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Remark

The work in this section is joint with Krystal Guo and Harmony
Zhan.
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Coefficients

The characteristic polynomial φ(X, t) of a graph X is det(tI −A).

Definition
A basic subgraph of a graph is a subgraph such that each
component is an edge or a cycle. The weight wt(β) of a basic
subgraph β with k components, of which c are cycles, is (−1)k2c.

Theorem
The coefficient of tn−r in φ(X, t) is the sum of the weights of the
basic subgraphs of X with exactly r vertices.
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Closed walks

If u ∈ V (X), the number of closed walks in X of length k starting
u is (Ak)u, u. We denote the generating function for these walks
by Wu,u(X, t) it can be expressed in terms of characteristic
polynomials:

Theorem
If u ∈ V (X), then

t−1Wu,u(X, t−1)φ(X \u, t)
φ(X, t) .
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1-Sums

X Y
u

Definition
If Z is a graph with induced subgraphs X and Y such that
V (Z) = V (X) ∪ V (Y ) and V (X) ∩ V (Y ) = {u} for some vertex
u, we say Z is the 1-sum of X and Y at u.
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Characterisitic polynomial of a 1-sum

If Z is the 1-sum of X and Y at the vertex u, then φ(Z, t) is equal
to

φ(X \u, t)φ(Y, t) + φ(X, t)φ(Y \u, t)− tφ(X \u, t)φ(Y \u, t).
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Zeros

The zeros of φ(X, t) are real.

(How many proofs of this can you provide?)
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Definitions

Definition
A matching in a graph is a set of disjoint edges. A k-matching is a
matching that consists of exactly k edges. We use p(X, k) to
denote the number of k-matchings in X.

Definition
The matching polynomial µ(X, t) of X is defined by

µ(X, t) =
∑
k

(−1)kp(X, k)tn−2k.

Hence if X is a tree, φ(X, t) = µ(X, t).
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Splitting closed walks into loops

Definition
Consider a closed walk in a graph. Each time the walks returns to
a vertex it creates a directed cycle of length at least two. We refer
to the sequence of cycles created by a closed walk as its loop
decomposition.

A loop of length two is just an edge. A walk with no edges in its
loops decomposition is often referred to as a reduced walk.
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Tree-like Walks

The matching polynomial is also related to the generating function
for a class of closed walks.
Definition
A closed walk is tree-like if all its loops are edges.

As we might hope, any closed walk in a tree is tree-like.

Chris Godsil University of Waterloo Spectral Invariants from Embeddings



Polynomials from Good Cycles Discrete Quantum Walks Characteristic Polynomial The Matching Polynomial The Psicle Polynomial

Tree-like Walks

The matching polynomial is also related to the generating function
for a class of closed walks.
Definition
A closed walk is tree-like if all its loops are edges.

As we might hope, any closed walk in a tree is tree-like.

Chris Godsil University of Waterloo Spectral Invariants from Embeddings



Polynomials from Good Cycles Discrete Quantum Walks Characteristic Polynomial The Matching Polynomial The Psicle Polynomial

Generating functions for tree-like walks

Theorem
If Cu(X, t) is the generating function for the closed tree-like walks
in X that start at u, then

t−1C(X, t−1) = µ(X \u, t)
µ(X, t) .
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Zeros

Theorem (Heilmann and Lieb)
The zeros of the matching polynomial are real.
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Good cycles from embeddings

Assume that we are given a cellular embedding of our graph X in
some surface. The good cycles relative to this embedding are the
cycles that are contractible. Let B denote the set of basic graphs of
X that consist of edges and good cycles relative to the embedding.

Definition
The psicle polynomial of X relative to an embedding is

ψ(X, t) =
∑
β∈B

wt(β).
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Properties of the psicle polynomial

Since every graph has a cellular embedding with no faces,
µ(X, t) is a cycle polynomial.
There is a 1-sum recurrence.
The psicle polynomial gives rise to a generating function for a
class of walks.
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One problem

Question
What can we say about the distribution of the zeros of psicle
polynomials.

The zeros need not be real, so we are asking about the distribution
in the complex plane.
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Remark

This section is joint work with Harmony Zhan (mostly from Godsil,
Zhan: arXiv:1701.04474).
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Random walks

A random walk on a graph X is specified by a matrix P , with rows
and columns indexed by V (X). More precisely it is determined by
the sequence of matrices P k for k = 0, 1, . . ..
Each of these matrices is row stochastic, hence each row specifies
a probability density on V (X).
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Quantum walks

To specify a quantum walk we start with a unitary matrix U . In
place of the matrices P k we work with the Schur products

M(k) = Uk ◦ Uk.

Since U is unitary, M(k) is doubly stochastic and so, for each
non-negative integer k the rows of M(k) describe probability
densities on V (X). We call U the transition matrix of the quantum
walk, and the matrices M(k) are the mixing matrices of the walk.

By way of example, we might ask if there is a time k such that
entries of the u-row are all equal?
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A constraint

For physical reasons, our transition matrix U should be sparse.
An obvious approach would be to use a weighted adjacency
matrix but, in general, it is not possible to produce a unitary
matrix by weighting an adjacency matrix. [Severini]
In practice, most quantum walks are defined on the arcs of
some graph.
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Arc-reversal walks

For an arc-reversal walk on a graph X, the transition matrix U is a
product of two unitary matrices S and C.
The first matrix S is a permutation that maps each arc to its
reverse.
The second matrix C is block-diagonal, with blocks indexed by the
vertices of X. The i-th block Ci is unitary matrix of order di × di,
where di is the valency of vertex i. One simple and useful choice is

Ci = 2
di
J − I.

The matrices Ci are usually referrred to as coins, and the choice
just given is known as the Grover coin.
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Some parameters of a discrete walk

Mixing time.

Hitting time.
How quickly can we determine if one of the coins is altered
(e.g., Ci → −Ci)?
The average mixing matrix:

M̂ = lim
L→∞

1
L

∑
k≤L

Uk ◦ Uk.

The rows of M̂ provide one probablity density for each vertex
of X, and hence each vertex of X has an entropy associated
with it.
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Graph invariants

If we take all coins in the arc-reversal walk to be the Grover coin,
we can view the spectrum of U as a graph invariant.
Emms et al proposed an algorithm for isomorphism of strongly
regular graphs. It is based on a walk using the Grover coin: their
invariant is the characteristic polynomial of the matrix obtained
from U3 by setting positive entries equal to 1 and non-positive
entries to 0.

It doesn’t work. [Godsil, Guo, Myklebust: arXiv:1511.01962]
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Shunt decompositions

For regular graphs there is a generalization of the arc-reversal
model. Suppose X is d-regular. A shunt decompostion of X is a
collection of permutation matrices P1, . . . , Pd such that

A = P1 + · · ·+ Pd

Now let S be the permutation matrix with P1, . . . , Pd as diagonal
blocks and let C be a coin matrix as before. Then U = SC
describes a quantum walk.
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A difficulty

To successfully analyse properties of a discrete quantum walk,
we need to work in the algebra generated by S and C. For
general graphs this currently impossible, unless each coin is an
involution, whence C2 = I.

If we use Grover coins, then the coin matrix C in the
arc-reversal walk is an involution.
For shunt decompositions neither S nor C has order two in
general. The permutation matrix S is an involution if and
only if the shunt decomposition is a 1-factorization.
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Why two reflections help

Suppose U = MN , where M and N are symmetric involutions.
Then U is diagonalizable.

Lemma
If z is an eigenvector for U with eigenvalue λ, then the span of
{z,Nz} is invariant under 〈M,N〉.

Proof.
Since N2 = I, the set {u,Nu} is N -invariant. As MNz = λz and
λ 6= 0, we have Mz = λ−1Nz. As MNz = λz, we see that
{z,Nz} is M -invariant.
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Reflections from partitions

If π is a partition of a set E, we define Pπ to be orthogonal
reflection onto the space of functions on E that are constant on
the cells of π.
If P is a projection then P 2 = P and (2P − I)2 = I.

Lemma
If π1 and π2 are partitions of E with corresponding projections P1
and P1, then

U = (2P1 − I)(2P2 − I)

is unitary and hence determines a discrete quantum walk on E.
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Face-vertex walks

[The following construction is due to H. Zhan.]
Suppose we have a cellular embedding of X in an oriented surface.
Let π1 be the partition whose cells are the sets of arcs with a given
start vertex. Let π2 be the partition whose cells are the set of arcs
for which a given face lies on the left (as move along the arc).
Then this pair of partitions determines a discrete quantum walk.
We call this a face-vertex walk.
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The Problem

The description of a discrete quantum walk on a graph requires
that we specify extra structure—in fact, a linear order on the arcs
leaving a vertex. We can provide this extra structure by shunt
decompositions or embeddings.
The basic task is to relate properties of the walk with the
underlying combinatorial structure.
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The End(s)
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