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1. Introduction

o I'=(V, E): Strongly connected digraph on n vertices. It can have
loops and multiple arcs.

) of the adjacency matrix A of I':
spl = {0, AT, A )

where \; and m; are the roots of the characteristic polynomial and
their multiplicities.
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o I': Digraph with vertex set V"= V(T') and arc set E = E(I").
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3. Voltage assignment and lifted digraphs
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o

TI': Digraph with vertex set V' =V(T') and arc set E = E(T).

. It takes a base digraph and a group to obtain a
new and larger digraph.
Given a digraph I', and a finite group G with generating set A, a
voltage assignment « is a mapping o : F — A, that is, a labelling of
the arcs with elements of G.

. Digraph with vertex set V(I'*) =V x G and arc
set E(T'*) = E x A, where there is an arc from vertex (u, g) to
vertex (v, go(uv)) if and only if uv € E:

(u,9) —— (v, ga(uv)).

In particular, the with A ={g1,...,9-}
can be seen as the lifted digraph I'*, where I' = K7 (a singleton
with V' ={u} and E = {ej,..., e, } are r loops) and voltage
assignment
aE — A
e — ale) =g



3. Example: The Alegre digraph

(¢]

The Alegre digraph is the 2-regular digraph with n = 25 vertices and
diameter 4.

It was found by F., Yebra, and Alegre in 1984.
It can be seen as the lifted digraph I'* of the base digraph I with
voltage assignment «, group G = Z5 and A ={0,1,4} = {0, £1}.




The Alegre digraph again and its spectrum

spl'® = {270(10)’1-(5), —3(9), %(_1 +5)3), %(_1 — \/5)(2)}
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4. Matrix representation of a lifted digraph (cyclic group)

o Representation of a lifted digraph with a matrix whose size equals
the order of the base graph when the group G of the voltage
assignments is cyclic.

o Voltage assignment a: On the

o . A square matrix indexed by the vertices of
T", and whose elements are polynomials in the quotient ring
Ryn—1[2] = R[z]/(2™), where (2™) is the ideal generated by the
polynomial z™. Each entry of B(z) is represented by a polynomial

(B(Z))uv = puv(Z) =ap+aiz+---+ am_lzm—17

where
o — { 1, ifuv € E and a(uv) =1,

0, otherwise.

fori=0,...,m—1.
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4. Matrix representation of a lifted digraph (cyclic group)

o The powers of B(z) give the same information as the powers of the
adjacency matrix of the lifted digraph I'*.

o Let (B(2)")uw = Bo + B12 + -+ + Bm—12""1. Then,
for every i = 0,...,m — 1, the coefficient 3; equals the number of
walks of length ¢ in the lifted digraph I'®, from vertex (u, h) to
vertex (v, h + 1) for every h € G.

o The products of the entries (polynomials) of B(z) are in the ring

Rlz]/(z™).



4. Example. The

o Matrix representation:

0o 1 1 0 0 0 1
0z 2* 0 0 0 1
B(z)=| 0 0 0 z+2* 0|, B)=| 0 0
1 0 0 0 1 1 0
z 0 O 0 z 1 0
o All coefficients «;, for i =0, ..., 4, of the polynomials of

I+ B(2)+ B(2)? + B(2) + B(2)* are non-zero, since

SO O =

SO NO O

= =0 OO



4. Example. The

o Matrix representation:

0o 1 1 0 0 01 1 0 O
0z 2* 0 0 01 100
B(z)=| 0 0 0 z+2z* 0], B()=[ 00 0 2 0
1 0 0 0 1 1 0 0 0 1
z 0 O 0 z 1 0 0 0 1
o All coefficients «;, for i =0, ..., 4, of the polynomials of

I+ B(2)+ B(2)? + B(2) + B(2)* are non-zero, since

o For example, the entries of the first row of
I+ B(z)+ B(2)* + B(z)® + B(2)* are:
342422423424 1424224224224 142422423 +224,
1424224284224 24 24 22 4+ 23 + 24



The spectrum of the lifted digraph (cyclic group)

The spectrum of the lift I'* can be completely determined from the
spectrum of the polynomial matrix B(z).

Proposition

Let T = (V, E) be a base digraph on r vertices, with a voltage
assignment « in Zy,. Let P(\, z) = det(\ — B(z)) be the characteristic
polynomial of the polynomial matrix B(z) of the voltage digraph (T, «).
Forj=0,...,k—1, let w; be the distinct k-th complex roots of unity.
Then, the spectrum of the lift ' is the multiset of kr roots \ of the k
polynomials P(\,w;) of degree r each, where 0 < j < k — 1; formally,

SpFa:{/\i,j : P(/\i7j,w]‘):0, 1§7;§7“, OSJ Sk‘—l}.



The spectrum of the of the Alegre digraph

The polynomial matrix B(z) of the Alegre digraph has spectrum
spB = {0® M i) (z4 Ly},

Then, evaluating them at the 5-th roots of unity w; = et for
1=0,1,2,3,4, we get:
G [ [ [0 [ HT
1 0@ ;M T ;™ T 2M
w 0@ | 4@ | - 1 L—14/E)D
2 0@ [ i [ @ | (-1 -v5)®
e 0@ [ i [ @ | I(-1+v5)®
ot 0@ [ i [ @ | (-1 -v5)®

Table: The eigenvalues of the Alegre digraph.



The case of a general group

Let ' = (V, E) be a digraph with voltage assignment « on the group G.
Its associated matrix B is a square matrix indexed by the vertices of T,
and whose entries are elements of the group algebra C[G]. Namely,

(B)uv = Z Qgg

geG

where
a»—{ 1 ifuv € E and a(w) =g,

0 otherwise,

fori=1,...,n.



The number of walks

Lemma
Let
(Be)uv = Z a(gé)g'

geqG

Then, for every g,h € G, the coefficient agz) equals the number of walks

of length ¢ in the lifted digraph T'“, from vertex (u, h) to vertex (v, hg).
In particular, if u = v and v denotes the identity element of G, aEZ) is the
number of walks of length { rooted at every vertex (u,g), for g € G, of
the lift.



The spectrum

Theorem

Let T = (V, E) be a base digraph on r vertices, with a voltage
assignment o in a group G with |G| = n. Assume that G has v
conjugacy classes with dimensions d,...,d, (so, >.._, d? =n).

Let py,...,p, be the irreducible representations of the group G. Let
p,;(B) the complex matrix obtained from B by replacing each g € G by
the d; x d; matrix p;(g), and let u, ;, uw € V, j € [1,d;] denote its
eigenvalues.

Then, the rn eigenvalues of the lift T'® are the rd; eigenvalues of p,(B),
for every i € [1,v], each repeated d; times.



Using the group characters

Corollary

Using the same notation as above, for each i € [1,v], the eigenvalues
Au,j, foruw € Voand j € [1,d;], of the lift T, are the solutions (each
repeated d; times) of the system

Z /\i,j = Z Xz(p)a = 13 s 77ndi~ (1)

ueV,j€(1,d;] pEP;



Using the group characters

Corollary

Using the same notation as above, for each i € [1,v], the eigenvalues
Au,j, foruw € Voand j € [1,d;], of the lift T, are the solutions (each
repeated d; times) of the system

Z )‘i,j = Z Xz(p)a = 13 s 7rdi~ (1)

ueV,j€(l,d;] pePy

The equalities in (1) lead to a polynomial of degree rd;, with roots the
required eigenvalues ), ;.



An example

(a)

Figure: The base digraph K3, on the group Ss, and its lift



EVi o | op | ap” | P
p. || 1 1 1] 1 1
py || 1 —1 —1] -1 1 1

(1 -3 (-1 V3
m | r]i s ) s )]

Table: The irreducible representations of the symmetric group Ss.



_ o L+p
B_<L—|—p o )

[ Ss \ g [ v1o0pop’|pp®]
X2 (dg = ) 1 -1 1
X3 (d3 = ) 2 0 -1

Table: The character table of the symmetric group Ss.



1 2 -1 2 0
Then, by the Corollary:
» x1: Since d; = 1, two eigenvalues of I'* are {3, -1} = ev x1(B).
> x2: Since dy = 1, two eigenvalues of I'* are {—3,1} = ev x2(B).
> x3: Since d3 = 2, we consider all the possible closed walks of
lengths ¢ = 1,2,3,4 in B, which gives the system
)\u70 + )\u71 + )\v70 + )\v,l =0
)\,370 + )\371 + )\12)70 + )\12)71 = 2
Ai,o + Ai,l + )\3,0 + )\3,1 =0
)\i,o + )\i@ + )\3,0 + )‘3,1 =2,
with solutions 1,0,0, —1

Then,
spl® = {3(1), 14) 0@ 16, ,3(1)}_
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Thanks for your attention

DA



