Quantum Walks and Mixing

Harmony Zhan

University of Waterloo

August 7, 2017

Harmony Zhan

Let A be the adjacency matrix of a graph X. The quantum walk on X is determined by the transition operator

$$U(t) = \exp(itA) = \sum_{k \ge 0} \frac{(itA)^k}{k!}.$$

This is a unitary operator:

$$U(t) U(t)^* = \exp(itA) \exp(-itA) = I.$$

Harmony Zhan

On K_2

The adjacency matrix of K_2 satisfies

$$A^{2k} = I, \quad A^{2k+1} = A.$$

Hence

$$U(t) = \sum_{k \ge 0} \frac{(it)^k}{k!} A^k$$

= $\sum_{k \ge 0} \frac{(it)^{2k}}{(2k)!} I + \sum_{k \ge 0} \frac{(it)^{2k+1}}{(2k+1)!} A^k$
= $\cos(t)I + i\sin(t)A$
= $\begin{pmatrix} \cos(t) & i\sin(t) \\ i\sin(t) & \cos(t) \end{pmatrix}$.

Harmony Zhan

Evolution

Suppose X has n vertices.

- Quantum system: complex inner product space \mathbb{C}^n .
- States: unit vectors in \mathbb{C}^n .
- Associate each vertex u with the state e_u .
- Evolution: if the state at time 0 is e_u , then the state at time t is

$$U(t)e_u = \sum_w \alpha_w e_w.$$

• Measurement: $U(t)e_u$ collapses to the state e_v with probability

$$|\langle U(t)e_u, e_v\rangle|^2 = |U(t)_{uv}|^2.$$

On K_2

Recall the transition matrix of ${\it K}_2$ is

$$U(t) = \begin{pmatrix} \cos(t) & i\sin(t) \\ i\sin(t) & \cos(t) \end{pmatrix}.$$

Harmony Zhan

On K_2

Recall the transition matrix of K_2 is

$$U(t) = \begin{pmatrix} \cos(t) & i\sin(t) \\ i\sin(t) & \cos(t) \end{pmatrix}.$$

At time $t = \pi/4$,

$$U\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}.$$

Harmony Zhan

Definition

We say X admits uniform mixing at time t if U(t) is flat, that is, for all vertices u and v,

$$|U(t)_{u,v}| = \frac{1}{\sqrt{n}}.$$

Harmony Zhan

How do we determine if a graph admits uniform mixing?

Ompute the mixing matrix

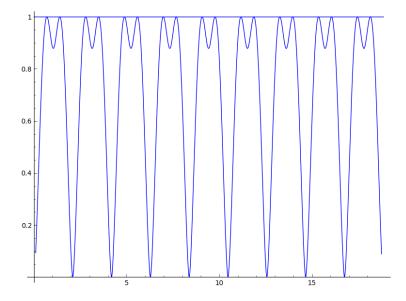
$$M(t) = U(t) \circ U(-t).$$

2 Compute the total entropy of M(t):

$$-\sum_{i,j} M(t)_{ij} \log(M(t)_{ij})$$

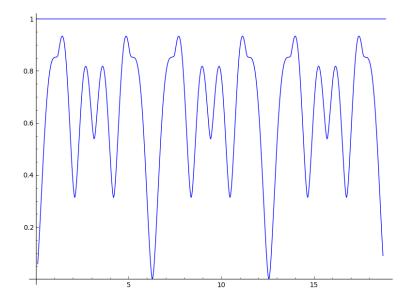
③ Plot the total entropy against t.

On C_3



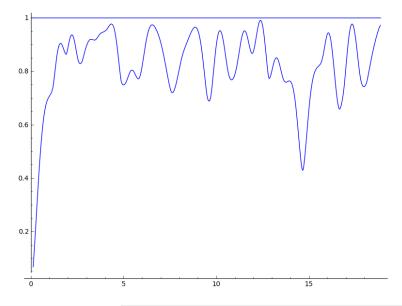
Harmony Zhan

On C_6



Harmony Zhan

On C_9



Harmony Zhan

Spectral Decomposition

For every distinct eigenvalue θ_r , let E_r denote the orthogonal projection onto the eigenspace associated with θ_r . Then

$$A = \sum_{r} \theta_r E_r.$$

If f is a function defined on all the eigenvalues, then

$$f(A) = \sum_{r} f(\theta_r) E_r.$$

In particular,

$$U(t) = \exp(itA) = \sum_{r} e^{it\theta_r} E_r.$$

Harmony Zhan

On K_n

The transition matrix of K_n is

$$U(t) = e^{it(n-1)} \frac{1}{n} J + e^{-it} \left(I - \frac{1}{n} J \right).$$

When n > 4, for two distinct vertices u and v,

$$|U(t)_{uv}| = \frac{1}{n} |e^{it(n-1)} - e^{-it}| \le \frac{2}{n} < \frac{1}{\sqrt{n}}.$$

Thus uniform mixing does not occur on the complete graphs with more than 4 vertices.

Harmony Zhan

• K_2 and K_4 : at time $\pi/4$; K_3 : at time $2\pi/9$ (Ahmadi, Belk, Tamon, Wendler, 2003).

- K_2 and K_4 : at time $\pi/4$; K_3 : at time $2\pi/9$ (Ahmadi, Belk, Tamon, Wendler, 2003).
- C_n : no uniform mixing if n > 4 is even or prime (Mullin, 2013).

- K_2 and K_4 : at time $\pi/4$; K_3 : at time $2\pi/9$ (Ahmadi, Belk, Tamon, Wendler, 2003).
- C_n : no uniform mixing if n > 4 is even or prime (Mullin, 2013).
- Bipartite graphs:

$$U(t) = \begin{pmatrix} K_1(t) & iK_2(t) \\ iK_2(t)^T & K_3(t) \end{pmatrix}$$

if uniform mixing occurs then n = 2 or n is divisible by 4 (Mullin, 2013).

Harmony Zhan

- K_2 and K_4 : at time $\pi/4$; K_3 : at time $2\pi/9$ (Ahmadi, Belk, Tamon, Wendler, 2003).
- C_n : no uniform mixing if n > 4 is even or prime (Mullin, 2013).
- Bipartite graphs:

$$U(t) = \begin{pmatrix} K_1(t) & iK_2(t) \\ iK_2(t)^T & K_3(t) \end{pmatrix}$$

if uniform mixing occurs then n = 2 or n is divisible by 4 (Mullin, 2013).

• Strongly regular graphs: completely characterized (Godsil, Mullin and Roy, 2014).

• Cartesian product of X and Y:

$$U_{X\square Y}(t) = U_X(t) \otimes U_Y(t),$$

uniform mixing occurs if and only if both X and Y admits uniform mixing at the same time. The Hamming graphs H(d,2), H(d,3), H(d,4) (Moore and Russell, 2002; Carlson, For, Harris, Rosen, Tamon, and Wrobel, 2007).

• Cartesian product of X and Y:

$$U_{X\Box Y}(t) = U_X(t) \otimes U_Y(t),$$

uniform mixing occurs if and only if both X and Y admits uniform mixing at the same time. The Hamming graphs H(d,2), H(d,3), H(d,4) (Moore and Russell, 2002; Carlson, For, Harris, Rosen, Tamon, and Wrobel, 2007).

• Cayley graphs over \mathbb{Z}_q^n : many examples (Chan, 2013; Mullin, 2013; Zhan, 2014).

• Cartesian product of X and Y:

$$U_{X\Box Y}(t) = U_X(t) \otimes U_Y(t),$$

uniform mixing occurs if and only if both X and Y admits uniform mixing at the same time. The Hamming graphs H(d,2), H(d,3), H(d,4) (Moore and Russell, 2002; Carlson, For, Harris, Rosen, Tamon, and Wrobel, 2007).

- Cayley graphs over \mathbb{Z}_q^n : many examples (Chan, 2013; Mullin, 2013; Zhan, 2014).
- Irregular graphs: $K_{1,3}$ admits uniform mixing at time $2\pi/\sqrt{27}$.

Every Cayley graph over \mathbb{Z}_2^d or \mathbb{Z}_3^d is a quotient graph of H(d,2) or H(d,3).

Harmony Zhan

Every Cayley graph over \mathbb{Z}_2^d or \mathbb{Z}_3^d is a quotient graph of H(d,2) or H(d,3).

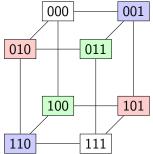


Figure: An equitable partition π .

Every Cayley graph over \mathbb{Z}_2^d or \mathbb{Z}_3^d is a quotient graph of H(d,2) or H(d,3).

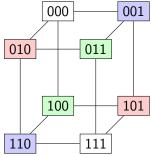


Figure: An equitable partition π .

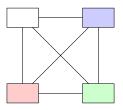
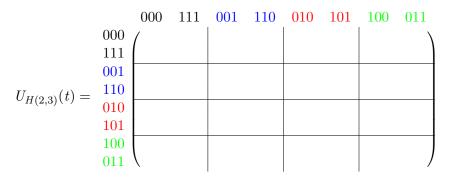


Figure: The quotient graph $H(2,3)/\langle 1 \rangle$ with respect to π .

The entries of the transition matrix of $H(2,3)/\langle {\bf 1} \rangle$ are block sums of



The weight distributions of the cosets of Γ determine whether $H(d,q)/\Gamma$ admits uniform mixing at time $\pi/4$ if q = 2 or q = 4, or $2\pi/9$ if q = 3.

- We have a complete characterization of $H(d, 2)/\langle a \rangle$ and $H(d, 2)/\langle a, b \rangle$ which admit uniform mixing at time $\pi/4$, in terms of the generators (Mullin, 2013).
- **②** We have a complete characterization of $H(d,3)/\langle a \rangle$ and $H(d,3)/\langle a, b \rangle$ which admit uniform mixing at time $2\pi/9$, in terms of the generators (Zhan, 2014).

Suppose A(X) is in the Bose-Mesner algebra of $\mathcal{H}(d,q)$. If X admits uniform mixing at time τ , then $U(\tau)$ is a multiple of a complex Hadamard matrix.

Suppose A(X) is in the Bose-Mesner algebra of $\mathcal{H}(d,q)$. If X admits uniform mixing at time τ , then $U(\tau)$ is a multiple of a complex Hadamard matrix.

Guess the complex Hadamard matrix:

$$e^{ieta} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}^{\otimes d}.$$

- Oberive conditions on the eigenvalues of X, for the above matrix to be achieved by U_X(t).
- \bigcirc Find X.

• For $k \ge 2$ and $r \in \{2^{k+1} - 7, 2^{k+1} - 5, 2^{k+1} - 3, 2^{k+1} - 1\}$, the *r*-distance graphs X_r of the Hamming graph $H(2^{k+2} - 8, 2)$ admit uniform mixing at time $\pi/2^k$ (Chan, 2013).

- For $k \ge 2$ and $r \in \{2^{k+1} 7, 2^{k+1} 5, 2^{k+1} 3, 2^{k+1} 1\}$, the *r*-distance graphs X_r of the Hamming graph $H(2^{k+2} 8, 2)$ admit uniform mixing at time $\pi/2^k$ (Chan, 2013).
- **②** For k ≥ 2 and $r ∈ {3^k − 1, 3^k − 4, 3^k − 7}, the$ *r* $-distance graphs <math>X_r$ of the Hamming graph $H(2 \cdot 3^k − 9, 3)$ admit uniform mixing at time $2\pi/3^k$ (Zhan, 2014).

- For $k \ge 2$ and $r \in \{2^{k+1} 7, 2^{k+1} 5, 2^{k+1} 3, 2^{k+1} 1\}$, the *r*-distance graphs X_r of the Hamming graph $H(2^{k+2} - 8, 2)$ admit uniform mixing at time $\pi/2^k$ (Chan, 2013).
- **②** For k ≥ 2 and $r ∈ {3^k − 1, 3^k − 4, 3^k − 7}, the$ *r* $-distance graphs <math>X_r$ of the Hamming graph $H(2 \cdot 3^k − 9, 3)$ admit uniform mixing at time $2\pi/3^k$ (Zhan, 2014).
- **③** In the Hamming scheme $\mathcal{H}(2k+1,3)$, the graph with adjacency matrix

$$\sum_{\ell} A_{3\ell+i}$$

has uniform mixing at time $2\pi/3^k$ (Godsil and Zhan, 2017).

Harmony Zhan

• Complete characterization of uniform mixing on cycles? In particular, does uniform mixing occur on C_9 ?

Open Problems

- Complete characterization of uniform mixing on cycles? In particular, does uniform mixing occur on C_9 ?
- **②** To answer whether the quotient graph $H(d, q)/\Gamma$ admit uniform mixing, is it sufficient to just look at the weight distribution of Γ ?

- Complete characterization of uniform mixing on cycles? In particular, does uniform mixing occur on C_9 ?
- **②** To answer whether the quotient graph $H(d, q)/\Gamma$ admit uniform mixing, is it sufficient to just look at the weight distribution of Γ ?
- In the Bose-Mesner algebra of $\mathcal{H}(d, q)$, is there a bound of the mixing time in terms of the size of the graph?

- Complete characterization of uniform mixing on cycles? In particular, does uniform mixing occur on C_9 ?
- **②** To answer whether the quotient graph $H(d, q)/\Gamma$ admit uniform mixing, is it sufficient to just look at the weight distribution of Γ ?
- In the Bose-Mesner algebra of $\mathcal{H}(d, q)$, is there a bound of the mixing time in terms of the size of the graph?
- If X admits uniform mixing at time t, is it true that $t\theta_r$ is a rational multiples of π , for all eigenvalues θ_r of X?