Edge-regular graphs and regular cliques

Gary Greaves

NTU, Singapore

7th August 2017

Let Γ be edge-regular with a regular clique. Suppose Γ is vertex-transitive and edge-transitive. Then Γ is strongly regular.

Let Γ be edge-regular with a regular clique. Suppose Γ is vertex-transitive and edge-transitive. Then Γ is strongly regular.

Let Γ be edge-regular with a regular clique.

Suppose Γ is vertex-transitive and edge-transitive.

Let Γ be edge-regular with a regular clique.

Suppose Γ is vertex-transitive and edge-transitive.

Let Γ be edge-regular with a regular clique.

Suppose Γ is vertex-transitive and edge-transitive.

Let Γ be edge-regular with a regular clique.

Suppose Γ is vertex-transitive and edge-transitive.

Let Γ be edge-regular with a regular clique.

Suppose Γ is vertex-transitive and edge-transitive.

Let Γ be edge-regular with a regular clique.

Suppose Γ is vertex-transitive and edge-transitive.

Let Γ be edge-regular with a regular clique.

Suppose Γ is vertex-transitive and edge-transitive.

Let Γ be edge-regular with a regular clique.

Suppose Γ is vertex-transitive and edge-transitive.

Then Γ is strongly regular.

strongly regular srg(10,6,3,4)

Question (Neumaier 1981)

Is every edge-regular graph with a regular clique strongly regular?

Question (Neumaier 1981)

Is every edge-regular graph with a regular clique strongly regular?

Answer (GG and Koolen 2017+)
No.

Question (Neumaier 1981)

Is every edge-regular graph with a regular clique strongly regular?

Answer (GG and Koolen 2017+)

No. There exist infinitely many non-strongly-regular, edge-regular vertex-transitive graphs with regular cliques.

Jack says "Hi"

Jack Koolen

Jack says "Hi"

Jack Koolen

Cayley graphs

- ▶ Let G be an (additive) group and $S \subseteq G$ a (symmetric) generating subset, i.e., $s \in S \implies -s \in S$ and $G = \langle S \rangle$.
- ► The Cayley graph Cay(G, S) has vertex set G and edge set

$$\left\{\left\{g,g+s\right\}:g\in G\text{ and }s\in S\right\}.$$

Example

$$\Gamma = \operatorname{Cay}(\mathbb{Z}_5, S)$$

Generating set $S = \{-1, 1\}$

$$\Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$$

$$(01,0)$$
 $(01,\pm 1)$
 $(10,0)$ $(10,\pm 2)$
 $(11,0)$ $(11,\pm 3)$

- $\Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$
- ightharpoonup Γ is edge-regular (28,9,2):

- $\Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$
- $ightharpoonup \Gamma$ is edge-regular (28, 9, 2):

Generating set S

$$\begin{pmatrix} (01,0) & (01,\pm 1) \\ (10,0) & (10,\pm 2) \\ (11,0) & (11,\pm 3) \end{pmatrix}$$

(00,0)

- $\Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$
- ightharpoonup T is edge-regular (28,9,2):

$$(01,0)$$
 $(01,\pm 1)$
 $(10,0)$ $(10,\pm 2)$
 $(11,0)$ $(11,\pm 3)$

- $\Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$
- ightharpoonup Γ is edge-regular (28,9,2);
- ightharpoonup Γ has a 1-regular 4-clique:

$$\begin{array}{ccc} (01,0) & (01,\pm 1) \\ (10,0) & (10,\pm 2) \\ (11,0) & (11,\pm 3) \end{array}$$

- $\Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$
- ightharpoonup Γ is edge-regular (28, 9, 2);
- ightharpoonup Γ has a 1-regular 4-clique:

$$(01,0)$$
 $(01,\pm 1)$
 $(10,0)$ $(10,\pm 2)$
 $(11,0)$ $(11,\pm 3)$

- $\Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$
- ightharpoonup Γ is edge-regular (28,9,2);
- Γ has a 1-regular 4-clique:

$$(01,0)$$
 $(01,\pm 1)$
 $(10,0)$ $(10,\pm 2)$
 $(11,0)$ $(11,\pm 3)$

$$(a,b)$$
 $b \neq 0$

- $\Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$
- ightharpoonup Γ is edge-regular (28, 9, 2);

Γ has a 1-regular 4-clique:

$$\begin{array}{ccc} (01,0) & (01,\pm 1) \\ (10,0) & (10,\pm 2) \\ (11,0) & (11,\pm 3) \end{array}$$

- $\Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$
- ightharpoonup Γ is edge-regular (28,9,2);
- ▶ Γ has a 1-regular clique of order 4;

Γ is not strongly regular:

$$(01,0)$$
 $(01,\pm 1)$
 $(10,0)$ $(10,\pm 2)$
 $(11,0)$ $(11,\pm 3)$

- $\Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$
- ightharpoonup Γ is edge-regular (28,9,2);
- $ightharpoonup \Gamma$ has a 1-regular clique of order 4;

Generating set S

$$\begin{array}{ccc} (01,0) & (01,\pm 1) \\ (10,0) & (10,\pm 2) \\ (11,0) & (11,\pm 3) \end{array}$$

- $\Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$
- ightharpoonup Γ is edge-regular (28,9,2);
- $ightharpoonup \Gamma$ has a 1-regular clique of order 4;

Generating set S

- $\Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$
- ightharpoonup Γ is edge-regular (28,9,2);
- $ightharpoonup \Gamma$ has a 1-regular clique of order 4;

Generating set S

- $\Gamma = \operatorname{Cay}(\mathbb{Z}_2^2 \oplus \mathbb{Z}_7, S)$
- ightharpoonup Γ is edge-regular (28,9,2);
- $ightharpoonup \Gamma$ has a 1-regular clique of order 4;

Generating set S

Some infinite families

- ▶ Generalise: $\mathbb{Z}_2^2 \oplus \mathbb{Z}_7$ to $\mathbb{Z}_{(c+1)/2} \oplus \mathbb{Z}_2^2 \oplus \mathbb{F}_q$.
- ▶ Works for $q \equiv 1 \pmod{6}$ such that the 3rd cyclotomic number $c = c_q^3(1,2)$ is odd.
- ► Then there exists an erg(2(c+1)q, 2c+q, 2c) having a 1-regular clique of order 2c+2.
- ► Take $p \equiv 1 \pmod{3}$ a prime s.t. $2 \not\equiv x^3 \pmod{p}$. Then there exist a such that $c_{p^a}^3(1,2)$ is odd.

An example in the wild

Siberian Electronic Mathematical Reports http://semr.math.nsc.ru

Том 11, стр. 268-310 (2014)

УДК 519.17 MSC 05C

КЭЛИ-ДЕЗА ГРАФЫ, ИМЕЮЩИЕ МЕНЕЕ 60 ВЕРШИН

С.В. ГОРЯИНОВ, Л.В. ШАЛАГИНОВ

ABSTRACT. Deza graph, which is the Cayley graph is called the Cayley-Deza graph. The paper describes all non-isomorphic Cayley-Deza graphs of diameter 2 having less than 60 vertices.

Keywords: Deza graph, Cayley graph, graph isomorphism, automorphism group.

1. Введение

В этой статъе мы начинаем изучение графов Деза, которые вызняются графами Кэли. Графы Деза принято рассматривать как обобщение сильно регулярных графов. В ряде исследований было выяснено, что графы Деза наследуют некоторые свойства сильно регулярных графов. Например, в [1] показано, что вершинная связность графа Деза, полученного из сильно регулярного графа с помощью инволюции, совпадает с валетностью.

erg(24, 8, 2) with a 1-regular clique

Open problems

► Smallest non-strongly-regular, edge-regular graph with regular clique

▶ All known examples have 1-regular cliques

Find general construction that includes erg(24, 8, 2)

Willem Haemers, Felix Lazebnik, and Andrew Woldar; Congratulations!