MUBs

William M. Kantor

Newark August 2017

MUBs: Mutually unbiased bases

 $\mathbb{C}^d:$ complex space with hermitian inner product

$$((x_i), (y_i)) := \sum_i x_i \overline{y}_i$$

▶ MUBs = Mutually unbiased orthonormal bases
$$\mathcal{B}, \mathcal{B}'$$
:
 $|(u, v)| = \text{constant for } u \in \mathcal{B}, v \in \mathcal{B}'$
and then $|(u, v)| = \frac{1}{\sqrt{d}} \quad \forall u \in \mathcal{B}, v \in \mathcal{B}'.$

► Any set of MUBs in C^d has size ≤ d + 1 (meaning a set of orthonormal bases that pairwise are MUBs).

- ► Complete set of MUBs: set of d + 1 MUBs hence involves (d + 1)d = d² + d vectors.
- Maximal set of MUBs: A set of MUBs that is not a proper subset of another set.

Complete \Rightarrow maximal but the converse is false.

Sources = History (no time)

Examples from fields

- ► $d = p^n$, $V = GF(p^n)$ with dot product w.r.t. fixed \mathbb{Z}_p -basis (or trace inner product Tr(xy))
- ▶ *p* > 2
- $\zeta \in \mathbb{C}$ primitive *p*th root of 1
- ▶ standard orthonormal basis $\mathcal{B}_{\infty} := \{e_v \mid v \in V\}$ of \mathbb{C}^d
- further bases $(b \in V)$
- $\mathcal{B}_{b} := \{e_{a,b} \mid a \in V\} \text{ where } e_{a,b} := \frac{1}{\sqrt{d}} \sum_{v \in V} \zeta^{a \cdot v + bv \cdot v} e_{v}$

Examples from fields

- ► $d = p^n$, $V = GF(p^n)$ with dot product w.r.t. fixed \mathbb{Z}_p -basis (or trace inner product Tr(xy))
- ▶ *p* > 2
- $\zeta \in \mathbb{C}$ primitive *p*th root of 1
- ▶ standard orthonormal basis $\mathcal{B}_\infty := \{e_v \mid v \in V\}$ of \mathbb{C}^d
- further bases $(b \in V)$
- $\mathcal{B}_{\boldsymbol{b}} := \{e_{\boldsymbol{a},\boldsymbol{b}} \mid \boldsymbol{a} \in V\} \text{ where } e_{\boldsymbol{a},\boldsymbol{b}} := \frac{1}{\sqrt{d}} \sum_{v \in V} \zeta^{\boldsymbol{a} \cdot \boldsymbol{v} + \boldsymbol{b} \boldsymbol{v} \cdot \boldsymbol{v}} e_{\boldsymbol{v}}$
- Then $\mathcal{B} := \{\mathcal{B}_{\infty}\} \cup \{\mathcal{B}_{b} \mid b \in V\}$ is a complete set of MUBs.

Rediscovered many times - the same examples in different guises.

Examples from fields

- ► $d = p^n$, $V = GF(p^n)$ with dot product w.r.t. fixed \mathbb{Z}_p -basis (or trace inner product Tr(xy))
- ▶ *p* > 2
- $\zeta \in \mathbb{C}$ primitive *p*th root of 1
- ▶ standard orthonormal basis $\mathcal{B}_\infty := \{e_v \mid v \in V\}$ of \mathbb{C}^d
- further bases $(b \in V)$
- $\mathcal{B}_{\boldsymbol{b}} := \{ e_{\boldsymbol{a},\boldsymbol{b}} \mid \boldsymbol{a} \in \boldsymbol{V} \} \text{ where } e_{\boldsymbol{a},\boldsymbol{b}} := \frac{1}{\sqrt{d}} \sum_{v \in \boldsymbol{V}} \zeta^{\boldsymbol{a} \cdot \boldsymbol{v} + \boldsymbol{b} v \cdot \boldsymbol{v}} e_{\boldsymbol{v}}$
- Then $\mathcal{B} := \{\mathcal{B}_{\infty}\} \cup \{\mathcal{B}_{b} \mid b \in V\}$ is a complete set of MUBs.

Rediscovered many times - the same examples in different guises.

p = 2? Mostly omitted today - lack of time.

Symmetric matrices

- $d = p^n$, $V = \mathbb{Z}_p^n$, with dot product
- ▶ p > 2, $\zeta \in \mathbb{C}$ primitive *p*th root of 1
- ▶ standard orthonormal basis $\mathcal{B}_{\infty} := \{e_{v} \mid v \in V\}$ of \mathbb{C}^{d}
- ▶ \mathcal{K} : a set of *d* symmetric $n \times n$ matrices *M* over \mathbb{Z}_p

$$\mathcal{B}_{M}^{\mathcal{K}} := \{ e_{a,M} \mid a \in V \}, M \in \mathcal{K}, \text{ where} \\ e_{a,M} := \frac{1}{\sqrt{d}} \sum_{v \in V} \zeta^{a \cdot v + vM \cdot v/2} e_{v}$$

Symmetric matrices

- $d = p^n$, $V = \mathbb{Z}_p^n$, with dot product
- ▶ p > 2, $\zeta \in \mathbb{C}$ primitive *p*th root of 1
- ▶ standard orthonormal basis $\mathcal{B}_{\infty} := \{e_{v} \mid v \in V\}$ of \mathbb{C}^{d}
- \mathcal{K} : a set of *d* symmetric $n \times n$ matrices *M* over \mathbb{Z}_p

$$\mathcal{B}_{M}^{\mathcal{K}} := \{ e_{a,M} \mid a \in V \}, M \in \mathcal{K}, \text{ where} \\ e_{a,M} := \frac{1}{\sqrt{d}} \sum_{v \in V} \zeta^{a \cdot v + vM \cdot v/2} e_{v}$$

Theorem (CCKS = Calderbank-Cameron-K-Seidel):

 $\mathcal{B}^{\mathcal{K}} := \{\mathcal{B}_{\infty}\} \cup \{\mathcal{B}_{M}^{\mathcal{K}} \mid M \in \mathcal{K}\} \text{ is a complete set of MUBs} \iff \text{the difference of any two members of } \mathcal{K} \text{ is nonsingular.}$

- Rediscovered by Bandyopadhyay-Boykin-Roychowdhury-Vatan.
- Previous examples? $V = GF(p^n)$ and \mathcal{K} is all $x \mapsto xm$, $m \in V$.

Digression: Equivalence of sets of MUBs

Means: equivalence of the set of 1-spaces they determine under a unitary transformation of \mathbb{C}^d

RF 1 e.g. $Aut(\mathcal{B})$ can contain many diagonal matrices.

Affine planes

Affine planes are related to the **preceding** construction:

- Again start with $V = \mathbb{Z}_p^n$ and
- K: a set of d = pⁿ n × n matrices /ℤ_p s.t. the difference of any 2 is nonsingular (NO assumption that they are symmetric matrices).
- Affine "translation plane" A(𝔅) of order d: points: vectors in V ⊕ V lines: x = c and y = xM + b for M ∈ 𝔅, b ∈ V

Affine planes

Affine planes are related to the **preceding** construction:

• Again start with $V = \mathbb{Z}_p^n$ and

► Affine "translation plane"
$$\mathfrak{A}(\mathcal{K})$$
 of order d :
points: vectors in $V \oplus V$
lines: $x = c$ and $y = xM + b$ for $M \in \mathcal{K}$, $b \in V$

: Just-constructed-complete-set- $\mathcal{B}^{\mathcal{K}}$ -of-MUBs \leftrightarrow certain plane $\mathfrak{A}(\mathcal{K})$. "Symplectic translation plane" $\mathfrak{A}(\mathcal{K})$ when \mathcal{K} is symmetric matrices.

Affine planes

Affine planes are related to the **preceding** construction:

• Again start with $V = \mathbb{Z}_p^n$ and

Basic questions:

1. Are there complete sets of MUBs in \mathbb{C}^d for d not a prime power? Open

Answer NO was conjectured by some mathematical physicists BECAUSE there "is" apparent relationship between ANY complete set of MUBs and a projective plane, AND assuming prime power conjecture for projective planes.

Recall: Complete set of MUBs: set of d + 1 MUBs hence involves $(d + 1)d = d^2 + d$ vectors, which is the number of lines of an affine plane of order d.

2. For *d* a prime power, are there inequivalent complete sets of MUBs in \mathbb{C}^d ?

Yes if d > 8 is not prime. Open otherwise.

3. For d a prime power, are there **a lot** of inequivalent complete sets of MUBs?

2. For *d* a prime power, are there inequivalent complete sets of MUBs in \mathbb{C}^d ?

Yes if d > 8 is not prime. Open otherwise.

3. For d a prime power, are there **a lot** of inequivalent complete sets of MUBs?

Known: $(d = p^n \text{ is a prime power})$

- For *d* even: the number of pairwise inequivalent complete sets of MUBs in C^{*d*} is not bounded above by any polynomial in *d*.
- For d odd: the number of known pairwise inequivalent complete sets of MUBs in C^d is < d. However, for odd d the number of pairwise inequivalent complete sets of MUBs is not bounded.

4. Are there complete sets of MUBs not equivalent to any of those just described?

Yes: using Coulter-Matthews planar functions 1997 where $d = 3^n$ (via Godsil-Roy).

Conjecture: Yes, lots.

Are there "large" maximal sets of MUBs in C^d (perhaps not complete sets) in C^d with d not a prime power?
 Discussed soon.

6. Are there exponentially many pairwise inequivalent complete sets of MUBs in C^d for an infinite set of dimensions d?
Conjecture: Yes. Why not?

4. Are there complete sets of MUBs not equivalent to any of those just described?

Yes: using Coulter-Matthews planar functions 1997 where $d = 3^n$ (via Godsil-Roy).

Conjecture: Yes, lots.

Are there "large" maximal sets of MUBs in C^d (perhaps not complete sets) in C^d with d not a prime power?
 Discussed soon.

6. Are there exponentially many pairwise inequivalent complete sets of MUBs in C^d for an infinite set of dimensions d?
Conjecture: Yes. Why not?

4. Are there complete sets of MUBs not equivalent to any of those just described?

Yes: using Coulter-Matthews planar functions 1997 where $d = 3^n$ (via Godsil-Roy).

Conjecture: Yes, lots.

Are there "large" maximal sets of MUBs in C^d (perhaps not complete sets) in C^d with d not a prime power?
 Discussed soon.

6. Are there exponentially many pairwise inequivalent complete sets of MUBs in C^d for an infinite set of dimensions d?
Conjecture: Yes. Why not?

7. Are there infinitely many pairwise inequivalent complete sets of MUBs in \mathbb{C}^d for some dimensions d?

Why not? Yes, this contradicts any relationship with planes.

Skipped in this talk:

- Many (but definitely nothing like "most") of the above examples come from commutative semifields.
- Extraspecial groups and their faithful irreducible representations are an essential part of this subject.
- Characteristic 2 MUBs
- Characteristic 2 orthogonal geometries
- ▶ Codes (nonlinear over Z₂ or linear over Z₄)

Incomplete but maximal sets of MUBs

- $d = p^n$, $V = \mathbb{Z}_p^n$, with dot product
- p > 2, $\zeta \in \mathbb{C}$ primitive *p*th root of 1
- ▶ standard orthonormal basis $\mathcal{B}_\infty := \{e_v \mid v \in V\}$ of \mathbb{C}^d
- ▶ \mathcal{K} : a set of $d' \leq d = p^n$ symmetric $n \times n$ matrices M over \mathbb{Z}_p
- ► $\mathcal{B}_{M}^{\mathcal{K}} := \{e_{a,M} \mid a \in V\}, M \in \mathcal{K}, \text{ where }$

$$e_{a,M} := \frac{1}{\sqrt{d}} \sum_{v \in V} \zeta^{a \cdot v + vM \cdot v/2} e_v.$$

Once again:

 $\mathcal{B}^{\mathcal{K}} := \{\mathcal{B}_{\infty}\} \cup \left\{\mathcal{B}^{\mathcal{K}}_{M} \mid M \in \mathcal{K}\right\} \text{ is a set of MUBs}$

 \iff the difference of any two members of ${\cal K}$ is nonsingular.

So this is not about complete sets of MUBs, just sets of d' MUBs constructed in a certain way.

Question: Can such a set \mathcal{K} be increased to a set of p^n matrices? Answer: Rarely (this approach rarely leads to affine planes)

There are many maximal sets of 3 MUBs.

 There is a maximal set of 2 MUBs (dimension 6). (complex Hadamard matrix: Moorhouse, Tao)

Those were very small sets. Soon: smallish sets.

Large maximal sets of MUBs:

- There are many maximal sets of 3 MUBs.
- There is a maximal set of 2 MUBs (dimension 6). (complex Hadamard matrix: Moorhouse, Tao)

Those were very small sets. Soon: smallish sets.

Large maximal sets of MUBs:

- (Szántó) Maximal sets of size $p^2 p + 2$ in \mathbb{C}^{p^2} , $p \equiv 3 \mod 4$.
- (Jedwab-Yen) Maximal sets of size $2^{m-1} + 1$ in \mathbb{C}^{2^m} .

- There are many maximal sets of 3 MUBs.
- There is a maximal set of 2 MUBs (dimension 6). (complex Hadamard matrix: Moorhouse, Tao)

Those were very small sets. Soon: smallish sets.

Large maximal sets of MUBs:

- (Szántó) Maximal sets of size $p^2 p + 2$ in \mathbb{C}^{p^2} , $p \equiv 3 \mod 4$.
- (Jedwab-Yen) Maximal sets of size $2^{m-1} + 1$ in \mathbb{C}^{2^m} .

Needed: Understanding maximality in order to obtain many examples of very different sizes. Various things can be maximized, e.g.:

- ► Maximal sets K of d' symmetric matrices over Z_p with all differences nonsingular (and resulting sets of d' + 1 MUBs)
- Maximal sets of MUBs

The first of these has interested me more: finite geometry. The second is where new ideas are needed, especially needed are reasonably general results that say:

set of MUBs from suitable maximal set ${\cal K}$ is a maximal set of MUBs.

From Grassl's tables of d' + 1 MUBs coming from maximal sets \mathcal{K} of d' symmetric $n \times n$ matrices

$d = p^n$	p	n	size $d' + 1$	
4	2	2	3,5	complete list
8	2	3	5,9	complete list
16	2	4	5,8,9,11,13,17	complete list
32	2	5	9,,15,17,33	
64	2	6	9,,47,49,51,57,65	
9	3	2	5,8,10	complete list
27	3	3	10,,20,28	complete list
81	3	4	18,,68,70,73,74,82	
25	5	2	13,,20,22,24,26	complete list
125	5	3	27,,90,101,126	