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MUBs: Mutually unbiased bases
Cd : complex space with hermitian inner product(

(xi ), (yi )
)

:=
∑

i xiy i
I MUBs = Mutually unbiased orthonormal bases B,B′:
|(u, v)| = constant for u ∈ B, v ∈ B′

and then |(u, v)| =
1√
d
∀u ∈ B, v ∈ B′.

I Any set of MUBs in Cd has size ≤ d + 1
(meaning a set of orthonormal bases that pairwise are MUBs).

I Complete set of MUBs: set of d + 1 MUBs
hence involves (d + 1)d = d2 + d vectors.

I Maximal set of MUBs: A set of MUBs that is not a proper subset
of another set.
Complete ⇒ maximal but the converse is false.

2 / 14



Sources = History (no time)
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Examples from fields
I d = pn, V = GF(pn) with dot product w.r.t. fixed Zp-basis

(or trace inner product Tr(xy))
I p > 2
I ζ ∈ C primitive pth root of 1
I standard orthonormal basis B∞ := {ev | v ∈ V } of Cd

• further bases (b ∈ V )

Bb := {ea,b | a ∈ V } where ea,b :=
1√
d

∑
v∈V

ζa·v+bv ·vev

• Then B := {B∞} ∪ {Bb | b ∈ V } is a complete set of MUBs.

Rediscovered many times - the same examples in different guises.

p = 2? Mostly omitted today - lack of time.
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Symmetric matrices Goal: Generalize the preceding examples

I d = pn, V = Zn
p, with dot product

I p > 2, ζ ∈ C primitive pth root of 1
I standard orthonormal basis B∞ := {ev | v ∈ V } of Cd

I K: a set of d symmetric n × n matrices M over Zp

I BKM := {ea,M | a ∈ V },M ∈ K, where

ea,M :=
1√
d

∑
v∈V

ζa·v+vM·v/2ev

Theorem (CCKS = Calderbank-Cameron-K-Seidel):

BK := {B∞} ∪
{
BKM | M ∈ K

}
is a complete set of MUBs

⇐⇒ the difference of any two members of K is nonsingular.

• Rediscovered by Bandyopadhyay-Boykin-Roychowdhury-Vatan.

• Previous examples? V = GF (pn) and K is all x 7→ xm, m ∈ V .
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Digression: Equivalence of sets of MUBs
Means: equivalence of the set of 1-spaces they determine under a
unitary transformation of Cd

+ e.g. Aut(B) can contain many diagonal matrices.
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Affine planes
Affine planes are related to the preceding construction:

I Again start with V = Zn
p and

I K: a set of d = pn

n × n matrices /Zp s.t. the difference of any 2 is nonsingular
(NO assumption that they are symmetric matrices).

I Affine “translation plane” A(K) of order d :
points: vectors in V ⊕ V
lines: x = c and y = xM + b for M ∈ K, b ∈ V

∴ Just-constructed-complete-set-BK-of-MUBs ↔ certain plane A(K).

“Symplectic translation plane” A(K) when K is symmetric matrices.

Theorem (CCKS): If K and K′ consist of symmetric matrices then
BK and BK′

are equivalent
⇐⇒ A(K) and A(K′) are isomorphic planes.

There is an analogue for p = 2.
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Basic questions:
1. Are there complete sets of MUBs in Cd for d not a prime power?

Open
Answer NO was conjectured by some mathematical physicists

BECAUSE there “is” apparent relationship between ANY complete
set of MUBs and a projective plane, AND assuming prime power
conjecture for projective planes.

Recall: Complete set of MUBs: set of d + 1 MUBs
hence involves (d + 1)d = d2 + d vectors,
which is the number of lines of an affine plane of order d .
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Basic questions continued:

2. For d a prime power, are there inequivalent complete sets of MUBs
in Cd?

Yes if d > 8 is not prime. Open otherwise.

3. For d a prime power, are there a lot of inequivalent complete sets
of MUBs?

Known: (d = pn is a prime power)

I For d even: the number of pairwise inequivalent complete sets
of MUBs in Cd is not bounded above by any polynomial in d .

I For d odd: the number of known pairwise inequivalent complete
sets of MUBs in Cd is < d . However, for odd d the number of
pairwise inequivalent complete sets of MUBs is not bounded.
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Basic questions continued:

4. Are there complete sets of MUBs not equivalent to any of those
just described?
Yes: using Coulter-Matthews planar functions 1997 where d = 3n (via
Godsil-Roy).

Conjecture: Yes, lots.

5. Are there “large” maximal sets of MUBs in Cd (perhaps not
complete sets) in Cd with d not a prime power?

Discussed soon.

6. Are there exponentially many pairwise inequivalent complete sets
of MUBs in Cd for an infinite set of dimensions d?

Conjecture: Yes. Why not?

7. Are there infinitely many pairwise inequivalent complete sets of
MUBs in Cd for some dimensions d?

Why not? Yes, this contradicts any relationship with planes.
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Skipped in this talk:
I Many (but definitely nothing like “most”) of the above

examples come from commutative semifields.

I Extraspecial groups and their faithful irreducible representations
are an essential part of this subject.

I Characteristic 2 MUBs

I Characteristic 2 orthogonal geometries

I Codes (nonlinear over Z2 or linear over Z4)
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Incomplete but maximal sets of MUBs
I d = pn, V = Zn

p, with dot product
I p > 2, ζ ∈ C primitive pth root of 1
I standard orthonormal basis B∞ := {ev | v ∈ V } of Cd

I K: a set of d ′ ≤ d = pn symmetric n × n matrices M over Zp

I BKM := {ea,M | a ∈ V },M ∈ K, where

ea,M :=
1√
d

∑
v∈V

ζa·v+vM·v/2ev .

Once again:

BK := {B∞} ∪
{
BKM | M ∈ K

}
is a set of MUBs

⇐⇒ the difference of any two members of K is nonsingular.

So this is not about complete sets of MUBs, just sets of d ′ MUBs
constructed in a certain way.

Question: Can such a set K be increased to a set of pn matrices?

Answer: Rarely (this approach rarely leads to affine planes)
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Greed doesn’t work

I There are many maximal sets of 3 MUBs.
I There is a maximal set of 2 MUBs (dimension 6).

(complex Hadamard matrix: Moorhouse, Tao)
Those were very small sets. Soon: smallish sets.

Large maximal sets of MUBs:
I (Szántó) Maximal sets of size p2 − p + 2 in Cp2 , p ≡ 3 mod 4.
I (Jedwab-Yen) Maximal sets of size 2m−1 + 1 in C2m .

Needed: Understanding maximality in order to obtain many examples
of very different sizes. Various things can be maximized, e.g.:

I Maximal sets K of d ′ symmetric matrices over Zp with all
differences nonsingular (and resulting sets of d ′ + 1 MUBs)

I Maximal sets of MUBs

The first of these has interested me more: finite geometry.
The second is where new ideas are needed, especially needed are
reasonably general results that say:
set of MUBs from suitable maximal set K is a maximal set of MUBs.
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From Grassl’s tables of
d ′ + 1 MUBs coming from maximal sets K
of d ′ symmetric n × n matrices

d = pn p n size d ′ + 1

4 2 2 3,5 complete list

8 2 3 5,9 complete list

16 2 4 5,8,9,11,13,17 complete list

32 2 5 9,. . . ,15,17,33

64 2 6 9, . . . ,47,49,51,57,65

9 3 2 5,8,10 complete list

27 3 3 10,. . . ,20,28 complete list

81 3 4 18,. . . ,68,70,73,74,82

25 5 2 13,. . . ,20,22,24,26 complete list

125 5 3 27,. . . ,90,101,126
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