MUBs

William M. Kantor

Newark
August 2017

MUBs: Mutually unbiased bases

\mathbb{C}^{d} : complex space with hermitian inner product

$$
\left(\left(x_{i}\right),\left(y_{i}\right)\right):=\sum_{i} x_{i} \bar{y}_{i}
$$

- MUBs $=$ Mutually unbiased orthonormal bases $\mathcal{B}, \mathcal{B}^{\prime}$:

$$
\begin{aligned}
& |(u, v)|=\text { constant for } u \in \mathcal{B}, v \in \mathcal{B}^{\prime} \\
& \quad \text { and then }|(u, v)|=\frac{1}{\sqrt{d}} \forall u \in \mathcal{B}, v \in \mathcal{B}^{\prime} .
\end{aligned}
$$

- Any set of MUBs in \mathbb{C}^{d} has size $\leq d+1$ (meaning a set of orthonormal bases that pairwise are MUBs).
- Complete set of MUBs: set of $d+1$ MUBs hence involves $(d+1) d=d^{2}+d$ vectors.
- Maximal set of MUBs: A set of MUBs that is not a proper subset of another set.
Complete \Rightarrow maximal but the converse is false.

Sources $=$ History (no time)

Examples from fields

- $d=p^{n}, V=\mathrm{GF}\left(p^{n}\right)$ with dot product w.r.t. fixed \mathbb{Z}_{p}-basis (or trace inner product $\operatorname{Tr}(x y)$)
- $p>2$
- $\zeta \in \mathbb{C}$ primitive p th root of 1
- standard orthonormal basis $\mathcal{B}_{\infty}:=\left\{e_{v} \mid v \in V\right\}$ of \mathbb{C}^{d}
- further bases $(b \in V)$
$\mathcal{B}_{b}:=\left\{e_{a, b} \mid a \in V\right\}$ where $e_{a, b}:=\frac{1}{\sqrt{d}} \sum_{v \in V} \zeta^{a \cdot v+b v \cdot v} e_{v}$

Examples from fields

- $d=p^{n}, V=\mathrm{GF}\left(p^{n}\right)$ with dot product w.r.t. fixed \mathbb{Z}_{p}-basis (or trace inner product $\operatorname{Tr}(x y)$)
- $p>2$
- $\zeta \in \mathbb{C}$ primitive p th root of 1
- standard orthonormal basis $\mathcal{B}_{\infty}:=\left\{e_{v} \mid v \in V\right\}$ of \mathbb{C}^{d}
- further bases $(b \in V)$
$\mathcal{B}_{b}:=\left\{e_{a, b} \mid a \in V\right\}$ where $e_{a, b}:=\frac{1}{\sqrt{d}} \sum_{v \in V} \zeta^{a \cdot v+b v \cdot v} e_{v}$
- Then $\mathcal{B}:=\left\{\mathcal{B}_{\infty}\right\} \cup\left\{\mathcal{B}_{b} \mid b \in V\right\}$ is a complete set of MUBs.

Rediscovered many times - the same examples in different guises.

Examples from fields

- $d=p^{n}, V=\mathrm{GF}\left(p^{n}\right)$ with dot product w.r.t. fixed \mathbb{Z}_{p}-basis (or trace inner product $\operatorname{Tr}(x y)$)
- $p>2$
- $\zeta \in \mathbb{C}$ primitive p th root of 1
- standard orthonormal basis $\mathcal{B}_{\infty}:=\left\{e_{v} \mid v \in V\right\}$ of \mathbb{C}^{d}
- further bases $(b \in V)$
$\mathcal{B}_{b}:=\left\{e_{a, b} \mid a \in V\right\}$ where $e_{a, b}:=\frac{1}{\sqrt{d}} \sum_{v \in V} \zeta^{a \cdot v+b v \cdot v} e_{v}$
- Then $\mathcal{B}:=\left\{\mathcal{B}_{\infty}\right\} \cup\left\{\mathcal{B}_{b} \mid b \in V\right\}$ is a complete set of MUBs.

Rediscovered many times - the same examples in different guises.
$p=2$? Mostly omitted today - lack of time.

Symmetric matrices

- $d=p^{n}, V=\mathbb{Z}_{p}^{n}$, with dot product
- $p>2, \zeta \in \mathbb{C}$ primitive p th root of 1
- standard orthonormal basis $\mathcal{B}_{\infty}:=\left\{e_{v} \mid v \in V\right\}$ of \mathbb{C}^{d}
- \mathcal{K} : a set of d symmetric $n \times n$ matrices M over \mathbb{Z}_{p}
- $\mathcal{B}_{M}^{\mathcal{K}}:=\left\{e_{a, M} \mid a \in V\right\}, M \in \mathcal{K}$, where

$$
e_{a, M}:=\frac{1}{\sqrt{d}} \sum_{v \in V} \zeta^{a \cdot v+v M \cdot v / 2} e_{v}
$$

Symmetric matrices

- $d=p^{n}, V=\mathbb{Z}_{p}^{n}$, with dot product
- $p>2, \zeta \in \mathbb{C}$ primitive p th root of 1
- standard orthonormal basis $\mathcal{B}_{\infty}:=\left\{e_{v} \mid v \in V\right\}$ of \mathbb{C}^{d}
- \mathcal{K} : a set of d symmetric $n \times n$ matrices M over \mathbb{Z}_{p}
- $\mathcal{B}_{M}^{\mathcal{K}}:=\left\{e_{a, M} \mid a \in V\right\}, M \in \mathcal{K}$, where

$$
e_{a, M}:=\frac{1}{\sqrt{d}} \sum_{v \in V} \zeta^{a \cdot v+v M \cdot v / 2} e_{v}
$$

Theorem (CCKS $=$ Calderbank-Cameron-K-Seidel):

$$
\mathcal{B}^{\mathcal{K}}:=\left\{\mathcal{B}_{\infty}\right\} \cup\left\{\mathcal{B}_{M}^{\mathcal{K}} \mid M \in \mathcal{K}\right\} \text { is a complete set of MUBs }
$$ \Longleftrightarrow the difference of any two members of \mathcal{K} is nonsingular.

- Rediscovered by Bandyopadhyay-Boykin-Roychowdhury-Vatan.
- Previous examples? $V=G F\left(p^{n}\right)$ and \mathcal{K} is all $x \mapsto x m, m \in V$.

Digression: Equivalence of sets of MUBs

Means: equivalence of the set of 1 -spaces they determine under a unitary transformation of \mathbb{C}^{d}
e.g. $\operatorname{Aut}(\mathcal{B})$ can contain many diagonal matrices.

Affine planes

Affine planes are related to the preceding construction:

- Again start with $V=\mathbb{Z}_{p}^{n}$ and
- \mathcal{K} : a set of $d=p^{n}$
$n \times n$ matrices $/ \mathbb{Z}_{p}$ s.t. the difference of any 2 is nonsingular (NO assumption that they are symmetric matrices).
- Affine "translation plane" $\mathfrak{A}(\mathcal{K})$ of order d : points: vectors in $V \oplus V$ lines: $\quad x=c$ and $y=x M+b$ for $M \in \mathcal{K}, b \in V$

Affine planes

Affine planes are related to the preceding construction:

- Again start with $V=\mathbb{Z}_{p}^{n}$ and
- \mathcal{K} : a set of $d=p^{n}$
$n \times n$ matrices $/ \mathbb{Z}_{p}$ s.t. the difference of any 2 is nonsingular (NO assumption that they are symmetric matrices).
- Affine "translation plane" $\mathfrak{A}(\mathcal{K})$ of order d : points: vectors in $V \oplus V$ lines: $\quad x=c$ and $y=x M+b$ for $M \in \mathcal{K}, b \in V$
\therefore Just-constructed-complete-set- $\mathcal{B}^{\mathcal{K}}$-of-MUBs \leftrightarrow certain plane $\mathfrak{A}(\mathcal{K})$.
"Symplectic translation plane" $\mathfrak{A}(\mathcal{K})$ when \mathcal{K} is symmetric matrices.

Affine planes

Affine planes are related to the preceding construction:

- Again start with $V=\mathbb{Z}_{p}^{n}$ and
- \mathcal{K} : a set of $d=p^{n}$
$n \times n$ matrices $/ \mathbb{Z}_{p}$ s.t. the difference of any 2 is nonsingular (NO assumption that they are symmetric matrices).
- Affine "translation plane" $\mathfrak{A}(\mathcal{K})$ of order d : points: vectors in $V \oplus V$ lines: $\quad x=c$ and $y=x M+b$ for $M \in \mathcal{K}, b \in V$
\therefore Just-constructed-complete-set- $\mathcal{B}^{\mathcal{K}}$-of-MUBs \leftrightarrow certain plane $\mathfrak{A}(\mathcal{K})$.
"Symplectic translation plane" $\mathfrak{A}(\mathcal{K})$ when \mathcal{K} is symmetric matrices.
Theorem (CCKS): If \mathcal{K} and \mathcal{K}^{\prime} consist of symmetric matrices then $\mathcal{B}^{\mathcal{K}}$ and $\mathcal{B}^{\mathcal{K}^{\prime}}$ are equivalent

$$
\Longleftrightarrow \mathfrak{A}(\mathcal{K}) \text { and } \mathfrak{A}\left(\mathcal{K}^{\prime}\right) \text { are isomorphic planes. }
$$

There is an analogue for $p=2$.

Basic questions:

1. Are there complete sets of MUBs in \mathbb{C}^{d} for d not a prime power?

Open

Answer NO was conjectured by some mathematical physicists BECAUSE there "is" apparent relationship between ANY complete set of MUBs and a projective plane, AND assuming prime power conjecture for projective planes.

Recall: Complete set of MUBs: set of $d+1$ MUBs hence involves $(d+1) d=d^{2}+d$ vectors, which is the number of lines of an affine plane of order d.

Basic questions continued:

2. For d a prime power, are there inequivalent complete sets of MUBs in \mathbb{C}^{d} ?

Yes if $d>8$ is not prime. Open otherwise.
3. For d a prime power, are there a lot of inequivalent complete sets of MUBs?

Basic questions continued:

2. For d a prime power, are there inequivalent complete sets of MUBs in \mathbb{C}^{d} ?

Yes if $d>8$ is not prime. Open otherwise.
3. For d a prime power, are there a lot of inequivalent complete sets of MUBs?
Known: $\left(d=p^{n}\right.$ is a prime power)

- For d even: the number of pairwise inequivalent complete sets of MUBs in \mathbb{C}^{d} is not bounded above by any polynomial in d.
- For d odd: the number of known pairwise inequivalent complete sets of MUBs in \mathbb{C}^{d} is $<d$. However, for odd d the number of pairwise inequivalent complete sets of MUBs is not bounded.

Basic questions continued:

4. Are there complete sets of MUBs not equivalent to any of those just described?
Yes: using Coulter-Matthews planar functions 1997 where $d=3^{n}$ (via Godsil-Roy).

Conjecture: Yes, lots.
5. Are there "large" maximal sets of MUBs in \mathbb{C}^{d} (perhaps not complete sets) in \mathbb{C}^{d} with d not a prime power?

Discussed soon.
6. Are there exponentially many pairwise inequivalent complete sets of MUBs in \mathbb{C}^{d} for an infinite set of dimensions d ?

Conjecture: Yes. Why not?

Basic questions continued:

4. Are there complete sets of MUBs not equivalent to any of those just described?
Yes: using Coulter-Matthews planar functions 1997 where $d=3^{n}$ (via Godsil-Roy).

Conjecture: Yes, lots.
5. Are there "large" maximal sets of MUBs in \mathbb{C}^{d} (perhaps not complete sets) in \mathbb{C}^{d} with d not a prime power?

Discussed soon.
6. Are there exponentially many pairwise inequivalent complete sets of MUBs in \mathbb{C}^{d} for an infinite set of dimensions d ?

Conjecture: Yes. Why not?

Basic questions continued:

4. Are there complete sets of MUBs not equivalent to any of those just described?
Yes: using Coulter-Matthews planar functions 1997 where $d=3^{n}$ (via Godsil-Roy).

Conjecture: Yes, lots.
5. Are there "large" maximal sets of MUBs in \mathbb{C}^{d} (perhaps not complete sets) in \mathbb{C}^{d} with d not a prime power?

Discussed soon.
6. Are there exponentially many pairwise inequivalent complete sets of MUBs in \mathbb{C}^{d} for an infinite set of dimensions d ?

Conjecture: Yes. Why not?
7. Are there infinitely many pairwise inequivalent complete sets of MUBs in \mathbb{C}^{d} for some dimensions d ?

Why not? Yes, this contradicts any relationship with planes.

Skipped in this talk:

- Many (but definitely nothing like "most") of the above examples come from commutative semifields.
- Extraspecial groups and their faithful irreducible representations are an essential part of this subject.
- Characteristic 2 MUBs
- Characteristic 2 orthogonal geometries
- Codes (nonlinear over \mathbb{Z}_{2} or linear over \mathbb{Z}_{4})

Incomplete but maximal sets of MUBs

- $d=p^{n}, V=\mathbb{Z}_{p}^{n}$, with dot product
- $p>2, \zeta \in \mathbb{C}$ primitive p th root of 1
- standard orthonormal basis $\mathcal{B}_{\infty}:=\left\{e_{v} \mid v \in V\right\}$ of \mathbb{C}^{d}
- \mathcal{K} : a set of $d^{\prime} \leq d=p^{n}$ symmetric $n \times n$ matrices M over \mathbb{Z}_{p}
- $\mathcal{B}_{M}^{\mathcal{K}}:=\left\{e_{a, M} \mid a \in V\right\}, M \in \mathcal{K}$, where

$$
e_{a, M}:=\frac{1}{\sqrt{d}} \sum_{v \in V} \zeta^{a \cdot v+v M \cdot v / 2} e_{v}
$$

Once again:
$\mathcal{B}^{\mathcal{K}}:=\left\{\mathcal{B}_{\infty}\right\} \cup\left\{\mathcal{B}_{M}^{\mathcal{K}} \mid M \in \mathcal{K}\right\}$ is a set of MUBs
\Longleftrightarrow the difference of any two members of \mathcal{K} is nonsingular.
So this is not about complete sets of MUBs, just sets of d^{\prime} MUBs constructed in a certain way.

Question: Can such a set \mathcal{K} be increased to a set of p^{n} matrices?
Answer: Rarely (this approach rarely leads to affine planes)

Greed doesn't work

Greed doesn't work

- There are many maximal sets of 3 MUBs.
- There is a maximal set of 2 MUBs (dimension 6). (complex Hadamard matrix: Moorhouse, Tao)
Those were very small sets. Soon: smallish sets.
Large maximal sets of MUBs:

Greed doesn't work

- There are many maximal sets of 3 MUBs.
- There is a maximal set of 2 MUBs (dimension 6). (complex Hadamard matrix: Moorhouse, Tao)
Those were very small sets. Soon: smallish sets.
Large maximal sets of MUBs:
- (Szántó) Maximal sets of size $p^{2}-p+2$ in $\mathbb{C}^{p^{2}}, p \equiv 3 \bmod 4$.
- (Jedwab-Yen) Maximal sets of size $2^{m-1}+1$ in $\mathbb{C}^{2^{m}}$.

Greed doesn't work

- There are many maximal sets of 3 MUBs.
- There is a maximal set of 2 MUBs (dimension 6).
(complex Hadamard matrix: Moorhouse, Tao)
Those were very small sets. Soon: smallish sets.
Large maximal sets of MUBs:
- (Szántó) Maximal sets of size $p^{2}-p+2$ in $\mathbb{C}^{p^{2}}, p \equiv 3 \bmod 4$.
- (Jedwab-Yen) Maximal sets of size $2^{m-1}+1$ in $\mathbb{C}^{2^{m}}$.

Needed: Understanding maximality in order to obtain many examples of very different sizes. Various things can be maximized, e.g.:

- Maximal sets \mathcal{K} of d^{\prime} symmetric matrices over \mathbb{Z}_{p} with all differences nonsingular (and resulting sets of $d^{\prime}+1 \mathrm{MUBs}$)
- Maximal sets of MUBs

The first of these has interested me more: finite geometry.
The second is where new ideas are needed, especially needed are reasonably general results that say:
set of MUBs from suitable maximal set \mathcal{K} is a maximal set of MUBs.

From Grassl's tables of

 $d^{\prime}+1$ MUBs coming from maximal sets \mathcal{K} of d^{\prime} symmetric $n \times n$ matrices| $d=p^{n}$ | p | n | size $d^{\prime}+1$ | |
| :---: | :---: | :---: | :--- | :--- |
| 4 | 2 | 2 | 3,5 | complete list |
| 8 | 2 | 3 | 5,9 | complete list |
| 16 | 2 | 4 | $5,8,9,11,13,17$ | complete list |
| 32 | 2 | 5 | $9, \ldots, 15,17,33$ | |
| 64 | 2 | 6 | $9, \ldots, 47,49,51,57,65$ | |
| 9 | 3 | 2 | $5,8,10$ | complete list |
| 27 | 3 | 3 | $10, \ldots, 20,28$ | complete list |
| 81 | 3 | 4 | $18, \ldots, 68,70,73,74,82$ | |
| 25 | 5 | 2 | $13, \ldots, 20,22,24,26$ | complete list |
| 125 | 5 | 3 | $27, \ldots, 90,101,126$ | |

