Edge-regular graphs and regular cliques

Gary Greaves
NTU, Singapore

7th August 2017

Gary Greaves - Edge-regular graphs and regular cliques

Gary Greaves - Edge-regular graphs and regular cliques

$k=6$

$k=6$

$k=6$

$k=6$

$k=6$

$k=6$

$k=6$

$\lambda=3$

$$
k=6
$$

$\lambda=3$

edge-regular $\operatorname{erg}(10,6,3)$

edge-regular $\operatorname{erg}(10,6,3)$

clique
of order 4

clique of order 4

clique
of order 4

clique
of order 4

clique
of order 4

edge-regular erg(10,6,3)

clique
of order 4

clique
of order 4

edge-regular $\operatorname{erg}(10,6,3)$

2-regular clique of order 4

Theorem (Neumaier 1981)

Let Γ be edge-regular with a regular clique. Suppose Γ is vertex-transitive and edge-transitive. Then Γ is strongly regular.

Theorem (Neumaier 1981)

Let Γ be edge-regular with a regular clique.
Suppose Γ is vertex-transitive and edge-transitive.
Then Γ is strongly regular.

Theorem (Neumaier 1981)

Let Γ be edge-regular with a regular clique.
Suppose Γ is vertex-transitive and edge-transitive.
Then Γ is strongly regular.

Theorem (Neumaier 1981)

Let Γ be edge-regular with a regular clique.
Suppose Γ is vertex-transitive and edge-transitive.
Then Γ is strongly regular.

Theorem (Neumaier 1981)

Let Γ be edge-regular with a regular clique.
Suppose Γ is vertex-transitive and edge-transitive.
Then Γ is strongly regular.

Theorem (Neumaier 1981)

Let Γ be edge-regular with a regular clique.
Suppose Γ is vertex-transitive and edge-transitive.
Then Γ is strongly regular.

Theorem (Neumaier 1981)

Let Γ be edge-regular with a regular clique.
Suppose Γ is vertex-transitive and edge-transitive.
Then Γ is strongly regular.

Theorem (Neumaier 1981)

Let Γ be edge-regular with a regular clique.
Suppose Γ is vertex-transitive and edge-transitive.
Then Γ is strongly regular.

Theorem (Neumaier 1981)

Let Γ be edge-regular with a regular clique.
Suppose Γ is vertex-transitive and edge-transitive.
Then Γ is strongly regular.

Theorem (Neumaier 1981)

Let Γ be edge-regular with a regular clique.
Suppose Γ is vertex-transitive and edge-transitive.
Then Γ is strongly regular.

strongly regular $\operatorname{srg}(10,6,3,4)$

Question (Neumaier 1981)
 Is every edge-regular graph with a regular clique strongly regular?

Question (Neumaier 1981)
 Is every edge-regular graph with a regular clique strongly regular?

Answer (GG and Koolen 2017+)
No.

Question (Neumaier 1981)
Is every edge-regular graph with a regular clique strongly regular?

Answer (GG and Koolen 2017+)
No. There exist infinitely many non-strongly-regular, edge-regular vertex-transitive graphs with regular cliques.

Jack says "Hi"

Jack Koolen

Cayley graphs

- Let G be an (additive) group and $S \subseteq G$ a (symmetric) generating subset, i.e., $s \in S \Longrightarrow-s \in S$ and $G=\langle S\rangle$.
- The Cayley graph $\operatorname{Cay}(G, S)$ has vertex set G and edge set

$$
\{\{g, g+s\}: g \in G \text { and } s \in S\} .
$$

Example

$$
\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{5}, S\right) \quad \text { Generating set } S=\{-1,1\}
$$

A construction

- $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{7}, S\right)$

Generating set S
$(01,0) \quad(01, \pm 1)$
$(10,0)$
$(10, \pm 2)$
$(11,0) \quad(11, \pm 3)$

A construction

- $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{7}, S\right)$
- Γ is edge-regular $(28,9,2)$:

Generating set S
$(01,0) \quad(01, \pm 1)$
$(10,0) \quad(10, \pm 2)$
$(11,0) \quad(11, \pm 3)$

A construction

- $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{7}, S\right)$
- Γ is edge-regular $(28,9,2)$:

Generating set S

$(01,0) \quad(01, \pm 1)$
$(10,0) \quad(10, \pm 2)$
$(11,0) \quad(11, \pm 3)$
$(00,0)$

A construction

- $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{7}, S\right)$
- Γ is edge-regular (28,9,2):

Generating set S

$(01,0) \quad(01, \pm 1)$
$(10,0) \quad(10, \pm 2)$
$(11,0) \quad(11, \pm 3)$

A construction

- $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{7}, S\right)$
- Γ is edge-regular $(28,9,2)$;
- Γ has a 1-regular 4-clique:

A construction

- $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{7}, S\right)$
- Γ is edge-regular (28,9,2);
- Γ has a 1-regular 4-clique:

A construction

- $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{7}, S\right)$
- Γ is edge-regular (28,9,2);

Generating set S

$(01,0) \quad(01, \pm 1)$
$(10,0) \quad(10, \pm 2)$
$(11,0) \quad(11, \pm 3)$

- Γ has a 1-regular 4-clique:

$$
(a, b) \quad b \neq 0
$$

A construction

- $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{7}, S\right)$
- Γ is edge-regular $(28,9,2)$;

Generating set S

$(01,0) \quad(01, \pm 1)$
$(10,0) \quad(10, \pm 2)$
$(11,0) \quad(11, \pm 3)$

- Γ has a 1-regular 4-clique:

A construction

- $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{7}, S\right)$
- Γ is edge-regular $(28,9,2)$;
- Γ has a 1-regular clique of order 4;

Generating set S

$(01,0) \quad(01, \pm 1)$
$(10,0) \quad(10, \pm 2)$
$(11,0) \quad(11, \pm 3)$

- Γ is not strongly regular:

A construction

- $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{7}, S\right)$
- Γ is edge-regular $(28,9,2)$;
- Γ has a 1-regular clique of order Generating set S 4;
- Γ is not strongly regular:

A construction

- $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{7}, S\right)$
- Γ is edge-regular (28,9,2);
- Γ has a 1-regular clique of order Generating set S 4;
- Γ is not strongly regular:

A construction

- $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{7}, S\right)$
- Γ is edge-regular (28,9,2);
- Γ has a 1-regular clique of order Generating set S 4;
- Γ is not strongly regular:

A construction

- $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{7}, S\right)$
- Γ is edge-regular (28,9,2);
- Γ has a 1-regular clique of order Generating set S 4;
- Γ is not strongly regular:

Some infinite families

- Generalise: $\mathbb{Z}_{2}^{2} \oplus \mathbb{Z}_{7}$ to $\mathbb{Z}_{(c+1) / 2} \oplus \mathbb{Z}_{2}^{2} \oplus \mathbb{F}_{q}$.
- Works for $q \equiv 1(\bmod 6)$ such that the 3rd cyclotomic number $c=c_{q}^{3}(1,2)$ is odd.
- Then there exists an $\operatorname{erg}(2(c+1) q, 2 c+q, 2 c)$ having a 1-regular clique of order $2 c+2$.
- Take $p \equiv 1(\bmod 3)$ a prime s.t. $2 \not \equiv x^{3}(\bmod p)$. Then there exist a such that $c_{p^{a}}^{3}(1,2)$ is odd.

An example in the wild

Siberian Electronic Mathematical Reports
http://semr.math.nsc.ru
Tom 11, cmp. 268-310 (2014)
УДК 519.17
MSC 05C

КЭЛИ-ДЕЗА ГРАФЫ, ИМЕЮЩИЕ МЕНЕЕ 60 ВЕРШИН

С.В. ГОРЯИНОВ, Л.В. ШАЛАГИНОВ

Abstract

Deza graph, which is the Cayley graph is called the CayleyDeza graph. The paper describes all non-isomorphic Cayley-Deza graphs of diameter 2 having less than 60 vertices.

Keywords: Deza graph, Cayley graph, graph isomorphism, automorphism group.

1. ВВЕДЕНИЕ

В этой статье мы начинаем изучение графов Деза, которые являются графами Кэли. Графы Деза принято рассматривать как обобпение сильно регулярных графов. В ряде исследований было выяснено, что графы Деза наследуют некоторые свойства сильно регулярных графов. Например, в [1] показано, что вершинная связность графа Деза, полученного из сильно регулярного графа с помощью инволюции, совнадает с валетностью.

$\operatorname{erg}(24,8,2)$ with a 1-regular clique

Open problems

- Smallest non-strongly-regular, edge-regular graph with regular clique
- All known examples have 1-regular cliques
- Find general construction that includes $\operatorname{erg}(24,8,2)$

Willem Haemers, Felix Lazebnik, and Andrew Woldar; Congratulations!

