Quantum Walks and Mixing

Harmony Zhan

University of Waterloo

August 7, 2017
Let A be the adjacency matrix of a graph X. The quantum walk on X is determined by the transition operator

$$U(t) = \exp(itA) = \sum_{k \geq 0} \frac{(itA)^k}{k!}.$$

This is a unitary operator:

$$U(t)U(t)^* = \exp(itA)\exp(-itA) = I.$$
The adjacency matrix of K_2 satisfies

$$A^{2k} = I, \quad A^{2k+1} = A.$$

Hence

$$U(t) = \sum_{k \geq 0} \frac{(it)^k}{k!} A^k$$

$$= \sum_{k \geq 0} \frac{(it)^{2k}}{(2k)!} I + \sum_{k \geq 0} \frac{(it)^{2k+1}}{(2k+1)!} A$$

$$= \cos(t) I + i \sin(t) A$$

$$= \begin{pmatrix} \cos(t) & i \sin(t) \\ i \sin(t) & \cos(t) \end{pmatrix}.$$
Suppose X has n vertices.

- Quantum system: complex inner product space \mathbb{C}^n.
- States: unit vectors in \mathbb{C}^n.
- Associate each vertex u with the state e_u.
- Evolution: if the state at time 0 is e_u, then the state at time t is
 \[U(t) e_u = \sum_w \alpha_w e_w. \]
- Measurement: $U(t) e_u$ collapses to the state e_v with probability
 \[\left| \langle U(t) e_u, e_v \rangle \right|^2 = \left| U(t)_{uv} \right|^2. \]
Recall the transition matrix of K_2 is

$$U(t) = \begin{pmatrix} \cos(t) & i \sin(t) \\ i \sin(t) & \cos(t) \end{pmatrix}.$$
Recall the transition matrix of K_2 is

$$U(t) = \begin{pmatrix} \cos(t) & i \sin(t) \\ i \sin(t) & \cos(t) \end{pmatrix}.$$

At time $t = \pi/4$,

$$U\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}.$$
Definition

We say X admits uniform mixing at time t if $U(t)$ is flat, that is, for all vertices u and v,

$$|U(t)_{u,v}| = \frac{1}{\sqrt{n}}.$$
How do we determine if a graph admits uniform mixing?

1. Compute the mixing matrix

\[M(t) = U(t) \circ U(-t). \]

2. Compute the total entropy of \(M(t) \):

\[-\sum_{i,j} M(t)_{ij} \log(M(t)_{ij}) \]

3. Plot the total entropy against \(t \).
On C_3
On C_6
On C_9
Spectral Decomposition

For every distinct eigenvalue θ_r, let E_r denote the orthogonal projection onto the eigenspace associated with θ_r. Then

$$A = \sum_r \theta_r E_r.$$

If f is a function defined on all the eigenvalues, then

$$f(A) = \sum_r f(\theta_r) E_r.$$

In particular,

$$U(t) = \exp(itA) = \sum_r e^{it\theta_r} E_r.$$

The transition matrix of K_n is

$$U(t) = e^{it(n-1)} \frac{1}{n} J + e^{-it} \left(I - \frac{1}{n} J \right).$$

When $n > 4$, for two distinct vertices u and v,

$$|U(t)_{uv}| = \frac{1}{n} |e^{it(n-1)} - e^{-it}| \leq \frac{2}{n} < \frac{1}{\sqrt{n}}.$$

Thus uniform mixing does not occur on the complete graphs with more than 4 vertices.
Known Examples

- K_2 and K_4: at time $\pi/4$; K_3: at time $2\pi/9$ (Ahmadi, Belk, Tamon, Wendler, 2003).

- Bipartite graphs: $U(t) = K_1(t) \cup K_2(t) \cup K_3(t)$ if uniform mixing occurs then $n = 2$ or n is divisible by 4 (Mullin, 2013).

- Strongly regular graphs: completely characterized (Godsil, Mullin and Roy, 2014).
Known Examples

- K_2 and K_4: at time $\pi/4$; K_3: at time $2\pi/9$ (Ahmadi, Belk, Tamon, Wendler, 2003).
- C_n: no uniform mixing if $n > 4$ is even or prime (Mullin, 2013).
Known Examples

- K_2 and K_4: at time $\pi/4$; K_3: at time $2\pi/9$ (Ahmadi, Belk, Tamon, Wendler, 2003).
- C_n: no uniform mixing if $n > 4$ is even or prime (Mullin, 2013).
- Bipartite graphs:

$$U(t) = \begin{pmatrix} K_1(t) & iK_2(t) \\ iK_2(t)^T & K_3(t) \end{pmatrix}$$

if uniform mixing occurs then $n = 2$ or n is divisible by 4 (Mullin, 2013).
Known Examples

- K_2 and K_4: at time $\pi/4$; K_3: at time $2\pi/9$ (Ahmadi, Belk, Tamon, Wendler, 2003).
- C_n: no uniform mixing if $n > 4$ is even or prime (Mullin, 2013).
- Bipartite graphs:

$$U(t) = \begin{pmatrix} K_1(t) & iK_2(t) \\ iK_2(t)^T & K_3(t) \end{pmatrix}$$

if uniform mixing occurs then $n = 2$ or n is divisible by 4 (Mullin, 2013).

- Strongly regular graphs: completely characterized (Godsil, Mullin and Roy, 2014).
Known Examples

- Cartesian product of X and Y:

$$U_{X \square Y}(t) = U_X(t) \otimes U_Y(t),$$

uniform mixing occurs if and only if both X and Y admits uniform mixing at the same time. The Hamming graphs $H(d, 2), H(d, 3), H(d, 4)$ (Moore and Russell, 2002; Carlson, For, Harris, Rosen, Tamon, and Wrobel, 2007).
Known Examples

- Cartesian product of X and Y:

 $$U_{X \sqcup Y}(t) = U_X(t) \otimes U_Y(t),$$

 uniform mixing occurs if and only if both X and Y admits uniform mixing at the same time. The Hamming graphs $H(d, 2), H(d, 3), H(d, 4)$ (Moore and Russell, 2002; Carlson, For, Harris, Rosen, Tamon, and Wrobel, 2007).

- Cayley graphs over \mathbb{Z}_q^n: many examples (Chan, 2013; Mullin, 2013; Zhan, 2014).
Known Examples

- Cartesian product of X and Y:
 \[U_{X \square Y}(t) = U_X(t) \otimes U_Y(t), \]
 uniform mixing occurs if and only if both X and Y admits uniform mixing at the same time. The Hamming graphs $H(d, 2), H(d, 3), H(d, 4)$ (Moore and Russell, 2002; Carlson, For, Harris, Rosen, Tamon, and Wrobel, 2007).

- Cayley graphs over \mathbb{Z}^n_q: many examples (Chan, 2013; Mullin, 2013; Zhan, 2014).

- Irregular graphs: $K_{1,3}$ admits uniform mixing at time $2\pi/\sqrt{27}$.
Quotient Graphs of Hamming Graphs

Every Cayley graph over \mathbb{Z}_2^d or \mathbb{Z}_3^d is a quotient graph of $H(d, 2)$ or $H(d, 3)$.
Every Cayley graph over \mathbb{Z}_2^d or \mathbb{Z}_3^d is a quotient graph of $H(d, 2)$ or $H(d, 3)$.

Figure: An equitable partition π.
Every Cayley graph over \(\mathbb{Z}_2^d \) or \(\mathbb{Z}_3^d \) is a quotient graph of \(H(d, 2) \) or \(H(d, 3) \).

Figure: An equitable partition \(\pi \).

Figure: The quotient graph \(H(2, 3)/\langle 1 \rangle \) with respect to \(\pi \).
The entries of the transition matrix of $H(2, 3)/\langle 1 \rangle$ are block sums of

$$
U_{H(2, 3)}(t) = \begin{pmatrix}
000 & 111 & 001 & 110 & 010 & 101 & 100 & 011 \\
000 & 111 & 001 & 110 & 010 & 101 & 100 & 011 \\
001 & 110 & 010 & 101 & 100 & 011 & 000 & 111 \\
011 & 100 & 001 & 110 & 010 & 101 & 100 & 011 \\
101 & 010 & 001 & 110 & 010 & 101 & 100 & 011 \\
110 & 010 & 001 & 110 & 010 & 101 & 100 & 011 \\
100 & 010 & 001 & 110 & 010 & 101 & 100 & 011 \\
011 & 100 & 001 & 110 & 010 & 101 & 100 & 011
\end{pmatrix}
$$
The weight distributions of the cosets of Γ determine whether $H(d, q)/\Gamma$ admits uniform mixing at time $\pi/4$ if $q = 2$ or $q = 4$, or $2\pi/9$ if $q = 3$.

1. We have a complete characterization of $H(d, 2)/\langle a \rangle$ and $H(d, 2)/\langle a, b \rangle$ which admit uniform mixing at time $\pi/4$, in terms of the generators (Mullin, 2013).

2. We have a complete characterization of $H(d, 3)/\langle a \rangle$ and $H(d, 3)/\langle a, b \rangle$ which admit uniform mixing at time $2\pi/9$, in terms of the generators (Zhan, 2014).
Suppose $A(X)$ is in the Bose-Mesner algebra of $\mathcal{H}(d, q)$. If X admits uniform mixing at time τ, then $U(\tau)$ is a multiple of a complex Hadamard matrix.
Faster Mixing in Hamming Schemes

Suppose $A(X)$ is in the Bose-Mesner algebra of $\mathcal{H}(d, q)$. If X admits uniform mixing at time τ, then $U(\tau)$ is a multiple of a complex Hadamard matrix.

1. Guess the complex Hadamard matrix:

$$e^{i\beta} \left(\begin{array}{cc} 1 & i \\ i & 1 \end{array} \right)^{\otimes d}.$$

2. Derive conditions on the eigenvalues of X, for the above matrix to be achieved by $U_X(t)$.

3. Find X.
For \(k \geq 2 \) and \(r \in \{2^{k+1} - 7, 2^{k+1} - 5, 2^{k+1} - 3, 2^{k+1} - 1\} \), the \(r \)-distance graphs \(X_r \) of the Hamming graph \(H(2^{k+2} - 8, 2) \) admit uniform mixing at time \(\pi/2^k \) (Chan, 2013).
For $k \geq 2$ and $r \in \{2^{k+1} - 7, 2^{k+1} - 5, 2^{k+1} - 3, 2^{k+1} - 1\}$, the r-distance graphs X_r of the Hamming graph $H(2^{k+2} - 8, 2)$ admit uniform mixing at time $\pi/2^k$ (Chan, 2013).

For $k \geq 2$ and $r \in \{3^k - 1, 3^k - 4, 3^k - 7\}$, the r-distance graphs X_r of the Hamming graph $H(2 \cdot 3^k - 9, 3)$ admit uniform mixing at time $2\pi/3^k$ (Zhan, 2014).
For $k \geq 2$ and $r \in \{2^{k+1} - 7, 2^{k+1} - 5, 2^{k+1} - 3, 2^{k+1} - 1\}$, the r-distance graphs X_r of the Hamming graph $H(2^{k+2} - 8, 2)$ admit uniform mixing at time $\pi/2^k$ (Chan, 2013).

For $k \geq 2$ and $r \in \{3^k - 1, 3^k - 4, 3^k - 7\}$, the r-distance graphs X_r of the Hamming graph $H(2 \cdot 3^k - 9, 3)$ admit uniform mixing at time $2\pi/3^k$ (Zhan, 2014).

In the Hamming scheme $\mathcal{H}(2k + 1, 3)$, the graph with adjacency matrix

$$\sum_{\ell} A_{3\ell+i}$$

has uniform mixing at time $2\pi/3^k$ (Godsil and Zhan, 2017).
Open Problems

1. Complete characterization of uniform mixing on cycles? In particular, does uniform mixing occur on C_9?
Open Problems

1. Complete characterization of uniform mixing on cycles? In particular, does uniform mixing occur on C_9?

2. To answer whether the quotient graph $H(d, q)/\Gamma$ admit uniform mixing, is it sufficient to just look at the weight distribution of Γ?
Open Problems

1. Complete characterization of uniform mixing on cycles? In particular, does uniform mixing occur on C_9?
2. To answer whether the quotient graph $H(d, q)/\Gamma$ admit uniform mixing, is it sufficient to just look at the weight distribution of Γ?
3. In the Bose-Mesner algebra of $\mathcal{H}(d, q)$, is there a bound of the mixing time in terms of the size of the graph?
Open Problems

1. Complete characterization of uniform mixing on cycles? In particular, does uniform mixing occur on C_9?

2. To answer whether the quotient graph $H(d, q)/\Gamma$ admit uniform mixing, is it sufficient to just look at the weight distribution of Γ?

3. In the Bose-Mesner algebra of $\mathcal{H}(d, q)$, is there a bound of the mixing time in terms of the size of the graph?

4. If X admits uniform mixing at time t, is it true that $t\theta_r$ is a rational multiples of π, for all eigenvalues θ_r of X?