Ranks of matrices with few distinct entries

Boris Bukh

8 August 2017

$$
\operatorname{rank}\left(\begin{array}{ccccc}
d & & & & \\
& d & & \in L & \\
& & & d & \\
& & & d & \\
& \in & L & & d
\end{array}\right)
$$

A special case: equiancular lines

Family \mathcal{L} of lines in \mathbb{R}^{d} is equiangular when all pairwise angles $\measuredangle \ell \ell^{\prime}$ are equal, for $\ell, \ell^{\prime} \in \mathcal{L}$

Examples:

$$
d=2
$$

$$
d=3
$$

(Large diagonals)

Gram matrices

Lines I_{1}, \ldots, L_{n} in \mathbb{R}^{d}

$$
\downarrow
$$

$$
\Downarrow
$$

Matrix of inner products $\left(\left\langle v_{i}, v_{j}\right\rangle\right)_{i, j}$ (Gram matrix)

Gram matrices

$$
\Downarrow
$$

Matrix of inner products $\left(\left\langle v_{i}, v_{j}\right\rangle\right)_{i, j}$ (Gram matrix)

Equiangular
????

Gram matrices

Equiangular

$$
\left\langle v_{i}, v_{j}\right\rangle \in\{-\alpha,+\alpha\}
$$

Matrix of inner products $\left(\left\langle v_{i}, v_{j}\right\rangle\right)_{i, j}$ (Gram matrix)

$$
\left(\begin{array}{ccc}
1 & & \pm \alpha \\
& 1 & \\
\pm \alpha & & \\
\pm & & 1
\end{array}\right)
$$

Gram matrices

Equiangular

$\Downarrow \quad \Downarrow$

$$
\left\langle v_{i}, v_{j}\right\rangle \in\{-\alpha,+\alpha\}
$$

Matrix of inner products $\left(\left\langle v_{i}, v_{j}\right\rangle\right)_{i, j}$ (Gram matrix)
Positive semidefinite

Gram matrices

Unit vectors $v_{1}, v_{2}, \ldots, v_{n}$ in \mathbb{R}^{d}
n vectors

Gram matrix $M=A^{T} A$ Rank $\leq d$

General problem

How small can a rank of an (L, d)-matrix be?

General (L, d)-matrix

$$
\left(\begin{array}{llllll}
d & & & \in & L & \\
& d & & \in & & \\
& & d & & & \\
& & & d & & \\
& \in L & & d & \\
& & & & d
\end{array}\right)
$$

General problem

How small can a rank of an (L, d)-matrix be?

General (L, d)-matrix

$$
\left(\begin{array}{llllll}
d & & & \in & L & \\
& d & & \in & \\
& & d & & & \\
& & & d & & \\
& \in L & & d & \\
& & & & d
\end{array}\right)
$$

If M is an (L, d)-matrix, then $M-d J$ is $(L-d, 0)$-matrix of almost the same rank. So, with little loss we may assume that $d=0$.

Special case: Graph eigenvalues

What is the maximum eigenvalue multiplicity of λ ?

Details:
■ Number λ is fixed
■ We consider adjacency matrices of graphs on n vertices
■ We seek the graph that maximizes the multiplicity of eigenvalue λ

Special case: Graph eicenvalues

What is the maximum eigenvalue multiplicity of λ ?

General adjacency matrix:

$$
\left(\begin{array}{cccc}
0 & & \{0,1\} \\
& 0 & 0 & \\
& 0 & & \\
\{0,1\}^{0} & 0 & 0
\end{array}\right)
$$

Special case: Graph eigenvalues

What is the maximum eigenvalue multiplicity of λ ?

Multiplicity of λ in a general adjacency matrix:

Nullity of a matrix of the form:

$$
\left(\begin{array}{llll}
0 & & \{0,1\} \\
& 0 & \{0 & 1 \\
& 0 & & \\
\{0,1\}^{0} & 0 & \\
& & & \\
& & -\lambda & \\
& & & \\
& \{0,1\}^{-\lambda} & & \\
& & -\lambda & \\
& & & \\
& & & -\lambda
\end{array}\right)
$$

Rank + nullity $=n$

(L, d)-matrices: some examples

■ Equiangular lines

■ Multiplicity of graph eigenvalues

- Sets in \mathbb{R}^{d} with few distances

■ Set systems with restricted intersection

(L, d)-matrices: some examples

- Equiangular lines
- Multiplicity of graph eigenvalues
- Sets in \mathbb{R}^{d} with few distances
- Set systems with restricted intersection
S_{1}, \ldots, S_{n} are d-element sets with $\left|S_{i} \cap S_{j}\right| \in L$
v_{1}, \ldots, v_{n} are characteristic vectors

$$
\begin{aligned}
& A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right) \text { is made of } 0 \text { 's and } 1 \text { 's } \\
& M
\end{aligned}=A^{T} A \text { is an }(L, d) \text {-matrix }
$$

L-Matrices: the upper Bound

General L-matrix

$$
\left(\begin{array}{llllll}
0 & & & \in & L & \\
& 0 & & & & \\
& & 0 & & & \\
& & & 0 & & \\
& \in L & & 0 & \\
& & & & 0
\end{array}\right)
$$

"Polynomial method" (Koornwinder? Frankl-Wilson?)
Suppose $|L|=k$ and $0 \notin L$, and M is an n-by- n L-matrix of rank r. Then

$$
n \leq\binom{ r+k}{k}
$$

L-Matrices: the upper Bound

General L-matrix

$$
\left(\begin{array}{llllll}
0 & & & \in & L & \\
& 0 & & & & \\
& & 0 & & & \\
& & & 0 & & \\
& \in L & & 0 & \\
& & & & 0
\end{array}\right)
$$

"Polynomial method" (Koornwinder? Frankl-Wilson?)
Suppose $|L|=k$ and $0 \notin L$, and M is an n-by- n L-matrix of rank r. Then

$$
n \leq\binom{ r+k}{k}
$$

An example

$$
\left(\begin{array}{llll}
0 & & \{1,3\} \\
& 0 & 0 & \\
& 0 & & \\
\{1,3\} & 0 & \\
\{1,3
\end{array}\right)
$$

Polynomial method: rank $r \Longrightarrow$ size at most $O\left(r^{2}\right)$

An example

$$
\left(\begin{array}{llll}
0 & & \{1,3\} \\
& 0 & 0 & \\
& 0 & & \\
\{1,3\} & 0 &
\end{array}\right)
$$

Polynomial method: rank $r \Longrightarrow$ size at most $O\left(r^{2}\right)$

Modulo 2: almost full rank, size at most $r+1$

General results

$$
N(r, L)=\max \{n: \text { there is an } n \text {-by- } n L \text {-matrix of rank } \leq r\} .
$$

Theorem (B.)

For a set $L=\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$, the following are equivalent
$11 N(r-1, L)>r$ for some r
\leq There is an integer homogeneous polynomial P s.t. $P\left(\alpha_{1}, \ldots, \alpha_{k}\right)=0$ and $P(1,1, \ldots, 1)=1$

3 $\lim _{r \rightarrow \infty} N(r, L) / r$ exists and is >1

General results

$N(r, L)=\max \{n$: there is an n-by- $n L$-matrix of rank $\leq r\}$.

Theorem (B.)

For a set $L=\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$, the following are equivalent
$1 N(r-1, L)>k r$ for some r linear
2 There is a'integer homogeneous polynomial P s.t. $P\left(\alpha_{1}, \ldots, \alpha_{k}\right)=0$ and $P(1,1, \ldots, 1)=1$

3 $N(r, L)=\Omega\left(r^{3 / 2}\right)$

Corollaries for the special case

$$
\begin{gathered}
G(n, \lambda)=\max \{\text { mult. } \lambda \text { in a } n \text {-vertex graph }\} \\
D(n, \lambda)=\max \{\text { mult. } \lambda \text { in a } n \text {-vertex digraph }\}
\end{gathered}
$$

Theorem (B.)

1 If λ is an algebraic integer of degree d, then

$$
D(n, \lambda)=n / d-O(\sqrt{n}) .
$$

2 Otherwise, λ is not an eigenvalue of any $\{0,1\}$-matrix

Graph eigenvalues:
Same holds for $G(n, \lambda)$ if degree of λ is at most 4
The general case is open

Mathematics is Beautiful!

Proofs: algebraic reason

$N(r, L)=\max \{n$: there is an n-by- $n L$-matrix of rank $\leq r\}$.
For $L=\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$, the following are equivalent
$1 N(r-1, L)>r$ for some r
2 There is an integer homogeneous polynomial P s.t. $P\left(\alpha_{1}, \ldots, \alpha_{k}\right)=0$ and $P(1,1, \ldots, 1)=1$
$3 \lim _{r \rightarrow \infty} N(r, L) / r$ exists and is >1

Proofs: algebraic reason

$N(r, L)=\max \{n$: there is an n-by- $n L$-matrix of rank $\leq r\}$.
For $L=\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$, the following are equivalent
$1 N(r-1, L)>r$ for some r
2 There is an integer homogeneous polynomial P s.t. $P\left(\alpha_{1}, \ldots, \alpha_{k}\right)=0$ and $P(1,1, \ldots, 1)=1$

Proof of $1 \longrightarrow 2$

Assume M is an L-matrix of size n.
Let $P_{n}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \stackrel{\text { def }}{=} \operatorname{det} M$, homogeneous of degree n.

$$
P_{n}\left(\alpha_{1}, \ldots, \alpha_{k}\right)=\operatorname{det}\left(\begin{array}{cccc}
0 & \alpha_{1} & \cdots & \alpha_{3} \\
\alpha_{2} & 0 & \cdots & \alpha_{1} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{1} & \alpha_{1} & \cdots & 0
\end{array}\right)
$$

Proofs: algebraic reason

$N(r, L)=\max \{n$: there is an n-by- $n L$-matrix of rank $\leq r\}$.
For $L=\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$, the following are equivalent
$1 N(r-1, L)>r$ for some r
2 There is an integer homogeneous polynomial P s.t. $P\left(\alpha_{1}, \ldots, \alpha_{k}\right)=0$ and $P(1,1, \ldots, 1)=1$

Proof of $\mathbf{1} \longrightarrow \mathbf{2}$

Assume M is an L-matrix of size n.
Let $P_{n}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \stackrel{\text { def }}{=} \operatorname{det} M$, homogeneous of degree n.

$$
P_{n}(1, \ldots, 1)=\operatorname{det}\left(\begin{array}{cccc}
0 & 1 & \cdots & 1 \\
1 & 0 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 0
\end{array}\right)=(-1)^{n-1}(n-1)
$$

Proofs: algebraic reason

$N(r, L)=\max \{n:$ there is an n-by- $n L$-matrix of rank $\leq r\}$.
For $L=\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$, the following are equivalent
$1 N(r-1, L)>r$ for some r
2 There is an integer homogeneous polynomial P s.t.

$$
P\left(\alpha_{1}, \ldots, \alpha_{k}\right)=0 \text { and } P(1,1, \ldots, 1)=1
$$

Proof of $1 \Longrightarrow 2$

Assume M is an L-matrix of size n, M^{\prime} is a submatrix of size $n-1$ Let $P_{n}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \stackrel{\text { def }}{=} \operatorname{det} M$, homogeneous of degree n.
Let $P_{n-1}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \stackrel{\text { def }}{=} \operatorname{det} M^{\prime}$, homogeneous of degree $n-1$.

$$
\begin{aligned}
P_{n}(1, \ldots, 1) & =(-1)^{n-1}(n-1) \\
P_{n-1}(1, \ldots, 1) & =(-1)^{n-2}(n-2)
\end{aligned}
$$

Proofs: algebraic reason

$N(r, L)=\max \{n$: there is an n-by- $n L$-matrix of rank $\leq r\}$.
For $L=\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$, the following are equivalent
$1 N(r-1, L)>r$ for some r
2 There is an integer homogeneous polynomial P s.t.

$$
P\left(\alpha_{1}, \ldots, \alpha_{k}\right)=0 \text { and } P(1,1, \ldots, 1)=1
$$

Proof of $1 \Longrightarrow 2$

Assume M is an L-matrix of size n, M^{\prime} is a submatrix of size $n-1$ Let $P_{n}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \stackrel{\text { def }}{=} \operatorname{det} M$, homogeneous of degree n. Let $P_{n-1}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \stackrel{\text { def }}{=} \operatorname{det} M^{\prime}$, homogeneous of degree $n-1$.

$$
\left.\begin{array}{r}
P_{n}(1, \ldots, 1)=(-1)^{n-1}(n-1) \\
P_{n-1}(1, \ldots, 1)=(-1)^{n-2}(n-2)
\end{array}\right\} \Longrightarrow \begin{aligned}
& P=\left(P_{n}-\alpha_{1} P_{n-1}\right)^{2} \\
& P\left(\alpha_{1}, \ldots, \alpha_{k}\right)=0
\end{aligned}
$$

Proofs: algebraic reason

$N(r, L)=\max \{n$: there is an n-by- $n L$-matrix of rank $\leq r\}$.
For $L=\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$, the following are equivalent
$1 N(r-1, L)>r$ for some r
2 There is an integer homogeneous polynomial P s.t.

$$
P\left(\alpha_{1}, \ldots, \alpha_{k}\right)=0 \text { and } P(1,1, \ldots, 1)=1
$$

Proof of $1 \longrightarrow 2$

Assume M is an L-matrix of size n, M^{\prime} is a submatrix of size $n-1$ Let $P_{n}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \stackrel{\text { def }}{=} \operatorname{det} M$, homogeneous of degree n. Let $P_{n-1}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \stackrel{\text { def }}{=} \operatorname{det} M^{\prime}$, homogeneous of degree $n-1$.

$$
\left.\begin{array}{r}
P_{n}(1, \ldots, 1)=(-1)^{n-1}(n-1) \\
P_{n-1}(1, \ldots, 1)=(-1)^{n-2}(n-2)
\end{array}\right\} \Longrightarrow \begin{aligned}
& P=\left(P_{n}-\alpha_{1} P_{n-1}\right)^{2} \\
& P\left(\alpha_{1}, \ldots, \alpha_{k}\right)=0
\end{aligned}
$$

Proofs: high vanishing lemma

Lemma (B.)

Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$. If $P\left(x_{1}, \ldots, x_{k}\right)$ is an integer homogeneous polynomial such that
$1 P$ vanishes at α to order $>\frac{k-1}{k} \operatorname{deg} P$,
$2 P(1, \ldots, 1)=1$.
Then there is a linear polynomial Q such that
$1 Q$ vanishes at α,
$2 Q(1, \ldots, 1)=1$.

Case $k=2$ is a consequence of Gauss's lemma: if $P(x)$ vanishes at α to order $>\frac{1}{2} \operatorname{deg} P$, then a linear factor of P vanishes at α.

General case uses a contagious vanishing argument (Baker, Guth-Katz, etc)

Proofs: digraphs with massive eigenvalues

1 If λ is an algebraic integer of degree d, then

$$
D(n, \lambda)=n / d-O(\sqrt{n})
$$

2 Otherwise, λ is not an eigenvalue of any $\{0,1\}$-matrix

Proof of 2

- Characteristic polynomial P of a $\{0,1\}$-matrix is monic with integer coefficients
- Eigenvalues are roots of P, with respective multiplicity

■ Let Q be the \min. polynomial of λ, then $Q^{\text {mult } \lambda}$ divides P.

Proofs: digraphs with massive eigenvalues

1 If λ is an algebraic integer of degree d, then

$$
D(n, \lambda)=n / d-O(\sqrt{n})
$$

Proof of the lower bound in $\mathbf{1}$

- There is a size- d matrix M with integer coefficients such that λ is an eigenvalue (companion matrix)
■ Multiplicity of λ in $M \otimes I_{\ell}$ is ℓ

Proofs: digraphs with massive eigenvalues

1 If λ is an algebraic integer of degree d, then

$$
D(n, \lambda)=n / d-O(\sqrt{n})
$$

Proof of the lower bound in $\mathbf{1}$

- There is a size- d matrix M with integer coefficients such that λ is an eigenvalue (companion matrix)
■ Multiplicity of λ in $M \otimes \boldsymbol{I}_{\ell}$ is ℓ

$$
M \otimes I_{\ell}=\left(\begin{array}{cccc}
M_{11} I_{\ell} & M_{12} I_{\ell} & \cdots & M_{1 d} I_{\ell} \\
M_{21} I_{\ell} & M_{22} I_{\ell} & \cdots & M_{2 d} I_{\ell} \\
\vdots & \vdots & \ddots & \vdots \\
M_{d 1} I_{\ell} & M_{d 2} I_{\ell} & \cdots & M_{d d} I_{\ell}
\end{array}\right)
$$

- Add a matrix of rank $O(\sqrt{\ell})$ to each block, to turn $M \otimes I_{\ell}$ into a $\{0,1\}$-matrix. Only d^{2} blocks.

Proofs: digraphs with massive eigenvalues

1 If λ is an algebraic integer of degree d, then

$$
D(n, \lambda)=n / d-O(\sqrt{n}) .
$$

Proof of the lower bound in 1

- Add a matrix of rank $O(\sqrt{\ell})$ to each block, to turn $M \otimes I_{\ell}$ into a $\{0,1\}$-matrix. Only d^{2} blocks.
■ Example: Want to turn $-2 I_{\ell}$ into a $\{0,1\}$-matrix.
S_{1}, \ldots, S_{ℓ} be two-element sets in $\{1,2, \ldots, 2 \sqrt{\ell}\}$
v_{1}, \ldots, v_{ℓ} be characteristic vectors

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{\ell} \\
\mid & \mid & & \mid
\end{array}\right)
$$

$$
\Delta=A^{T} A \text { is a }(\{0,1\}, 2) \text {-matrix of rank } \leq 2 \sqrt{\ell}
$$

Graph eigenvalue multiplicity

λ is totally real if all of its Galois conjugates are real

Observation

Eigenvalues of a graph are totally real.

Proof.

Eigenvalues of a symmetric real matrix are real.
So, assume that λ is totally real of degree d.

Graph eigenvalue multiplicity

λ is totally real if all of its Galois conjugates are real

Observation

Eigenvalues of a graph are totally real.

Proof.

Eigenvalues of a symmetric real matrix are real.
So, assume that λ is totally real of degree d.
Is there size d matrix with eigenvalue λ ?
Not even for $\lambda=\sqrt{3}:$

Graph eigenvalue multiplicity

λ is totally real if all of its Galois conjugates are real So, assume that λ is totally real of degree d.

Is there size d matrix with eigenvalue λ ?

Not even for $\lambda=\sqrt{3} *$
However!

$$
\left(\begin{array}{cccc}
-1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & -1 \\
0 & 1 & -1 & -1
\end{array}\right) \quad \begin{aligned}
& \text { has eigenvalue } \sqrt{3} \\
& \text { with multiplicity } 2
\end{aligned}
$$

Graph eigenvalues: representaBility

Call λ of degree d representable if there is a symmetric size- $m d$ matrix in which λ has multiplicity m

Which λ are representable?

Graph eigenvalues: representability

Call λ of degree d representable if there is a symmetric size- $m d$ matrix in which λ has multiplicity m

Which λ are representable?

Theorem (Estes-Gularnick)

All totally real algebraic integers of degree $d \leq 4$ are representable.

Theorem
 There is a non-representable λ of degree 2880 (Dobrowolski) There is a non-representable λ of degree 6 (McKee)

Open proBlems

$■$ Is there a $\{\ell, \ell+1\}$-matrix of rank r and size $\frac{1}{100} r^{2}$?

■ If $\operatorname{deg} \lambda=d$, prove that the maximum multiplicity of λ in a graph is at most $n / d-100$ for large n.

- What is $N(L, r)$ for a random subset L of $\{1,2, \ldots, m\}$? (Application: explicit construction of Ramsey graphs)

Equiangular lines

$N(d) \quad$ maximum number equiangular lines in \mathbb{R}^{d}
$N_{\alpha}(d)$ same as $N(d)$, but with $\left\langle v_{i}, v_{j}\right\rangle \in\{ \pm \alpha\}$
Known bounds:

$$
N(d) \leq d(d+1) / 2
$$

Polynomial method

$$
N_{\alpha}(d) \leq d \frac{1-\alpha^{2}}{1-d \alpha^{2}} \quad \text { if } d<1 / \alpha^{2}
$$

$N_{\alpha}(d) \leq 2 d \quad$ if $\alpha \notin\left\{\frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \ldots\right\}$
Nearly identity matrix
Characteristic polynomial

Equiangular lines

$N(d) \quad$ maximum number equiangular lines in \mathbb{R}^{d}
$N_{\alpha}(d)$ same as $N(d)$, but with $\left\langle v_{i}, v_{j}\right\rangle \in\{ \pm \alpha\}$
Known bounds:

$$
\begin{aligned}
& N(d) \leq d(d+1) / 2 \\
& N_{\alpha}(d) \leq d \frac{1-\alpha^{2}}{1-d \alpha^{2}} \quad \text { if } d<1 / \alpha^{2} \\
& N_{\alpha}(d) \leq 2 d \quad \text { if } \alpha \notin\left\{\frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \ldots\right\} \\
& N_{1 /(2 r-1)}(d) \geq \frac{r}{r-1} d+O(1) \\
& N \geq \frac{2}{9}(d+1)^{2}+O(1)
\end{aligned}
$$

Polynomial method
Nearly identity matrix
Characteristic polynomial

Tensor product
Miracle

Equiangular lines

$$
\begin{array}{lll}
N_{1 / 3}(d)=2 d-2 & \text { for } d \geq 15 & \text { Lemmens-Seidel } \\
N_{1 / 5}(d)=\lfloor 3(d-1) / 2\rfloor & \text { for large } d & \begin{array}{l}
\text { Neumaier, Greaves-Koolen- } \\
\text { Munemasa-Szöllösi }
\end{array}
\end{array}
$$

Equiangular lines

$$
\begin{array}{lll}
N_{1 / 3}(d)=2 d-2 & \text { for } d \geq 15 & \text { Lemmens-Seidel } \\
N_{1 / 5}(d)=\lfloor 3(d-1) / 2\rfloor & \text { for large } d & \text { Neumaier, Greaves-Koolen- } \\
& \text { Munemasa-Szöllösi }
\end{array}
$$

Theorem (B.)

For a fixed α, the maximum number of equiangular lines satisfies

$$
N_{\alpha}(d) \leq c_{\alpha} d
$$

for some constant c_{α}.

Equiangular lines

$$
\begin{array}{lll}
N_{1 / 3}(d)=2 d-2 & \text { for } d \geq 15 & \text { Lemmens-Seidel } \\
N_{1 / 5}(d)=\lfloor 3(d-1) / 2\rfloor & \text { for large } d & \text { Neumaier, Greaves-Koolen- } \\
& \text { Munemasa-Szöllösi }
\end{array}
$$

Theorem (B.)

For a fixed α, the maximum number of equiangular lines satisfies

$$
N_{\alpha}(d) \leq c_{\alpha} d
$$

for some constant c_{α}.
My proof gave a HUGE bound on c_{α}.
Balla-Dräxler-Keevash-Sudakov have improved this to $c_{\alpha} \leq 2$.

Equiangular lines: Basic idea

Unit vectors v_{1}, \ldots, v_{n} form an L-spherical code if

$$
\left\langle v_{i}, v_{j}\right\rangle \in L \quad \text { for distinct } i, j .
$$

Equiangular lines form a $\{-\alpha,+\alpha\}$-spherical code.

Theorem (B.)

Size of any $[-1,-\beta] \cup\{\alpha\}$-spherical code in \mathbb{R}^{d} is at most $c_{\beta} d$.

Equiangular lines: Basic idea

Unit vectors v_{1}, \ldots, v_{n} form an L-spherical code if

$$
\left\langle v_{i}, v_{j}\right\rangle \in L \quad \text { for distinct } i, j .
$$

Equiangular lines form a $\{-\alpha,+\alpha\}$-spherical code.

Theorem (B.)

Size of any $[-1,-\beta] \cup\{\alpha\}$-spherical code in \mathbb{R}^{d} is at most $c_{\beta} d$.
Basic ingredients:

- A $[-1,-\beta]$-spherical code has at most $1 / \beta+1$ elements

■ A $\{\alpha\}$-spherical code has at most d elements
■ Ramsey's theorem
Graph:
■ Vertices $\left\{v_{1}, \ldots, v_{n}\right\}$;
\square Edges: $v_{i} v_{j}$ if $\left\langle v_{i}, v_{j}\right\rangle \leq-\beta$

No clique of size $1 / \beta+2$
No indep. set of size $d+1$

Equiangular lines: Basic idea

Unit vectors v_{1}, \ldots, v_{n} form an L-spherical code if $\left\langle v_{i}, v_{j}\right\rangle \in L$ Graph:

■ Vertices $\left\{v_{1}, \ldots, v_{n}\right\}$;
■ Edges: $v_{i} v_{j}$ if $\left\langle v_{i}, v_{j}\right\rangle \leq-\beta$

No clique of size $1 / \beta+2$
No indep. set of size $d+1$

Argument:

- Find a large maximal independent set I_{1} (simplex)

■ For $v_{i} \notin I_{1}$ there must be many edges from v_{i} to I_{1}

Equiangular lines: Basic idea

Unit vectors v_{1}, \ldots, v_{n} form an L-spherical code if $\left\langle v_{i}, v_{j}\right\rangle \in L$ Graph:

■ Vertices $\left\{v_{1}, \ldots, v_{n}\right\}$;
■ Edges: $v_{i} v_{j}$ if $\left\langle v_{i}, v_{j}\right\rangle \leq-\beta$

No clique of size $1 / \beta+2$
No indep. set of size $d+1$

Argument:
■ Find a large maximal independent set I_{1} (simplex)
■ For $v_{i} \notin I_{1}$ there must be many edges from v_{i} to I_{1}

- Iterate

Equiangular lines: Basic idea

Unit vectors v_{1}, \ldots, v_{n} form an L-spherical code if $\left\langle v_{i}, v_{j}\right\rangle \in L$ Graph:

■ Vertices $\left\{v_{1}, \ldots, v_{n}\right\}$;
$■$ Edges: $v_{i} v_{j}$ if $\left\langle v_{i}, v_{j}\right\rangle \leq-\beta$

No clique of size $1 / \beta+2$
No indep. set of size $d+1$

Argument:
■ Find a large maximal independent set I_{1} (simplex)
■ For $v_{i} \notin I_{1}$ there must be many edges from v_{i} to I_{1}

- Iterate

Equiangular lines: Basic idea

Unit vectors v_{1}, \ldots, v_{n} form an L-spherical code if $\left\langle v_{i}, v_{j}\right\rangle \in L$ Graph:

■ Vertices $\left\{v_{1}, \ldots, v_{n}\right\}$;
$■$ Edges: $v_{i} v_{j}$ if $\left\langle v_{i}, v_{j}\right\rangle \leq-\beta$

No clique of size $1 / \beta+2$
No indep. set of size $d+1$

Argument:
■ Find a large maximal independent set I_{1} (simplex)

- For $v_{i} \notin I_{1}$ there must be many edges from v_{i} to I_{1}
- Iterate

(G)
(O)

