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1. Introduction

Definition
Given a vertex subset U ⊂ V , let N−[U ] =

⋃
u∈U N

−[u]. For a given
integer ` ≥ 1, a vertex subset C ⊂ V is a (1,≤ `)-identifying code in a
digraph D when, for all distinct subsets X,Y ⊂ V , with
1 ≤ |X|, |Y | ≤ `, we get

N−[X] ∩ C 6= N−[Y ] ∩ C.

Remark
A digraph D = (V,A) admits some (1,≤ `)-identifying code if and only
if for all distinct subsets X,Y ⊂ V with |X|, |Y | ≤ `, we have

N−[X] 6= N−[Y ].
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1. Introduction

Definition
Two distinct vertices u and v of D are called twins if N−[u] = N−[v].

Remark
A digraph D admits a (1,≤ 1)-identifying code if and only if D is
twin-free.
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2. Non-spectral results for digraphs

Theorem
Every 1-in-regular digraph D admits a (1,≤ 2)-identifying code if and
only if the girth of D is at least 5.



2. Non-spectral results for digraphs

Theorem (Balbuena, D., Mart́ınez-Barona, 2017)
Let D be a 2-in-regular digraph. Then,

(i) D admits a (1,≤ 1)-identifying code if and only if it does not
contain any subdigraph isomorphic to the digraph of Figure 1 (a).
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Figure 1



2. Non-spectral results for digraphs

Theorem (Balbuena, D., Mart́ınez-Barona, 2017)
Let D be a 2-in-regular digraph. Then,
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Figure 1.
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2. Non-spectral results for digraphs

Corollary
Every oriented and TT3-free 2-in-regular digraph admits a
(1,≤ 2)-identifying code if and only if it does not contain any subdigraph
isomorphic to Figure 1 (i).
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2. Non-spectral results for digraphs

Example
Circulant digraph C(6; 1, 2).
X = {0, 3} and Y = {1, 4}, N−[X] = N−[Y ] = {0, 1, 2, 3, 4, 5} = V ,
C(6; 1, 2) cannot admit a (1,≤ 2)-identifying code.
Subdigraph of Figure 1 (`) ⊂ C(6; 1, 2).
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2. Non-spectral results for digraphs

Example
Circulant digraph C(13; 1, 4).
C(13; 1, 4) is oriented, TT3-free.
By the Corollary, C(13; 1, 4) admits a (1,≤ 2)-identifying code. Since
N−[X] 6= N−[Y ] for every two distinct sets X,Y such that
2 ≤ |X|, |Y | ≤ 3, C(13; 1, 4) admits a (1,≤ 3)-identifying code.
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2. Non-spectral results for digraphs

Theorem (Balbuena, D., Mart́ınez-Barona, 2017)
Let D be a 2-in-regular digraph. D admits a (1,≤ 3)-identifying code if
and only if it is oriented, TT3-free and does not contain any subdigraph
isomorphic to any of the digraphs of Figure 2.
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Figure 2



2. Non-spectral results for digraphs

Lemma
Let D be a d-in-regular digraph on n vertices, without any of the
subdigraphs of Figure 3. If D admits a (1,≤ `)-identifying code, then
` ∈ {d, d+ 1}.

(a) (b) (c)

Figure 3
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3. Spectral results for digraphs

Lemma
Let D be a digraph with adjacency matrix A and with a set of
eigenvalues denoted by ev(A). If −1 6∈ ev(A), then D admits a
(1,≤ 1)-identifying code.

Remark
The converse is not true.

Example
The digraph of the figure has −1 as an eigenvalue, but it does admit a
(1,≤ 1)-identifying code.
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3. Spectral results for digraphs

Lemma
Let D′ be a digraph with maximum in-degree ∆− having an eigenvalue λ
with eigenvector x′ = (x′u), such that x′v = 0 for any vertex v ∈ V (D′)
with d−(v) < ∆−. Then, any ∆−-in-regular digraph D containing D′ as
a subdigraph has also the eigenvalue λ.



3. Spectral results for digraphs

Theorem
Let D be a 2-in-regular digraph with adjacency matrix A.

(i) If −1 6∈ ev(A) and D does not contain any subdigraph isomorphic
to (b), (c), (d), (f) and (i) of Figure 1, then D admits a
(1,≤ 2)-identifying code.

(a) (d)

(h)

(b) (c)

(i) (j) (k) (l) (m)

(f)(e) (g)
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3. Spectral results for digraphs

Theorem
Let D be a 2-in-regular digraph with adjacency matrix A.

(ii) If −1, 0 6∈ ev(A) and D does not contain any subdigraph isomorphic
to (b)-(`) of Figure 2, then D admits a (1,≤ 3)-identifying code.

(a) (b) (c) (d) (e)

(k)

(f) (g) (h)

(j) (l)(i) (m) (n) (o)

-1,0Ïev(A)

Figure 2



3. Spectral results for digraphs

Proposition
Let D = (V,E) be a digraph with adjacency matrix A having some real
eigenvalue, say λ ∈ ev(A), different from the spectral radius. Let
x = (xu)u∈V be an eigenvector of A associated to λ such that
X = P(x) = {i : xi > 0} and Y = N (x) = {i : xi < 0}.

(a) If λ < 0, then X ∪N−(X) = Y ∪N−(Y ) (⇔ N−[X] = N−[Y ]).

(b) If λ > 0, then X ∪N−(Y ) = Y ∪N−(X).

(c) If λ = 0, then N−(X) = N−(Y ).



3. Spectral results for digraphs

Corollary
Let D be a digraph admitting a (1,≤ `)-identifying code. Let A be its
adjacency matrix having at least one negative eigenvalue −λ (for λ > 0)
with x = (x1, . . . , xn) any associated eigenvector. Then

` < min
x

max{|P(x)|, |N (x)|}.

Example
sp(A) = {04, 11,−11}.
Eigenvector corresponding to −1: (0,−1, 1,−1, 0, 1).
X = {2, 5}, and Y = {1, 3}.
N−[X] = N−[Y ] = {0, 1, 2, 3, 4, 5}.
It does not admit a (1,≤ 2)-identifying code.
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3. Spectral results for digraphs

Lemma
Let D be a digraph on n vertices with adjacency matrix A, and let λ be a
real eigenvalue of A with geometric multiplicity m. For any given index
set I ⊂ {1, 2, . . . , n} with |I| = m− 1, there exists an eigenvector x
with eigenvalue λ and entries xi = 0 for every i ∈ I.
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4. The case of graphs

Remark
The last Corollary can also be applied to graphs, which always have real
eigenvalues.

Theorem (Laihonen, 2008)
Let k ≥ 2 be an integer.

1. If a k-regular graph has girth g ≥ 7, then it admits a
(1,≤ k)-identifying code.

2. If a k-regular graph has girth g ≥ 5, then it admits a
(1,≤ k − 1)-identifying code.



4. The case of graphs

Remark
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Example
Heawood graph: sp(H) = {31,

√
2
6
,−
√

2
6
,−31}.

Eigenvectors:

λ = −3 : (−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1);

λ = −
√

2 : (−1, 0, 1, 0,−1,
√

2, 0,−
√

2, 1, 0, 0, 0, 0, 0),

(−1, 0, 1,−
√

2, 0,
√

2,−1, 0, 0, 0, 0, 0, 1, 0),

(0,−1,
√

2,−1, 0, 1,−
√

2, 0, 0, 0, 0, 1, 0, 0),

(0,−1,
√

2, 0,−
√

2, 1, 0,−1, 0, 1, 0, 0, 0, 0),

(0,−
√

2, 1, 0,−1,
√

2,−1, 0, 0, 0, 1, 0, 0, 0),

(−
√

2, 0,
√

2,−1, 0, 1, 0,−1, 0, 0, 0, 0, 0, 1)

With the last one: X = {2, 5, 13}, Y = {0, 3, 7}.
N−[X] = N−[Y ] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 13}.
It does not admit a (1,≤ 3)-identifying code.
Laihonen’s Theorem: It is 3-regular and it has girth
6, it admits a (1,≤ 2)-identifying code.
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Thank you for your attention.

Gràcies per la vostra atenció.


