Characterizing identifying codes in a digraph or graph from its spectrum

Camino Balbuena, Cristina Dalfó, Berenice Martínez-Barona
Universitat Politècnica de Catalunya (UPC)

Algebraic and Extremal Graph Theory
a conference in honor of Willem Haemers, Felix Lazebnik, and Andrew Woldar

August 7-10, 2017
University of Delaware, USA
Outlook

1. Introduction
2. Non-spectral results for digraphs
3. Spectral results for digraphs
4. The case of graphs
1. Introduction
1. Introduction

Definition
Given a vertex subset $U \subset V$, let $N^-[U] = \bigcup_{u \in U} N^-[u]$. For a given integer $\ell \geq 1$, a vertex subset $C \subset V$ is a $(1, \leq \ell)$-identifying code in a digraph D when, for all distinct subsets $X, Y \subset V$, with $1 \leq |X|, |Y| \leq \ell$, we get

$$N^-[X] \cap C \neq N^-[Y] \cap C.$$
1. Introduction

Definition
Given a vertex subset $U \subset V$, let $N^- [U] = \bigcup_{u \in U} N^- [u]$. For a given integer $\ell \geq 1$, a vertex subset $C \subset V$ is a $(1, \leq \ell)$-identifying code in a digraph D when, for all distinct subsets $X, Y \subset V$, with $1 \leq |X|, |Y| \leq \ell$, we get

$$N^- [X] \cap C \neq N^- [Y] \cap C.$$

Remark
A digraph $D = (V, A)$ admits some $(1, \leq \ell)$-identifying code if and only if for all distinct subsets $X, Y \subset V$ with $|X|, |Y| \leq \ell$, we have

$$N^- [X] \neq N^- [Y].$$
1. Introduction

Definition
Two distinct vertices u and v of D are called *twins* if $N^-[u] = N^-[v]$.
1. Introduction

Definition
Two distinct vertices u and v of D are called *twins* if $N^-[u] = N^-[v]$.

Remark
A digraph D admits a $(1, \leq 1)$-identifying code if and only if D is twin-free.
2. Non-spectral results for digraphs
2. Non-spectral results for digraphs

Theorem

Every 1-in-regular digraph D admits a $(1, \leq 2)$-identifying code if and only if the girth of D is at least 5.
2. Non-spectral results for digraphs

Theorem (Balbuena, D., Martínez-Barona, 2017)

Let D be a 2-in-regular digraph. Then,

(i) D admits a $(1, \leq 1)$-identifying code if and only if it does not contain any subdigraph isomorphic to the digraph of Figure 1 (a).

![Figure 1](image-url)
2. Non-spectral results for digraphs

Theorem (Balbuena, D., Martínez-Barona, 2017)

Let D be a 2-in-regular digraph. Then,

(ii) D admits a $(1, \leq 2)$-identifying code if and only if it does not contain any subdigraph isomorphic to any of the digraphs of Figure 1.

Figure 1
2. Non-spectral results for digraphs

Corollary

Every oriented and TT_3-free 2-in-regular digraph admits a $(1, \leq 2)$-identifying code if and only if it does not contain any subdigraph isomorphic to Figure 1 (i).

Figure 1
Example

Circulant digraph $C(6; 1, 2)$. $X = \{0, 3\}$ and $Y = \{1, 4\}$, $N^-[X] = N^-[Y] = \{0, 1, 2, 3, 4, 5\} = V$, $C(6; 1, 2)$ cannot admit a $(1, \leq 2)$-identifying code. Subdigraph of Figure 1 $(\ell) \subset C(6; 1, 2)$.
2. Non-spectral results for digraphs

Example

Circulant digraph $C(13; 1, 4)$. $C'(13; 1, 4)$ is oriented, TT_3-free.

By the Corollary, $C(13; 1, 4)$ admits a $(1, \leq 2)$-identifying code. Since $N^-[X] \neq N^-[Y]$ for every two distinct sets X, Y such that $2 \leq |X|, |Y| \leq 3$, $C(13; 1, 4)$ admits a $(1, \leq 3)$-identifying code.
Theorem (Balbuena, D., Martínez-Barona, 2017)

Let D be a 2-in-regular digraph. D admits a $(1, \leq 3)$-identifying code if and only if it is oriented, TT_3-free and does not contain any subdigraph isomorphic to any of the digraphs of Figure 2.

Figure 2
2. Non-spectral results for digraphs

Lemma
Let D be a \textit{d-in-regular} digraph on n vertices, without any of the subdigraphs of Figure 3. If D admits a $(1, \leq \ell)$-identifying code, then $\ell \in \{d, d + 1\}$.

Figure 3
3. Spectral results for digraphs
3. Spectral results for digraphs

Lemma
Let \(D \) be a digraph with adjacency matrix \(A \) and with a set of eigenvalues denoted by \(\text{ev}(A) \). If \(-1 \notin \text{ev}(A) \), then \(D \) admits a \((1, \leq 1)\)-identifying code.

Remark
The converse is not true.

Example
The digraph of the figure has \(-1 \) as an eigenvalue, but it does admit a \((1, \leq 1)\)-identifying code.
3. Spectral results for digraphs

Lemma

Let D be a digraph with adjacency matrix A and with a set of eigenvalues denoted by $\text{ev}(A)$. If $-1 \notin \text{ev}(A)$, then D admits a $(1, \leq 1)$-identifying code.

Remark

The converse is not true.
3. Spectral results for digraphs

Lemma
Let D be a digraph with adjacency matrix A and with a set of eigenvalues denoted by $\text{ev}(A)$. If $-1 \notin \text{ev}(A)$, then D admits a $(1, \leq 1)$-identifying code.

Remark
The converse is not true.

Example
The digraph of the figure has -1 as an eigenvalue, but it does admit a $(1, \leq 1)$-identifying code.
3. Spectral results for digraphs

Lemma
Let D' be a digraph with maximum in-degree Δ^- having an eigenvalue λ with eigenvector $x' = (x'_u)$, such that $x'_v = 0$ for any vertex $v \in V(D')$ with $d^-(v) < \Delta^-$. Then, any Δ^--in-regular digraph D containing D' as a subdigraph has also the eigenvalue λ.
3. Spectral results for digraphs

Theorem

Let D be a 2-in-regular digraph with adjacency matrix A.

(i) If $-1 \not\in \text{ev}(A)$ and D does not contain any subdigraph isomorphic to (b), (c), (d), (f) and (i) of Figure 1, then D admits a $(1, \leq 2)$-identifying code.

Figure 1
3. Spectral results for digraphs

Theorem
Let D be a 2-in-regular digraph with adjacency matrix A.

(ii) If $-1, 0 \not\in \text{ev}(A)$ and D does not contain any subdigraph isomorphic to (b)-(l) of Figure 2, then D admits a $(1, \leq 3)$-identifying code.
3. Spectral results for digraphs

Proposition

Let $D = (V,E)$ be a digraph with adjacency matrix A having some real eigenvalue, say $\lambda \in \text{ev}(A)$, different from the spectral radius. Let $x = (x_u)_{u \in V}$ be an eigenvector of A associated to λ such that $X = \mathcal{P}(x) = \{i : x_i > 0\}$ and $Y = \mathcal{N}(x) = \{i : x_i < 0\}$.

(a) If $\lambda < 0$, then $X \cup N^-(X) = Y \cup N^-(Y)$ \quad (\Leftrightarrow N^-[X] = N^-[Y]).$

(b) If $\lambda > 0$, then $X \cup N^-(Y) = Y \cup N^-(X)$.

(c) If $\lambda = 0$, then $N^-(X) = N^-(Y)$.
3. Spectral results for digraphs

Corollary

Let D be a digraph admitting a $(1, \leq \ell)$-identifying code. Let A be its adjacency matrix having at least one negative eigenvalue $-\lambda$ (for $\lambda > 0$) with $x = (x_1, \ldots, x_n)$ any associated eigenvector. Then

$$\ell < \min_x \max \{ |\mathcal{P}(x)|, |\mathcal{N}(x)| \}.$$
3. Spectral results for digraphs

Corollary

Let D be a digraph admitting a $(1, \leq \ell)$-identifying code. Let A be its adjacency matrix having at least one negative eigenvalue $-\lambda$ (for $\lambda > 0$) with $x = (x_1, \ldots, x_n)$ any associated eigenvector. Then

$$\ell < \min_x \max \{|P(x)|, |N(x)|\}.$$

Example

$\text{sp}(A) = \{0^4, 1^1, -1^1\}$.

Eigenvector corresponding to -1: $(0, -1, 1, -1, 0, 1)$.

$X = \{2, 5\}$, and $Y = \{1, 3\}$.

$N^{-}[X] = N^{-}[Y] = \{0, 1, 2, 3, 4, 5\}$.

It does not admit a $(1, \leq 2)$-identifying code.
3. Spectral results for digraphs

Lemma
Let D be a digraph on n vertices with adjacency matrix A, and let λ be a real eigenvalue of A with geometric multiplicity m. For any given index set $I \subset \{1, 2, \ldots, n\}$ with $|I| = m - 1$, there exists an eigenvector x with eigenvalue λ and entries $x_i = 0$ for every $i \in I$.
4. The case of graphs
4. The case of graphs

Remark
The last Corollary can also be applied to graphs, which always have real eigenvalues.
4. The case of graphs

Remark
The last Corollary can also be applied to graphs, which always have real eigenvalues.

Theorem (Laihonen, 2008)
Let \(k \geq 2 \) be an integer.

1. If a \(k \)-regular graph has girth \(g \geq 7 \), then it admits a \((1, \leq k)\)-identifying code.

2. If a \(k \)-regular graph has girth \(g \geq 5 \), then it admits a \((1, \leq k - 1)\)-identifying code.
Example

Heawood graph: \(\text{sp}(H) = \{3, \sqrt{2}^6, -\sqrt{2}^6, -3\}\).

Eigenvectors:

\[\begin{align*}
\lambda = -3 : & \quad (-1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1); \\
\lambda = -\sqrt{2} : & \quad (-1, 0, 1, 0, -1, \sqrt{2}, 0, -\sqrt{2}, 1, 0, 0, 0, 0), \\
& \quad (-1, 0, 1, -\sqrt{2}, 0, \sqrt{2}, -1, 0, 0, 0, 0, 1, 0), \\
& \quad (0, -1, \sqrt{2}, -1, 0, 1, -\sqrt{2}, 0, 0, 0, 1, 0, 0), \\
& \quad (0, -1, \sqrt{2}, 0, -\sqrt{2}, 1, 0, -1, 0, 1, 0, 0, 0), \\
& \quad (0, -\sqrt{2}, 1, 0, -1, \sqrt{2}, -1, 0, 0, 1, 0, 0, 0), \\
& \quad (-\sqrt{2}, 0, \sqrt{2}, -1, 0, 1, 0, -1, 0, 0, 0, 0, 1) \\
\end{align*} \]

With the last one: \(X = \{2, 5, 13\}, Y = \{0, 3, 7\} \).

\(N^-[X] = N^-[Y] = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 13\} \).

It does not admit a \((1, \leq 3)\)-identifying code.

Laihonen’s Theorem: It is 3-regular and it has girth 6, it admits a \((1, \leq 2)\)-identifying code.
Thank you for your attention.

Gràcies per la vostra atenció.