
Al algebraic approach to lifts of digraphs
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1. Introduction

◦ Γ = (V,E): Strongly connected digraph on n vertices. It can have
loops and multiple arcs.

◦ Spectrum of the adjacency matrix A of Γ:

sp Γ = {λm0
0 , λm1

1 , . . . , λmdd },

where λi and mi are the roots of the characteristic polynomial and
their multiplicities.



3. Voltage assignment and lifted digraphs

◦ Γ: Digraph with vertex set V = V (Γ) and arc set E = E(Γ).

◦ Voltage assignment: It takes a base digraph and a group to obtain a
new and larger digraph.
Given a digraph Γ, and a finite group G with generating set ∆, a
voltage assignment α is a mapping α : E → ∆, that is, a labelling of
the arcs with elements of G.

◦ Lifted digraph Γα: Digraph with vertex set V (Γα) = V ×G and arc
set E(Γα) = E ×∆, where there is an arc from vertex (u, g) to
vertex (v, gα(uv)) if and only if uv ∈ E:

(u, g) −→−− (v, gα(uv)).

◦ In particular, the Cayley digraph Cay(Γ,∆) with ∆ = {g1, . . . , gr}
can be seen as the lifted digraph Γα, where Γ = Kr

1 (a singleton
with V = {u} and E = {e1, . . . , er} are r loops) and voltage
assignment

α : E −→ ∆
ei −→ α(ei) = gi
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3. Example: The Alegre digraph

◦ The Alegre digraph is the 2-regular digraph with n = 25 vertices and
diameter 4.
It was found by F., Yebra, and Alegre in 1984.
It can be seen as the lifted digraph Γα of the base digraph Γ with
voltage assignment α, group G = Z5 and ∆ = {0, 1, 4} = {0,±1}.
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The Alegre digraph again and its spectrum

a
G

sp Γα =
{

2, 0(10), i(5),−i(5), 12 (−1 +
√

5)(2), 12 (−1−
√

5)(2)
}



4. Matrix representation of a lifted digraph (cyclic group)

◦ Representation of a lifted digraph with a matrix whose size equals
the order of the base graph when the group G of the voltage
assignments is cyclic.

◦ Voltage assignment α: On the cyclic group
G = Zm = {0, 1, . . . ,m− 1}.

◦ Polynomial matrix B(z): A square matrix indexed by the vertices of
Γ, and whose elements are polynomials in the quotient ring
Rm−1[z] = R[z]/(zm), where (zm) is the ideal generated by the
polynomial zm. Each entry of B(z) is represented by a polynomial

(B(z))uv = puv(z) = α0 + α1z + · · ·+ αm−1z
m−1,

where

αi =

{
1, if uv ∈ E and α(uv) = i,
0, otherwise.

for i = 0, . . . ,m− 1.
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4. Matrix representation of a lifted digraph (cyclic group)

◦ The powers of B(z) give the same information as the powers of the
adjacency matrix of the lifted digraph Γα.

◦ Lemma 4. Let (B(z)`)uv = β0 + β1x+ · · ·+ βm−1z
m−1. Then,

for every i = 0, . . . ,m− 1, the coefficient βi equals the number of
walks of length ` in the lifted digraph Γα, from vertex (u, h) to
vertex (v, h+ i) for every h ∈ G.

◦ The products of the entries (polynomials) of B(z) are in the ring
R[z]/(zm).
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4. Example. The Alegre digraph

◦ Matrix representation:

B(z) =


0 1 1 0 0
0 z4 z4 0 0
0 0 0 z + z4 0
1 0 0 0 1
z 0 0 0 z

 , B(1) =


0 1 1 0 0
0 1 1 0 0
0 0 0 2 0
1 0 0 0 1
1 0 0 0 1

 ,

◦ All coefficients αi, for i = 0, . . . , 4, of the polynomials of
I +B(z) +B(z)2 +B(z)3 +B(z)4 are non-zero, since Γα has
diameter four.

◦ For example, the entries of the first row of
I +B(z) +B(z)2 +B(z)3 +B(z)4 are:
3 + z + z2 + z3 + z4, 1 + z + z2 + z3 + 2z4, 1 + z + z2 + z3 + 2z4,
1 + z + z2 + z3 + 2z4, 2 + z + z2 + z3 + z4.
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The spectrum of the lifted digraph (cyclic group)

The spectrum of the lift Γα can be completely determined from the
spectrum of the polynomial matrix B(z).

Proposition
Let Γ = (V,E) be a base digraph on r vertices, with a voltage
assignment α in Zk. Let P (λ, z) = det(λI −B(z)) be the characteristic
polynomial of the polynomial matrix B(z) of the voltage digraph (Γ, α).
For j = 0, . . . , k − 1, let ωj be the distinct k-th complex roots of unity.
Then, the spectrum of the lift Γα is the multiset of kr roots λ of the k
polynomials P (λ, ωj) of degree r each, where 0 ≤ j ≤ k − 1; formally,

sp Γα = {λi,j : P (λi,j , ωj) = 0, 1 ≤ i ≤ r, 0 ≤ j ≤ k − 1}.



The spectrum of the of the Alegre digraph

The polynomial matrix B(z) of the Alegre digraph has spectrum
spB = {0(2), i(1),−i(1), (z + 1

z )(1)}.
Then, evaluating them at the 5-th roots of unity ωi = ei

2π
5 , for

i = 0, 1, 2, 3, 4, we get:

z\λ(z) 0(2) i(1) −i(1) (z + 1
z )(1)

1 0(2) i(1) −i(1) 2(1)

ω 0(2) i(1) −i(1) 1
2 (−1 +

√
5)(1)

ω2 0(2) i(1) −i(1) 1
2 (−1−

√
5)(1)

ω3 0(2) i(1) −i(1) 1
2 (−1 +

√
5)(1)

ω4 0(2) i(1) −i(1) 1
2 (−1−

√
5)(1)

Table: The eigenvalues of the Alegre digraph.



The case of a general group

Let Γ = (V,E) be a digraph with voltage assignment α on the group G.
Its associated matrix B is a square matrix indexed by the vertices of Γ,
and whose entries are elements of the group algebra C[G]. Namely,

(B)uv =
∑
g∈G

αgg

where

αi =

{
1 if uv ∈ E and α(uv) = g,
0 otherwise,

for i = 1, . . . , n.



The number of walks

Lemma
Let

(B`)uv =
∑
g∈G

a(`)g g.

Then, for every g, h ∈ G, the coefficient a
(`)
g equals the number of walks

of length ` in the lifted digraph Γα, from vertex (u, h) to vertex (v, hg).

In particular, if u = v and ι denotes the identity element of G, a
(`)
ι is the

number of walks of length ` rooted at every vertex (u, g), for g ∈ G, of
the lift.



The spectrum

Theorem
Let Γ = (V,E) be a base digraph on r vertices, with a voltage
assignment α in a group G with |G| = n. Assume that G has ν
conjugacy classes with dimensions d1, . . . , dν (so,

∑ν
i=1 d

2
i = n).

Let ρ1, . . . ,ρν be the irreducible representations of the group G. Let
ρi(B) the complex matrix obtained from B by replacing each g ∈ G by
the di × di matrix ρi(g), and let µu,j , u ∈ V , j ∈ [1, di] denote its
eigenvalues.
Then, the rn eigenvalues of the lift Γα are the rdi eigenvalues of ρi(B),
for every i ∈ [1, ν], each repeated di times.



Using the group characters

Corollary
Using the same notation as above, for each i ∈ [1, ν], the eigenvalues
λu,j , for u ∈ V and j ∈ [1, di], of the lift Γα, are the solutions (each
repeated di times) of the system∑

u∈V,j∈[1,di]

λ`u,j =
∑
p∈P`

χi(p), ` = 1, . . . , rdi. (1)

The equalities in (1) lead to a polynomial of degree rdi, with roots the
required eigenvalues λu,j .
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An example
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Figure: The base digraph K∗

2 , on the group S3, and its lift



B =

(
σ ι+ ρ

ι+ ρ σ

)
.

S3\g ι σ σρ σρ2 ρ ρ2

ρ1 1 1 1 1 1 1
ρ2 1 −1 −1 −1 1 1

ρ3 I 1
2

(
1 −

√
3

−
√

3 −1

)
- - 1

2

(
−1

√
3

−
√

3 −1

)
-

Table: The irreducible representations of the symmetric group S3.



B =

(
σ ι+ ρ

ι+ ρ σ

)
.

S3 \ g ι σ, σρ, σρ2 ρ, ρ2

χ1 (d1 = 1) 1 1 1
χ2 (d2 = 1) 1 −1 1
χ3 (d3 = 2) 2 0 −1

Table: The character table of the symmetric group S3.



χ1(B) =

(
1 2
2 1

)
, χ2(B) =

(
−1 2

2 −1

)
, χ3(B) =

(
0 1
1 0

)
.

Then, by the Corollary:

I χ1: Since d1 = 1, two eigenvalues of Γα are {3,−1} = evχ1(B).

I χ2: Since d2 = 1, two eigenvalues of Γα are {−3, 1} = evχ2(B).

I χ3: Since d3 = 2, we consider all the possible closed walks of
lengths ` = 1, 2, 3, 4 in B, which gives the system

λu,0 + λu,1 + λv,0 + λv,1 = 0

λ2u,0 + λ2u,1 + λ2v,0 + λ2v,1 = 2

λ3u,0 + λ3u,1 + λ3v,0 + λ3v,1 = 0

λ4u,0 + λ4u,1 + λ4v,0 + λ4v,1 = 2,

with solutions 1, 0, 0,−1

Then,
sp Γα = {3(1), 1(3), 0(4),−1(3),−3(1)}.
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Thanks for your attention


