A class of regular functions related to univalent functions
Michael R. Ziegler
1970

If \(g(z) \) is regular in the open unit disk \(E \), normalized by \(g(0) = 0 \) and \(g'(0) = 1 \), and there is a complex number \(\epsilon \), \(|\epsilon| = 1 \), such that \(\text{Re} \left[\epsilon z g'(z)/g(z) \right] > 0 \) for \(z \) in \(E \); then \(g(z) \) is said to be a spiral function. The spiral functions are used to define a new class of regular functions: \(f(z) \) is in \(H \) if and only if \(f(z) \) is regular in \(E \), satisfies \(f(0) = 0 \) and \(f'(0) = 1 \), there exists a spiral function \(g(z) \) and a complex number \(\xi \) such that \(\text{Re} \left[\xi z f'(z)/g(z) \right] > 0 \), \(z \) in \(E \). The class \(H \) contains the spiral functions and the close-to-convex functions; it also contains functions which are not univalent.

The dissertation has four chapters. The first chapter is concerned with preliminary definitions and the decomposition of \(H \) into subclasses.

In chapter two the methods of interior variation are used to solve two general extremal problems over \(H \).

Let \(f(z) = z + a_2 z^2 + \ldots \) belong to \(H \). Chapter 3 deals with bounds on \(\arg \left[f'(z) \right], |f'(z)| \) and \(|a_n| \). Upper bounds are also determined for \(|a_{n+1}| - |a_n| \) and \(|a_3 - \mu a_2^2| \), \(\mu \) any complex number.

Let \(C \) denote the class of functions \(f(z) \) such that \(zf'(z) \) is a spiral function. In chapter four the radii of convexity and close-to-convexity of \(H \) is \(2 - \sqrt{3} \). Also an example of a univalent subclass of \(H \) is given by appealing to the Schwarzian derivative.