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Quantum Walks

Let A be the adjacency matrix of a graph X . The quantum walk
on X is determined by the transition operator

U (t) = exp(itA) =
∑
k≥0

(itA)k

k! .

This is a unitary operator:

U (t)U (t)∗ = exp(itA) exp(−itA) = I .
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On K2

The adjacency matrix of K2 satisfies

A2k = I , A2k+1 = A.

Hence

U (t) =
∑
k≥0

(it)k

k! Ak

=
∑
k≥0

(it)2k

(2k)! I +
∑
k≥0

(it)2k+1

(2k + 1)!A

= cos(t)I + i sin(t)A

=
(

cos(t) i sin(t)
i sin(t) cos(t)

)
.
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Evolution

Suppose X has n vertices.
Quantum system: complex inner product space Cn .
States: unit vectors in Cn .
Associate each vertex u with the state eu .
Evolution: if the state at time 0 is eu , then the state at time t
is

U (t)eu =
∑
w
αwew .

Measurement: U (t)eu collapses to the state ev with
probability

|〈U (t)eu , ev〉|2 = |U (t)uv |2.
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On K2

Recall the transition matrix of K2 is

U (t) =
(

cos(t) i sin(t)
i sin(t) cos(t)

)
.

At time t = π/4,

U
(
π

4

)
= 1√

2

(
1 i
i 1

)
.
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Uniform Mixing

Definition
We say X admits uniform mixing at time t if U (t) is flat, that is,
for all vertices u and v,

|U (t)u,v | =
1√
n .
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Computer Plot

How do we determine if a graph admits uniform mixing?
1 Compute the mixing matrix

M (t) = U (t) ◦U (−t).

2 Compute the total entropy of M (t):

−
∑
i,j

M (t)ij log(M (t)ij)

3 Plot the total entropy against t.
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On C3
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On C6
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On C9
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Spectral Decomposition

For every distinct eigenvalue θr , let Er denote the orthogonal
projection onto the eigenspace associated with θr . Then

A =
∑

r
θrEr .

If f is a function defined on all the eigenvalues, then

f (A) =
∑

r
f (θr)Er .

In particular,
U (t) = exp(itA) =

∑
r

eitθr Er .
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On Kn

The transition matrix of Kn is

U (t) = eit(n−1) 1
n J + e−it

(
I − 1

n J
)
.

When n > 4, for two distinct vertices u and v,

|U (t)uv | =
1
n |e

it(n−1) − e−it | ≤ 2
n <

1√
n .

Thus uniform mixing does not occur on the complete graphs with
more than 4 vertices.
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Known Examples

K2 and K4: at time π/4; K3: at time 2π/9 (Ahmadi, Belk,
Tamon, Wendler, 2003).

Cn : no uniform mixing if n > 4 is even or prime (Mullin,
2013).
Bipartite graphs:

U (t) =
(

K1(t) iK2(t)
iK2(t)T K3(t)

)

if uniform mixing occurs then n = 2 or n is divisible by 4
(Mullin, 2013).
Strongly regular graphs: completely characterized (Godsil,
Mullin and Roy, 2014).
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Known Examples

Cartesian product of X and Y :

UX�Y (t) = UX (t)⊗UY (t),

uniform mixing occurs if and only if both X and Y admits
uniform mixing at the same time. The Hamming graphs
H (d, 2),H (d, 3),H (d, 4) (Moore and Russell, 2002; Carlson,
For, Harris, Rosen, Tamon, and Wrobel, 2007).

Cayley graphs over Zn
q : many examples (Chan, 2013; Mullin,

2013; Zhan, 2014).
Irregular graphs: K1,3 admits uniform mixing at time 2π/

√
27.
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Quotient Graphs of Hamming Graphs

Every Cayley graph over Zd
2 or Zd

3 is a quotient graph of H (d, 2) or
H (d, 3).

000 001

010 011

100 101

110 111

Figure: An equitable partition π.

000 000

000 000

Figure: The quotient graph
H (2, 3)/〈1〉 with respect to
π.
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Quotient Graphs of Hamming Graphs

The entries of the transition matrix of H (2, 3)/〈1〉 are block sums
of

UH(2,3)(t) =

000 111 001 110 010 101 100 011



000
111
001
110
010
101
100
011
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Quotients of Hamming Graphs

The weight distributions of the cosets of Γ determine whether
H (d, q)/Γ admits uniform mixing at time π/4 if q = 2 or q = 4, or
2π/9 if q = 3.

1 We have a complete characterization of H (d, 2)/〈a〉 and
H (d, 2)/〈a, b〉 which admit uniform mixing at time π/4, in
terms of the generators (Mullin, 2013).

2 We have a complete characterization of H (d, 3)/〈a〉 and
H (d, 3)/〈a, b〉 which admit uniform mixing at time 2π/9, in
terms of the generators (Zhan, 2014).
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Faster Mixing in Hamming Schemes

Suppose A(X) is in the Bose-Mesner algebra of H(d, q). If X
admits uniform mixing at time τ , then U (τ) is a multiple of a
complex Hadamard matrix.

1 Guess the complex Hadamard matrix:

eiβ
(

1 i
i 1

)⊗d

.

2 Derive conditions on the eigenvalues of X , for the above
matrix to be achieved by UX (t).

3 Find X .
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Faster Mixing in Hamming Schemes

1 For k ≥ 2 and r ∈ {2k+1 − 7, 2k+1 − 5, 2k+1 − 3, 2k+1 − 1},
the r-distance graphs Xr of the Hamming graph
H (2k+2 − 8, 2) admit uniform mixing at time π/2k (Chan,
2013).

2 For k ≥ 2 and r ∈ {3k − 1, 3k − 4, 3k − 7}, the r-distance
graphs Xr of the Hamming graph H (2 · 3k − 9, 3) admit
uniform mixing at time 2π/3k (Zhan, 2014).

3 In the Hamming scheme H(2k + 1, 3), the graph with
adjacency matrix ∑

`

A3`+i

has uniform mixing at time 2π/3k (Godsil and Zhan, 2017).
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Open Problems

1 Complete characterization of uniform mixing on cycles? In
particular, does uniform mixing occur on C9?

2 To answer whether the quotient graph H (d, q)/Γ admit
uniform mixing, is it sufficient to just look at the weight
distribution of Γ?

3 In the Bose-Mesner algebra of H(d, q), is there a bound of
the mixing time in terms of the size of the graph?

4 If X admits uniform mixing at time t, is it true that tθr is a
rational multiples of π, for all eigenvalues θr of X?
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