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Matrix and Eigenvalue

@ We consider undirected simple graphs G = (V, E).

@ Let G be a simple graph with vertices v, v9, -+ ,v,. The
adjacency matrix of G, denoted by A(G) = (aj), is an
n x n matrix such that a;; = 1 if there is an edge between
v; and v, and a;; = 0 otherwise.

@ (Adjacency) eigenvalues of G are eigenvalues of the
adjacency matrix A(G).

@ )\;(G) denotes the ith largest eigenvalue of G. So we have
ALZ> A > 2 A

@ Let A = max{|Aa|, [ A3, -, | A\n|} = max{| 2], [An]}
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Toughness

@ The toughness ¢(G) of a connected graph G is defined as

tG) = min{%}, where the minimum is taken over all

proper subset S C V(G) such that ¢(G — S) > 1.

Figure: toughness = 1
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Toughness and hamiltonicity

@ “Toughness at least 1” is a necessary condition for
hamiltonicity.

@ Chvatal conjectured that a graph with toughness > 2 is
hamiltonian.

@ It was disproved by Bauer, Broersma and Veldman (2000).

@ Conjecture (Chvatal, 1973)

There exists some positive ¢, such that any graph with
toughness greater than ¢y is Hamiltonian.
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@ Theorem (Cioaba and G. 2016)
For any connected d—regular graph G with d > 3 and edge
connectivity r’ < d, t(G) > L —1> § —1.

@ Dbrief idea:
1. Let G be a connected d-regular graph with edge
connectivity ’. Then t(G) > «'/d.
2. Let G be a d-regular graph with d > 2 and edge
connectivity ' < d. Then \y(G) > d — 22

@ Brouwer’s conjecture remains unsolved for the case ' = d.
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More results

@ Theorem (Cioaba and G. 2016)
Let G be a connected d-regular graph with d > 3 and edge
connectivity . If " = d, or, if ¥ < d and

_ 2 9 9
d=2evd t12 - if g is even,

Mg (6 < { 420V PEE it is odd,

then t(G) > 1.

@ Theorem (Cioaba and G. 2016)
For any bipartite connected d-regular graph G with <" < d,
if A4 1(G) <d— %G, then ¢(G) = L.
d—r'
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Useful tools: Interlacing Theorem

@ Theorem
Let A be a real symmetric n x n matrix and B be a
principal m x m submatrix of A. Then

@ Corollary
Let S1, So,- - -, Sk be disjoint subsets of V(G) with
e(Si, S5) =0fori # j. Then

M(G) 2 M(GIUES) > min (n(GIS))-
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Generalized connectivity

@ The connectivity x(G) of a graph G is the minimum number
of vertices of G whose removal produces a disconnected
graph or a single vertex.

@ Given an integer [ > 2, Chartrand, Kapoor, Lesniak and
Lick defined the [-connectivity x;(G) of a graph G to be the
minimum number of vertices of G whose removal produces
a disconnected graph with at least [ components or a
graph with fewer than [ vertices.

@ By definition, for a noncomplete connected graph G, we
have ¢(G) = mingg,ga{@} where « is the independence
number of G.
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Results

@ Theorem (Fiedler 1973)
For a d-regular graph, x > d — \s.

@ Theorem (Krivelevich and Sudako;/ 2006)
For a d-regular graph, « > d — 25

@ Theorem (Cioaba and G. 2016)
Let [, k be integers with [ > k£ > 2. For any connected
d-regular graph G with [V(G)| > k +1 -1, d > 3 and edge
connectivity /, if K’ = d, or, if ¥ < d and

(@) < { d=Canidass 5‘12“2, if d is even,
1

d=2+Vd+8  if g g odd,

A (I—k+1)d
[
2 9

d—kK

then IQ[(G) > k.
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Corollaries

@ Corollary (Cioaba and G. 2016)
Let [ > 2. For any connected d-regular graph G with
[V(G)|>1l+1andd > 3, if

d—24+VBFIZ  ip -
M(G) < 5 , if dis even,
’ d=2+Vd"+8  if ] is odd,

2

then x;(G) > 2.
@ Corollary (Cioaba and G. 2016)
For any connected d-regular graph G with d > 3, if

d=2+Vd2+12 £ di5 even
M(G) <9 gy \2/d278 . ’
%, if d is odd,

then #(G) > 2.
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Spanning tree with bounded maximum degree

@ For aninteger k > 2, a k-tree is a tree with the maximum
degree at most k.

@ Theorem (Win 1989)
Let £ > 2 and G be a connected graph. If for any
SCV(G), c(G—-S)<(k—2)|S|+2,then G has a
spanning k-tree.
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Spanning tree with bounded maximum degree

@ Theorem (Wong 2013)
Let £ > 3 and G be a connected d-regular graph. If

M <d— m then G has a spanning k-tree.

@ Theorem (Cioaba and G. 2016)
Let £ > 3 and G be a connected d-regular graph with edge
connectivity <. Let | = d — (k — 2)x’. Each of the following
statements holds.
(i) If 1 <0, then G has a spanning k-tree.
(i) If 1> 0and Ajsa) < d— m then G has a
spanning k-tree.
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Hamiltonian graphs

@ Conjecture (Krivelevich and Sudakov, 2002)
Let G be a d-regular graph with n vertics and with the
second largest absolute value \. There exist a positive
consitant C such that for large enough n, if d/\ > C, then
G is Hamiltonian.

@ Recall: Conjecture (Chvatal, 1973)
There exists some positive ¢, such that any graph with
toughness greater than ¢y is Hamiltonian.

@ Recall: Theorem (Brouwer, 1995)
For any connected d-regular graph G, t(G) > § — 2.

@ Krivelevich and Sudakov proved, if /A > f(n), then G is
Hamiltonian.
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