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A special case: equiangular lines

Family L of lines in Rd is equiangular when
all pairwise angles ]``′ are equal, for `, `′ ∈ L

Examples:

d = 2 d = 3
(Large diagonals)



Gram matrices

Lines l1, . . . , Ln in Rd

Unit vectors v1, . . . , vn in Rd

(line directions)

=⇒

Matrix of inner products
(
〈vi , vj〉

)
i ,j

(Gram matrix)

Positive semidefinite

=⇒

Equiangular
=⇒

????
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Gram matrices

Unit vectors v1, v2, . . . , vn in Rd

=⇒

A =

v1 v2 · · · vn



=⇒

Gram matrix M = ATA

n vectors

Rank ≤ d

Rank ≤ d



General problem

How small can a rank of an (L, d)-matrix be?

General (L, d)-matrix 

d ∈ Ld
d

d

∈ L d
d



If M is an (L, d)-matrix, then M − dJ is (L− d , 0)-matrix of almost
the same rank. So, with little loss we may assume that d = 0.
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Special case: graph eigenvalues

What is the maximum eigenvalue multiplicity of λ?

Details:

Number λ is fixed

We consider adjacency matrices of graphs on n vertices

We seek the graph that maximizes the multiplicity of
eigenvalue λ



Special case: graph eigenvalues

What is the maximum eigenvalue multiplicity of λ?

Multiplicity of λ in a

General adjacency matrix:

⇐⇒ Nullity of a
matrix of the form

:

0 {0, 1}0
0

0

{0, 1} 0
0





−λ {0, 1}−λ
−λ

−λ

{0, 1} −λ
−λ



Rank + nullity = n
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(L, d)-matrices: some examples

Equiangular lines

Multiplicity of graph eigenvalues

Sets in Rd with few distances

Set systems with restricted intersection

S1, . . . ,Sn are d-element sets with |Si ∩ Sj | ∈ L

v1, . . . , vn are characteristic vectors

A =

v1 v2 · · · vn

 is made of 0’s and 1’s

M = ATA is an (L, d)-matrix
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L-matrices: the upper bound

General L-matrix 

0 ∈ L0
0

0

∈ L 0
0


“Polynomial method” (Koornwinder? Frankl–Wilson?)

Suppose |L| = k and 0 6∈ L, and M is an n-by-n
L-matrix of rank r . Then

n ≤
(
r + k

k

)
.
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An example



0 {1, 3}0
0

0

{1, 3} 0
0



Polynomial method: rank r =⇒ size at most O(r 2)

Modulo 2: almost full rank, size at most r + 1
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General results

N(r , L) = max{n : there is an n-by-n L-matrix of rank ≤ r}.

Theorem (B.)

For a set L = {α1, . . . , αk}, the following are
equivalent

1 N(r − 1, L) > r for some r

2 There is an integer homogeneous polynomial P
s.t. P(α1, . . . , αk) = 0 and P(1, 1, . . . , 1) = 1

3 lim
r→∞

N(r , L)/r exists and is > 1



General results

N(r , L) = max{n : there is an n-by-n L-matrix of rank ≤ r}.

Theorem (B.)

For a set L = {α1, . . . , αk}, the following are
equivalent

1 N(r − 1, L) > kr for some r

2 There is a integer homogeneous polynomial P
s.t. P(α1, . . . , αk) = 0 and P(1, 1, . . . , 1) = 1

3 N(r , L) = Ω(r 3/2)

linear



Corollaries for the special case

G (n, λ) = max{mult. λ in a n-vertex graph}

D(n, λ) = max{mult. λ in a n-vertex digraph}

Theorem (B.)

1 If λ is an algebraic integer of degree d , then

D(n, λ) = n/d − O(
√
n).

2 Otherwise, λ is not an eigenvalue of any {0, 1}-matrix

Graph eigenvalues:
Same holds for G (n, λ) if degree of λ is at most 4
The general case is open



Mathematics is

beautiful!



Proofs: algebraic reason

N(r , L) = max{n : there is an n-by-n L-matrix of rank ≤ r}.
For L = {α1, . . . , αk}, the following are equivalent

1 N(r − 1, L) > r for some r

2 There is an integer homogeneous polynomial P s.t.
P(α1, . . . , αk) = 0 and P(1, 1, . . . , 1) = 1

3 lim
r→∞

N(r , L)/r exists and is > 1

Proof of 1 =⇒ 2 .

Assume M is an L-matrix of size n.

Let Pn(α1, . . . , αn)
def
= detM, homogeneous of degree n.

Let Pn−1(α1, . . . , αn)
def
= detM ′, homogeneous of degree n − 1.

Pn(α1, . . . , αk) = det

 0 α1 ··· α3
α2 0 ··· α1

...
...

. . .
...

α1 α1 ··· 0



= (−1)n−1(n − 1)

Pn−1(α1, . . . , αk) = (−1)n−2(n − 2)

}
=⇒

P = (Pn − α1Pn−1)2

P(α1, . . . , αk) = 0

If N(r − 1, L) is large, P vanishes to high order

F
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Proofs: high vanishing lemma

Lemma (B.)

Let α = (α1, . . . , αk). If P(x1, . . . , xk) is an integer homogeneous
polynomial such that

1 P vanishes at α to order > k−1
k degP,

2 P(1, . . . , 1) = 1.

Then there is a linear polynomial Q such that

1 Q vanishes at α,

2 Q(1, . . . , 1) = 1.

Case k = 2 is a consequence of Gauss’s lemma: if P(x) vanishes at
α to order > 1

2 degP, then a linear factor of P vanishes at α.

General case uses a contagious vanishing argument (Baker,
Guth–Katz, etc) F



Proofs: digraphs with massive eigenvalues

1 If λ is an algebraic integer of degree d , then

D(n, λ) = n/d − O(
√
n).

2 Otherwise, λ is not an eigenvalue of any {0, 1}-matrix

Proof of 2 .

Characteristic polynomial P of a {0, 1}-matrix is monic with
integer coefficients

Eigenvalues are roots of P, with respective multiplicity

Let Q be the min. polynomial of λ, then Qmultλ divides P.

G

E



Proofs: digraphs with massive eigenvalues

1 If λ is an algebraic integer of degree d , then

D(n, λ) = n/d − O(
√
n).

Proof of the lower bound in 1 .

There is a size-d matrix M with integer coefficients such that
λ is an eigenvalue (companion matrix)

Multiplicity of λ in M ⊗ I` is `

M ⊗ I` =


M11I` M12I` · · · M1d I`
M21I` M22I` · · · M2d I`

...
...

. . .
...

Md1I` Md2I` · · · Mdd I`


Add a matrix of rank O(

√
`) to each block, to turn M ⊗ I`

into a {0, 1}-matrix. Only d2 blocks. G

E
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Proofs: digraphs with massive eigenvalues

1 If λ is an algebraic integer of degree d , then

D(n, λ) = n/d − O(
√
n).

Proof of the lower bound in 1 .

Add a matrix of rank O(
√
`) to each block, to turn M ⊗ I`

into a {0, 1}-matrix. Only d2 blocks.

Example: Want to turn −2I` into a {0, 1}-matrix.

S1, . . . ,S` be two-element sets in {1, 2, . . . , 2
√
`}

v1, . . . , v` be characteristic vectors

A =

v1 v2 · · · v`


∆ = ATA is a ({0, 1}, 2)-matrix of rank ≤ 2

√
` G

E



Graph eigenvalue multiplicity

λ is
::::::
totally

::::
real if all of its Galois conjugates are real

Observation

Eigenvalues of a graph are totally real.

Proof.

Eigenvalues of a symmetric real matrix are real.

So, assume that λ is totally real of degree d .

Is there size d matrix with eigenvalue λ?

Not even for λ =
√

3

However!
−1 1 1 0
1 1 0 1
1 0 1 −1
0 1 −1 −1

 has eigenvalue
√

3

with multiplicity 2
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Graph eigenvalues: representability

Call λ of degree d
::::::::::::
representable if there is a symmetric size-md

matrix in which λ has multiplicity m

Which λ are representable?

Theorem (Estes–Gularnick)

All totally real algebraic integers of degree d ≤ 4 are representable.

Theorem

There is a non-representable λ of degree 2880 (Dobrowolski)
There is a non-representable λ of degree 6 (McKee)

O
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Open problems

Is there a {`, `+ 1}-matrix of rank r and size 1
100 r

2?

If deg λ = d , prove that the maximum multiplicity of λ in a
graph is at most n/d − 100 for large n.

What is N(L, r) for a random subset L of {1, 2, . . . ,m}?
(Application: explicit construction of Ramsey graphs)

G

E



Equiangular lines

N(d) maximum number equiangular lines in Rd

Nα(d) same as N(d), but with 〈vi , vj〉 ∈ {±α}

Known bounds:

N(d) ≤ d(d + 1)/2 Polynomial method

Nα(d) ≤ d 1−α2

1−dα2 if d < 1/α2 Nearly identity matrix

Nα(d) ≤ 2d if α /∈ {13 ,
1
5 ,

1
7 , . . . } Characteristic polynomial

N1/(2r−1)(d) ≥ r
r−1d + O(1) Tensor product

N ≥ 2
9(d + 1)2 + O(1) Miracle
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Equiangular lines

N1/3(d) = 2d − 2 for d ≥ 15 Lemmens–Seidel

N1/5(d) = b3(d − 1)/2c for large d
Neumaier, Greaves–Koolen–
Munemasa–Szöllösi

Theorem (B.)

For a fixed α, the maximum number of equiangular lines satisfies

Nα(d) ≤ cαd

for some constant cα.

My proof gave a HUGE bound on cα.

Balla–Dräxler–Keevash–Sudakov have improved this to cα ≤ 2.
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Equiangular lines: basic idea

Unit vectors v1, . . . , vn form an
::::::::::
L-spherical

:::::
code if

〈vi , vj〉 ∈ L for distinct i , j .

Equiangular lines form a {−α,+α}-spherical code.

Theorem (B.)

Size of any [−1,−β] ∪ {α}-spherical code in Rd is at most cβd .

Basic ingredients:

A [−1,−β]-spherical code has at most 1/β + 1 elements
A {α}-spherical code has at most d elements
Ramsey’s theorem

Graph:

Vertices {v1, . . . , vn} No clique of size 1/β + 2

No indep. set of size d + 1

;
Edges: vivj if 〈vi , vj〉 ≤ −β

Argument:

Find a large maximal independent set I1 (simplex)
For vi 6∈ I1 there must be many edges from vi to I1

Iterate

I1

I2 · · · Im m ≤ f (β)

≤ d ≤ d ≤ d

G

O
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