n, {H227G3><3}) < %n(n — 1),

Conjecture
The asymptotic exz(n, {I>2, Gz.3}) = ©(n?) holds for r = 3, too.
There are infinitely many Steiner triple systems avoiding G3z3.

There is a large literature of the existence of Steiner triple
systems avoiding certain (small) subconfigurations.



A Conjecture on Sparse Steiner systems

A STS(n) is called e-sparse if
every set of e distinct triples span at least e + 3 points.

Conjecture ( Erdds 1973)

For every e > 2 there exists an ny(e) such that if n > ny(e)
and n is admissible (i.e., n=1 or3 (mod6)),

then there exists an e-sparse STS(n).

Solution for e = 4 by Brouwer 1977, Murphy 1990, 1993, Ling
and Colbourn 2000, Grannell, Griggs and Whitehead 2000.

e = 5 by Colbourn, Mendelsohn, Rosa, and Siran 1994,
Fujiwara 2006 and Wolfe 2005, 2008.

Infinitely many constructions for 6-sparse by Forbes, Grannell
and Griggs 2007, 2009.

Teirlinck writes in his 2009 review “currently no nontrivial
example of a 7-sparse Steiner triple system is known”.



The end

THANK YOU



