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Overview and intro

Association schemes are symmetric (except at the end of the talk)

We interpret relations of schemes as graphs (scheme graphs)

Every association scheme has an extremely small multiplicity (1)

Product constructions ? Multiplicity 2 ?

Focus on multiplicity 3. Which schemes are most interesting?

Partially metric schemes!

Tools: cosines, Godsil’s bound, Terwilliger’s light tail, Yamazaki’s lemma

All partially metric schemes with a multiplicity 3

Time? Nonsymmetric schemes?
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Association schemes

Let X be a finite set. An association scheme with rank d + 1 on X is a
pair (X ,R) such that

(i) R = {R0,R1, · · · ,Rd} is a partition of X × X ,

(ii) R0 := {(x , x) | x ∈ X},
(iii) Ri = R>

i for each i , i.e., if (x , y) ∈ Ri then (y , x) ∈ Ri ,

(iv) there are numbers phij — the intersection numbers of (X ,R) —
such that for every pair (x , y) ∈ Rh the number of z ∈ X with
(x , z) ∈ Ri and (z , y) ∈ Rj equals phij .
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Algebra

(i)’
d∑

i=0

Ai = J, where J is the all-one matrix,

(ii)’ A0 = I , where I is the identity matrix,

(iii)’ A>
i = Ai for all i ,

(iv)’ AiAj =
d∑

h=0

phijAh.

The Bose-Mesner algebraM = 〈Ai | i = 0, . . . , d〉 has a basis of minimal
scheme idempotents E0 = 1

nJ,E1, · · · ,Ed . The rank of Ej is denoted by
mj and is called the multiplicity of Ej , for 0 ≤ j ≤ d .

Ai =
d∑

j=0

PjiEj and Ej =
1

n

d∑
i=0

QijAi .
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Geometry

(Ej)xx =
Q0j

n =
mj

n for all x ∈ X .

For (x , y) ∈ Ri , let ωxy = ωxy (j) =
(Ej )xy
(Ej )xx

=
Qij

mj
. We call these numbers

ωi = ωi (j) =
Qij

mj
the cosines corresponding to Ej , and note that ω0 = 1.

If E is a minimal idempotent with multiplicity m, then E = UU>, with U
an n ×m matrix with columns forming an orthonormal basis of the
eigenspace of E for its eigenvalue 1.

For every vertex x we denote by x̂ the row of U that corresponds to x ,
normalized to length 1. Now the inner product 〈x̂ , ŷ〉 is equal to
n
mExy = ωxy .
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Interesting schemes

A scheme is called primitive if all nontrivial relations are connected.

Bannai and Bannai 2006

The only primitive scheme with a multiplicity 3 is the scheme of the
tetrahedron (K4).

The direct product of (X ,R) and (X ′,R′) is the association scheme with
relation matrices Ai ⊗ A′

j for i = 0, 1, . . . , d and j = 0, 1, . . . , d ′.

Starting from an association scheme (X ,R) with a multiplicity 3, one
can construct other association schemes with a multiplicity 3 by taking
the direct product of (X ,R) with any other scheme. Also other kinds of
product constructions for association schemes are possible, giving rise to
many association schemes with a multiplicity 3.
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Distance-regular graphs

For a connected graph Γ with diameter D, the distance-i graph Γi of Γ
(0 ≤ i ≤ D) is the graph whose vertices are those of Γ and whose edges
are the pairs of vertices at mutual distance i in Γ.
A connected graph is called distance-regular if the distance-i graphs
(0 ≤ i ≤ D) form an association scheme (a so-called metric scheme).

Godsil 80s

The distance-regular graphs with a multiplicity 3 are the graphs of the
Platonic solids and the regular complete 4-partite graphs.

Distance-regular graphs with a multiplicity up to 8 have been classified
(Zhu, Martin, Koolen, Godsil 90s).
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Partially metric schemes

Yamazaki 1998

If Γ is a connected cubic scheme graph, then the distance-2 graph is also
a relation of the scheme.

We call a scheme partially metric if it has a connected scheme graph
whose distance-2 graph is also a relation of the scheme.

We adopt ‘distance-regular graph’ notation as far as possible: a1 = p1
11,

etc.
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Partially metric schemes with a multiplicity 3

Let (X ,R) be a partially metric scheme with rank d + 1 and a multiplicity 3, and let Γ
be the corresponding scheme graph. Then

(i) d = 1 and Γ is the tetrahedron (the complete graph on 4 vertices),

(ii) d = 3 and Γ is the cube,

(iii) d = 5 and Γ is the Möbius-Kantor graph,

(iv) d = 6 and Γ is the Nauru graph,

(v) d = 11 and Γ is the Foster graph F048A,

(vi) d = 5 and Γ is the dodecahedron,

(vii) d = 11 and Γ is the bipartite double of the dodecahedron,

(viii) d = 3 and Γ is the icosahedron,

(ix) d = 2 and Γ is the octahedron,

(x) d = 2 and Γ is a regular complete 4-partite graph.

Moreover, (X ,R) is uniquely determined by Γ. In all cases, except (vii), this is the

scheme that is generated by Γ. In case (vii), the scheme is the bipartite double scheme

of the scheme of case (vi).
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Godsil’s bound

Godsil’s bound (Cámara et al. 2013)

Let (X ,R) be a partially metric association scheme and assume that the
corresponding scheme graph Γ has valency k ≥ 3. Let E be a minimal
scheme idempotent of (X ,R) with multiplicity m for corresponding
eigenvalue θ 6= ±k. If Γ is not complete multipartite, then

k ≤ (m + 2)(m − 1)

2
.

m = 1, 2 are trivial.

m = 3 and complete multipartite implies regular complete 4-partite or the
octahedron (cases (ix) and (x)).

m = 3, k ≤ 5 :?
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m = 3, k > 3

k > m implies p1
11 = a1 > 0 because of local eigenvalues (à la

Terwilliger).

k = 5, a1 = 2 gives the icosahedron (case (viii)).

k = 4, a1 = 2 gives the octahedron (case (ix)).

k = 4, a1 = 1 implies (m = 3)-eigenvalue θ = −2, which is excluded
because of a light tail argument (à la Jurǐsić, Terwilliger, Žitnik).
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m = 3, cubic graphs

k = 3, a1 > 0 gives the tetrahedron (K4; case (i)).

k = 3, a1 = 0, c2 > 1 gives the cube (case (ii)).

What remains: k = 3, a1 = 0, c2 = 1.

Γ is bipartite. If not, then consider bipartite double scheme (direct
product with K2 scheme).
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Tools: cosines

θE = AE implies θωh =
∑d

`=1 p
h
1`ω`

ω0 = 1,

θω0 = 3ω1, so ω1 = θ/3,

θω1 = ω0 + 2ω2, so ω2 = 1
6 (θ2 − 3).
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Tools: Yamazaki’s lemma

Yamazaki 1998

x
R2

R3

R4

i � 2

R5

z3

ci+1(x; z3) = 1

x
R2

R3

R4

i � 2
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Tools: a double fork

Let u1 and u2 be two adjacent vertices in Γ, let v1, v2 be the other two
neighbors of u1, and v3, v4 be the other two neighbors of u2. Fix another
vertex x , and let ψi = ωxui (i = 1, 2) and φi = ωxvi (i = 1, 2, 3, 4) be the
respective cosines corresponding to E . Then

φ3, φ4 =
1

2
(θψ2 − ψ1 ± (φ1 − φ2)).
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The relevant eigenvalues

ω0 = 1, ω1 = 1
3θ, ω2 = 1

6 (θ2 − 3)

ω3,4 = 1
2 (θω2 − ω1 ± ω0 ∓ ω2) = 1

12 (θ3 ∓ θ2 − 5θ ± 9)

ω5 = 1
2 (θω3 − ω2 + ω1 − ω4) = 1

24 (θ4 − 2θ3 − 8θ2 + 18θ + 15)

ω6 = 1
2 (θω3 − ω2 − ω1 + ω4) = 1

24 (θ4 − 6θ2 − 3)

ω7 = 1
2 (θω4 − ω2 + ω1 − ω3) = 1

24 (θ4 − 6θ2 − 3)

ω8 = 1
2 (θω4 − ω2 − ω1 + ω3) = 1

24 (θ4 + 2θ3 − 8θ2 − 18θ + 15)

ωi 6= ω2 for i = 5, 6, 7, 8, hence c3 = 1 if θ 6= ±1

Edwin van Dam Tilburg University

Tilburg University



c3 = 1

Yamazaki: p5
14 6= 0 or p6

14 6= 0

ω9 and the double fork implies that p5
14 = 0 and

θ = ±1,±
√

5
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The dodecahedron and its bipartite double
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√
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Bipartite double has spectrum {31,
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6
, 24, 15, 08,−15,−24,−

√
5

6
,−31}.
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Partial relation-distribution diagram for θ = 1

1 3 6
3 1 2 1

1

1

p312

p412
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6
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The Möbius-Kantor graph

1 3 6
3 1 2 1
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ω0 = 1 ω1 = 1
3

ω2 = − 1
3

ω3 = 1
3

ω4 = −1

1 3
1

ω5 = 1

The Möbius-Kantor graph is the unique double cover of the cube without
4-cycles. It is isomorphic to the generalized Petersen graph GP(8, 3) and

has spectrum {31,
√

3
4
, 13,−13,−

√
3

4
,−31}. It is 2-arc-transitive and

also known as the Foster graph F016A.
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The Nauru graph

1 3 6
3 1 2 1
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The Nauru graph is a triple cover of the cube. It is isomorphic to the
generalized Petersen graph GP(12, 5) and has spectrum {31, 26, 13,
04,−13,−26,−31}. It is 2-arc-transitive and also known as the Foster
graph F024A.
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Girth 8
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The Foster graph F048A
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The Foster graph F048A is a 6-cover of the cube, a 3-cover of the
Möbius-Kantor graph, and a 2-cover of the Nauru graph. It is isomorphic
to the generalized Petersen graph GP(24, 5) and has spectrum

{31,
√

6
4
, 26,
√

3
4
, 13, 012,−13,−

√
3

4
,−26,−

√
6

4
,−31}.
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The Coxeter graph
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There are no such association schemes
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Another 3-cover of the Möbius-Kantor graph
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Non-symmetric schemes

Feng, Kwak, and Wang’s (2002, 2005) arc-transitive covers of the cube.

Let C be an order n cyclic permutation matrix and N =

[I I I 0
I C 0 I

I 0 Ck+1 Ck

0 I Ck Ck

]
.

Let n and k ≤ n− 1 be such that k2 + k + 1 is a multiple of n. Then the
bipartite graph Γ with bipartite incidence matrix N is arc-transitive and it
has eigenvalues ±1 with multiplicity three.

(n, k) = (1, 0) and (n, k) = (3, 1): cube and Nauru graph.
All other examples: non-symmetric (non-commutative) schemes.

An infinite family of non-commutative association schemes with a
connected symmetric relation having an eigenvalue with multiplicity 3.
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