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Matrix and Eigenvalue

We consider undirected simple graphs G = (V,E).

Let G be a simple graph with vertices v1, v2, · · · , vn. The
adjacency matrix of G, denoted by A(G) = (aij), is an
n× n matrix such that aij = 1 if there is an edge between
vi and vj , and aij = 0 otherwise.
(Adjacency) eigenvalues of G are eigenvalues of the
adjacency matrix A(G).
λi(G) denotes the ith largest eigenvalue of G. So we have
λ1 ≥ λ2 ≥ · · · ≥ λn.
Let λ = max{|λ2|, |λ3|, · · · , |λn|} = max{|λ2|, |λn|}.
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Toughness

The toughness t(G) of a connected graph G is defined as
t(G) = min{ |S|

c(G−S)}, where the minimum is taken over all
proper subset S ⊂ V (G) such that c(G− S) > 1.

Figure: toughness = 1
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Toughness and hamiltonicity

“Toughness at least 1” is a necessary condition for
hamiltonicity.

Chvátal conjectured that a graph with toughness ≥ 2 is
hamiltonian.
It was disproved by Bauer, Broersma and Veldman (2000).
Conjecture (Chvátal, 1973)
There exists some positive t0 such that any graph with
toughness greater than t0 is Hamiltonian.
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Chvátal conjectured that a graph with toughness ≥ 2 is
hamiltonian.
It was disproved by Bauer, Broersma and Veldman (2000).

Conjecture (Chvátal, 1973)
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Some results

Theorem (Alon 1995)
For any connected d-regular graph G, t(G) > 1

3(
d2

dλ+λ2
− 1).

Theorem (Brouwer, 1995)
For any connected d-regular graph G, t(G) > d

λ − 2.
Conjecture (Brouwer, 1995)
For any connected d-regular graph G, t(G) > d

λ − 1.
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More results

Theorem (Cioabă and G. 2016)
For any connected d-regular graph G with d ≥ 3 and edge
connectivity κ′ < d, t(G) > d

λ2
− 1 ≥ d

λ − 1.

brief idea:
1. Let G be a connected d-regular graph with edge
connectivity κ′. Then t(G) ≥ κ′/d.
2. Let G be a d-regular graph with d ≥ 2 and edge
connectivity κ′ < d. Then λ2(G) ≥ d− 2κ′

d+1 .
Brouwer’s conjecture remains unsolved for the case κ′ = d.
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More results

Theorem (Liu and Chen 2010)
For any connected d-regular graph G, if

λ2(G) <

{
d− 1 + 3

d+1 , if d is even,
d− 1 + 2

d+1 , if d is odd,

then t(G) ≥ 1.

Theorem (Cioabă and Wong 2014)
For any connected d-regular graph G, if

λ2(G) <

{
d−2+

√
d2+12

2 , if d is even,
d−2+

√
d2+8

2 , if d is odd,

then t(G) ≥ 1.
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More results

Theorem (Cioabă and G. 2016)
Let G be a connected d-regular graph with d ≥ 3 and edge
connectivity κ′. If κ′ = d, or, if κ′ < d and

λd d
d−κ′ e

(G) <

{
d−2+

√
d2+12

2 , if d is even,
d−2+

√
d2+8

2 , if d is odd,

then t(G) ≥ 1.

Theorem (Cioabă and G. 2016)
For any bipartite connected d-regular graph G with κ′ < d,
if λd d

d−κ′ e
(G) < d− d−1

2d , then t(G) = 1.
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Useful tools: Interlacing Theorem

Theorem
Let A be a real symmetric n× n matrix and B be a
principal m×m submatrix of A. Then
λi(A) ≥ λi(B) ≥ λn−m+i(A) for 1 ≤ i ≤ m.

Corollary
Let S1, S2, · · · , Sk be disjoint subsets of V (G) with
e(Si, Sj) = 0 for i 6= j. Then

λk(G) ≥ λk(G[∪ki=1Si]) ≥ min
1≤i≤k

{λ1(G[Si])}.
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Generalized connectivity

The connectivity κ(G) of a graph G is the minimum number
of vertices of G whose removal produces a disconnected
graph or a single vertex.

Given an integer l ≥ 2, Chartrand, Kapoor, Lesniak and
Lick defined the l-connectivity κl(G) of a graph G to be the
minimum number of vertices of G whose removal produces
a disconnected graph with at least l components or a
graph with fewer than l vertices.
By definition, for a noncomplete connected graph G, we
have t(G) = min2≤l≤α{κl(G)

l } where α is the independence
number of G.
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Results

Theorem (Fiedler 1973)
For a d-regular graph, κ ≥ d− λ2.

Theorem (Krivelevich and Sudakov 2006)
For a d-regular graph, κ ≥ d− 36λ2

d .
Theorem (Cioabă and G. 2016)
Let l, k be integers with l ≥ k ≥ 2. For any connected
d-regular graph G with |V (G)| ≥ k + l − 1, d ≥ 3 and edge
connectivity κ′, if κ′ = d, or, if κ′ < d and

λd (l−k+1)d

d−κ′ e
(G) <

{
d−2+

√
d2+12

2 , if d is even,
d−2+

√
d2+8

2 , if d is odd,

then κl(G) ≥ k.
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Corollaries

Corollary (Cioabă and G. 2016)
Let l ≥ 2. For any connected d-regular graph G with
|V (G)| ≥ l + 1 and d ≥ 3, if

λl(G) <

{
d−2+

√
d2+12

2 , if d is even,
d−2+

√
d2+8

2 , if d is odd,

then κl(G) ≥ 2.

Corollary (Cioabă and G. 2016)
For any connected d-regular graph G with d ≥ 3, if

λ2(G) <

{
d−2+

√
d2+12

2 , if d is even,
d−2+

√
d2+8

2 , if d is odd,

then κ(G) ≥ 2.
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Let l ≥ 2. For any connected d-regular graph G with
|V (G)| ≥ l + 1 and d ≥ 3, if

λl(G) <

{
d−2+

√
d2+12

2 , if d is even,
d−2+

√
d2+8

2 , if d is odd,

then κl(G) ≥ 2.
Corollary (Cioabă and G. 2016)
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Spanning tree with bounded maximum degree

For an integer k ≥ 2, a k-tree is a tree with the maximum
degree at most k.

Theorem (Win 1989)
Let k ≥ 2 and G be a connected graph. If for any
S ⊆ V (G), c(G− S) ≤ (k − 2)|S|+ 2, then G has a
spanning k-tree.
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Spanning tree with bounded maximum degree

Theorem (Wong 2013)
Let k ≥ 3 and G be a connected d-regular graph. If
λ4 < d− d

(k−2)(d+1) , then G has a spanning k-tree.

Theorem (Cioabă and G. 2016)
Let k ≥ 3 and G be a connected d-regular graph with edge
connectivity κ′. Let l = d− (k − 2)κ′. Each of the following
statements holds.
(i) If l ≤ 0, then G has a spanning k-tree.
(ii) If l > 0 and λd 3d

l
e < d− d

(k−2)(d+1) , then G has a
spanning k-tree.
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Hamiltonian graphs

Conjecture (Krivelevich and Sudakov, 2002)
Let G be a d-regular graph with n vertics and with the
second largest absolute value λ. There exist a positive
consitant C such that for large enough n, if d/λ > C, then
G is Hamiltonian.

Recall: Conjecture (Chvátal, 1973)
There exists some positive t0 such that any graph with
toughness greater than t0 is Hamiltonian.
Recall: Theorem (Brouwer, 1995)
For any connected d-regular graph G, t(G) > d

λ − 2.
Krivelevich and Sudakov proved, if d/λ > f(n), then G is
Hamiltonian.
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There exists some positive t0 such that any graph with
toughness greater than t0 is Hamiltonian.
Recall: Theorem (Brouwer, 1995)
For any connected d-regular graph G, t(G) > d

λ − 2.

Krivelevich and Sudakov proved, if d/λ > f(n), then G is
Hamiltonian.



Toughness Generalized connectivity Spanning tree with bounded maximum degree Hamiltonicity

Hamiltonian graphs

Conjecture (Krivelevich and Sudakov, 2002)
Let G be a d-regular graph with n vertics and with the
second largest absolute value λ. There exist a positive
consitant C such that for large enough n, if d/λ > C, then
G is Hamiltonian.
Recall: Conjecture (Chvátal, 1973)
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